用户名: 密码: 验证码:
GOCE卫星重力梯度测量数据的预处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球重力场研究历来是现代大地测量学领域的主要研究任务之一。随着卫星重力探测技术的发展,卫星跟踪卫星技术(SST)和卫星重力梯度测量技术(SGG)被国际上公认为当今获取全球高精度高分辨率地球重力场及其时变信息的最有效技术手段。GOCE卫星已经于2009年3月17日成功发射,利用卫星重力梯度数据确定地球重力场的理论与方法已成为国际大地测量学界研究的热点和趋势。高质量的重力梯度测量数据预处理将为恢复高精度静态地球重力场模型提供数据质量保障,既是卫星重力梯度测量数据处理及应用中的重要环节,也是实现GOCE预期科学目标的关键任务之一。在此研究背景下,本文旨在紧跟国际卫星重力梯度技术的发展步伐,系统研究GOCE卫星重力梯度数据的预处理理论与方法,包括重力梯度观测数据的时变重力场效应改正、粗差探测方法和外部校准方法,研制自主知识产权的卫星重力梯度数据预处理软件,对发展我国卫星重力梯度测量技术具有重要的科学意义和应用价值。
     本文的主要研究工作及成果如下:
     (1)详细阐述了卫星重力探测技术的发展和现状,归纳总结了利用卫星重力梯度测量技术确定地球重力场的理论与方法、卫星重力梯度测量数据的预处理方法及相关研究进展。
     (2)系统研究了卫星重力梯度测量的基础理论,详细推导了重力梯度测量观测方程,给出了GOCE卫星涉及的时间系统、坐标系统和相应转换公式,以及重力梯度张量在不同坐标系间的转换关系;详细介绍了GOCE卫星任务的科学目标、技术特点、卫星系统的组成、数据产品及分类,分析了重力梯度观测值和卫星轨道精密定轨的误差特性。
     (3)系统研究了GOCE重力梯度测量数据时变效应中的潮汐影响,包括天文潮汐、固体潮、海潮和极潮等潮汐效应对卫星重力梯度测量数据的影响,给出了卫星重力梯度观测数据的潮汐改正公式。计算结果表明:潮汐对重力梯度数据的总体影响量级为10-3E量级,接近于GOCE卫星设计的测量精度指标。考虑到潮汐效应具有系统性,在GOCE重力梯度数据预处理中可看作是有色噪声源,需要在数据预处理环节将其剔除。
     (4)详细分析了时变重力场效应非潮汐影响中的大气与海洋质量变化、陆地水质量变化等影响源对卫星重力梯度测量数据的影响,给出了相应的重力梯度观测数据的改正公式。计算结果显示:大气与海洋质量变化、陆地水质量变化对重力梯度观测数据的影响总体上比GOCE重力梯度测量精度指标低1-2个量级。
     (5)深入研究了重力梯度观测数据的粗差探测理论与方法,包括阈值法、Grubbs检验法和Dixon检验法等统计检验方法和小波分析方法,给出各种方法的实用计算模型。利用含有噪声和不同分布类型粗差的模拟卫星重力梯度测量数据计算结果表明:统计检验方法具有计算简单、快速的特点,能够较好的识别离散态粗差,总体探测成功率较高,适用于粗差探测的快速解算;小波分析方法粗差探测成功率很高,失败率非常低,且能适应多种粗差分布类型,适合于粗差探测的精密解算。
     (6)提出了基于小波收缩阈值降噪方法和Dixon检验法的组合粗差探测方法,计算结果表明:组合粗差探测方法的成功率和失败率都优于上述几种单独的粗差探测方法,能够正确识别基本上所有的离散态粗差,同时对于区域态粗差也有很好的识别率。建议在GOCE实测数据预处理中采用该组合粗差探测方法。
     (7)深入研究了重力梯度观测值的外部校准方法,包括基于地球重力场模型的校准方法、基于高-低卫星跟踪卫星数据的校准方法和基于高精度地面重力数据的校准方法,给出了各种方法的计算模型。计算结果表明:利用高精度地球重力场模型能够以104的相对精度校准卫星重力梯度数据的尺度因子和偏差;利用局部高精度地面重力数据能够以10-2的相对精度校准卫星重力梯度数据的尺度因子。
     (8)研究制订了GOCE卫星重力梯度测量数据处理方案,给出了L1b数据预处理流程,独立研制了GOCE卫星重力梯度数据预处理软件,该软件具备重力梯度观测数据的时变重力场效应改正、粗差探测和外部校准等功能。
THE EARTH'S gravity field is always one of the main tasks of modern geodesy research field. With the breakthrough of satellite gravimetry technique, the Satellite-to-Satellite Tracing (SST) and Satellite Gravity Gradiometry (SGG) are regarded as the most effective techniques for the determination of the earth's gravity field and its temporal variation with high accuracy and high resolution. As GOCE satellite successfully launched on 17th March 2009, theory and methodology of gravity field recovery using Satellite Gravity Gradiometry data become a hot issue in international geodesy research field. The satellite gradiometry data pre-processing in high quality can provide pure data for recovering static earth's gracity field model with high accuracy, which is a key link in satellite gradiometry data process and application. Study on pre-processing of GOCE satellite gradiometry data is one of the key tasks to achieve the scientific goals of GOCE mission. Under the background of the scientific research, keeping the pace with the development of the satellite gravity gradiometry technique, the theory and methodology of pre-processing of GOCE satellite gradiometry data are studied in this dissertation, including temporal gravity field correction, outliers detection and external calibration on GOCE data. The corresponding GOCE data pre-processing software with autonomous copyright are developed, which has scientific significance and can be applicated to develop our own satellite gravity gradiometry technique.
     The main research work and contributions of this dissertation are as follow:
     THE milestone and current status of satellite gravimetry technique is reviewed in detail. The theory and methodology for the determination of the earth's gravity field base on satellite gravity gradiometry technique, pre-processing of GOCE satellite gradiometry data and related research progress home and abroad are summarized
     FUNDAMENTAL theories of the satellite gradiometry are researched. The satellite gradient observation equations are derived in detail. Then time reference system and coordinate reference frame related to GOCE satellite and the corresponding transformations are introduced. And the gravity gradient tensor transformations between different coordinate system are derived. The GOCE satellite mission is comprehensively reviewed, including scientific objectives, technique characteristics, satellite system components, data product and its classification etc. The error properties of satellite gradiometry data and precise orbit determination are analysed.
     TIDAL effects among temporal gravity field correction in GOCE satellite gradiometry data are deeply studied, including the effect of astronomical tides, solid earth tides, ocean tides and pole tides on satellite gradiometry data. And tidal effect corrections for satellite gradiometry data are derived. The results indicate that total tidal effect is 10-3E in order, close to GOCE measurement accuracy. Considering the systemanic of tidal effect, it should be removed as colored noise in GOCE data pre-processing.
     (?)ON-TIDAL effects on GOCE gravity gradiometry observation are discussed, including atmospheric and oceanic high-frequency mass variations, land hydrology. The corresponding correction models are derived. It can be indicated that the effect of atmospheric and oceanic high-frequency mass variations, land hydrology are 2 degrees lower in order than GOCE measurement accuracy.
     THEORY and methodology of outlier detection for satellite gradiometry data are deeply stuied, including Threshold method, Grubbs's test, Dixon test, wavelet analysis method. Practical numerical models of ech method are derived. The computation results using satellite gradiometry data with noise and different types of outliers indicate that statistics method, which is easy and fast, can detec innovative outlier with a rather high outlier ratio of success. The statistics method can be applied to quick-look outlier detection. Wavelet method is valid for all three outlier distribution types, with a high outlier ratio of success and low outlier ratio of failure.
     BASE on wavelet shrinkage denoising method and Dixon test, combined algorithm foroutlier detection is presented. The computation result indicates that combined method shows best performance than the other outlier detection methods, with successful detection of nearly all the innovative outliers and most bulk outliers. It is suggested to apply the combined method for pre-processing of satellite gradiometry data
     METHODOLOGY of external calibration of gradiometry observations using global-gravity models, regional terrestrial gravity data and high-low SST data are deeply stuied. The computation results indicate that it can achieve relative accuracy at 10-4 order to calibrate scale factor and bias base on high accuracy earth's gravity model. The relative accuracy of calibration on scale factor base on regional terrestrial gravity data can achieve 10"2 order.
     GOCE satellite gradiometry data processing scheme are studied, L1b data pre-processing flow is presented. GOCE satellite gradiometry data pre-processing software is developed independently, with the functions as temporal gravity field correction, outlier detection and external calibration.
引文
[1]边少锋.大地测量边值问题数值解法与地球重力场逼近[博士论文].武汉:武汉测绘科技大学,1992
    [2]陈俊勇.地球重力场、重力、重力梯度在三维直角坐标系中的表达式.武汉大学学报(信息科学版),2004,29(5):377-379
    [3]陈宗铺,甘子钧,金庆祥.海洋潮汐.北京:科学出版社,1979
    [4]费志凌.利用卫星重力梯度数据确定地球重力场的单层位模型.测绘学报,1994,23(1):29-36
    [5]宁津生,管泽霖译.高等物理大地测量学.北京:测绘出版社,1984
    [6]郭俊义.地球物理学基础.北京:测绘出版社,2001
    [7]高志,余啸海.Matlab小波分析工具箱原理与应用.北京:国防工业出版社,2004
    [8]胡坚.卫星重力学与重力卫星研究进展.国际地震动态,2003,300:1-3
    [9]胡明城,鲁福.现代大地测量学(上、下).北京:测绘出版社,1994
    [10]胡小工,陈剑利,周永宏,黄城等.利用GRACE空间重力测量监测长江流域水储量的季节性变化.中国科学D辑(地球科学),2006,36(3):255-232
    [11]纪兵.卫星重力梯度测量相关技术研究[硕士论文].郑州:解放军信息工程大学,2005
    [12]姜卫平,章传银,李建成.重力卫星主要有效载荷指标分析与确定.武汉大学学报(信息科学版)2003,28(特刊):104-109
    [13]李德仁.误差处理及可靠性理论.北京:测绘出版社,1998
    [14]李海东,李青.基于阈值法的小波去噪算法研究.计算机技术与发展,2009,19(7):12-16.
    [15]李建成.物理大地测量中的谱方法[博士论文].武汉:武汉测绘科技大学,1993
    [16]李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定.武汉:武汉大学出版社,2003
    [17]李振航,徐德宝,董杷英等.空间大地测量理论基础.武汉:武汉测绘科技大学,1992
    [18]柳建新,韩世礼,马捷.小波分析在地震资料去噪中的应用.地球物理学进展,2006,21(2):541-545.
    [19]刘林.航天器轨道理论.北京:国防工业出版社,2000
    [20]赖锡安译.卫星大地测量学.北京:地震出版社,1998
    [21]李克行,彭冬菊,黄珹,冯初刚.GOCE卫星重力计划及其应用.天文学进展,2005,23(1):29-39
    [22]李迎春.利用卫星重力梯度测量数据恢复地球重力场的理论与方法[硕士论文].郑州:解放军信息工程大学,2004
    [23]罗佳.利用卫星跟踪卫星确定地球重力场的理论和方法[博士论文].武汉:武汉大学,2003
    [24]罗志才.利用卫星重力梯度数据确定地球重力场的理论和方法[博士论文],武汉:武汉测绘科技大学,1996
    [25]罗志才,晁定波,宁津生.重力梯度张量的球谐分析.武汉测绘科技大学学报,1997,22(4):346-349.
    [26]罗志才,宁津生,晁定波.重力-重力梯度边值问题的准解.地球物理学报,1996b,39(增刊):190-195.
    [27]罗志才,宁津生,晁定波.卫星重力理梯度分量的球谐综合.武汉测绘科技大学学报,1996c,21(1):103-108.
    [28]罗志才,宁津生,晁定波.关于卫星重力梯度边值问题的准解的若干注记.武汉测绘科技大学学报,1996,21(4):315-319.
    [29]罗志才,吴云龙,钟波,杨光.GOCE卫星重力梯度测量数据的预处理.武汉大学学报(信息科学版).2009,34(10):1163-1167
    [30]罗志才,钟波,宁津生,杨光.GOCE卫星轨道摄动的数值模拟与分析.武汉大学学报(信息科学版), 2009a,39(7):757-760.
    [31]马高峰.地-月参考系及其转换研究[硕士论文].郑州:解放军信息工程大学,2005
    [32]孟嘉春,刘尚余.卫星重力梯度测量与地球引力场的精度研究.地球物理学报,1993,36(6):725-739
    [33]宁津生.地球重力场逼近理论研究进展.武汉测绘科技大学学报,1998,23(4):310-313
    [34]宁津生.卫星重力探测技术与地球重力场研究.大地测量与地球动力学,2002,22:1-5
    [35]宁津生,汪海洪,罗志才.小波分析在大地测量中的应用及其进展.武汉大学学报(信息科学版),2004,29(8):659-664
    [36]秦前清,杨忠凯.实用小波分析.西安:西安电子科技大学出版社,1994.
    [37]孙文科.低轨人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场:卫星重力大地测量的最新发展及其对地球科学的重大影响.大地测量与地球动力学,2002,22(1):92-100
    [38]石为人,罗雪松,胡宁.基于小波多分辨率分析的信号消噪.重庆大学学报,2002,25(6):59-62
    [39]吴庆鹏.重力学与固体潮.北京:地震出版社,1997
    [40]王正涛.卫星跟踪卫星测量确定地球重力场的理论和方法[博士论文].武汉:武汉大学,2005
    [41]吴晓平.利用卫星重力梯度与地面数据确定地球重力场的分析.解放军测绘学院学报,1991,1:19-32
    [42]吴晓平,陆仲连.卫星重力梯度向下延拓的最佳积分核谱组合解.测绘学报,1992,21(2):123-133
    [43]吴星,张传定,赵东明.卫星重力梯度分量的广义轮胎调和分析.测绘学报,2009,38(2):101-107
    [44]吴云龙,罗志才,李辉,钟波.基于小波收缩阈值降噪的卫星重力梯度数据粗差探测方法.大地测量与地球动力学,2010,30(4):55-58
    [45]徐天河,贺凯飞.移动开窗检验法及其在GOCE数据粗差探测中的应用.测绘学报,2009,38(8):391-396
    [46]徐士良.FORTRAN常用算法程序集.北京:清华大学出版社,1992
    [47]徐新禹.卫星重力梯度及卫星跟踪卫星数据确定地球重力场的研究[博士论文].武汉:武汉大学,2008
    [48]徐新禹,李建成,邹贤才,范春波,褚永海.GOCE卫星重力探测任务.大地测量与地球动力学,2006,26(4):49-55
    [49]徐新禹,李建成,邹贤才,褚永海.最小二乘法求解三类卫星重力梯度边值问题的研究.武汉大学学报(信息科学版),2006,31(11):987-990
    [50]徐新禹,王正涛,邹贤才,朱广彬.GOCE卫星重力梯度测量误差分析及其模拟研究.大地测量与地球动力学,2010,30(2):71-75
    [51]徐厚泽.卫星重力研究:21世纪大地测量研究的新热点.测绘科学,2001,26(3):1-3
    [52]杨元喜,刘念.重力异常的一种逼近方法.测绘学报,2001,30(3):192-196
    [53]张传定.卫星重力测量—基础、模型化方法与数据处理算法[博士论文].郑州:解放军信息工程大学,2000
    [54]张传定,吴晓平,陆仲连.全张量重力梯度数据的谱表示方法.测绘学报,2000,29(4):297-304
    [55]张捍卫,柴洪洲,王占统,郑勇,刘长建.地球自转和固体潮对地球重力场时变特征的影响.大地测量与地球动力学,2002,22(1):76-80
    [56]郑伟,徐厚泽,钟敏,员美娟,彭碧波,周旭华.Improved-GRACE卫星重力轨道参数优化研究.大地测量与地球动力学,2010,30(2):43-48
    [57]钟敏,段建斌,徐厚泽,彭鹏等.利用卫星重力观测研究近5年的中国陆地水量中长空间尺度的变化趋势.科学通报,2009,54(9):1290-1294
    [58]朱广彬,李建成,文汉江,王建强等.利用GRACE时变重力位模型研究全球陆地水储量变化.大地测量与地球动力学,2008,28(5):39-44
    [59]钟波.基于GOCE卫星重力测量技术确定地球重力场的研究[博士论文].武汉:武汉大学,2010
    [60]邹贤才.最小二乘配置在物理大地测量中的应用[硕士论文].武汉:武汉大学,2003
    [61]周旭华.卫星重力及应用研究[博士论文].武汉:中国科学院测量与地球物理研究所,2005
    [62]周旭华,吴斌,彭碧波,徐厚译.全球水储量变化的GRACE卫星检测.地球物理学报,2006,49(6):1644-1 650
    [63]邹正波.卫星重力梯度数据恢复地球重力场的时域法研究[硕士论文],武汉:武汉大学,2006
    [64]邹正波,罗志才,邢乐林,吴云龙,李辉.卫星重力梯度恢复地球重力场的时域法研究,大地测量与地球动力学,2007,27(3):44-49
    [65]Arabelos, D. and C. Tscherning. Calibration of satellite gradiometer data aided by ground gravity data. Journal of Geodesy,1998,72:617-625
    [66]Arabelos.D, C.C.Tscherning. Globally covering a-priori regional gravity covariance models. Advances in Geosciences,2003,1:143-147
    [67]Balmino, G, Beutler, G, Ilk, K.H., Klees, R., Visser, P., Koop, R., Reigber, Ch., Rummel, R., Sanso, F., Selig, A., Suenkel, H. and Tscherning, C.C. GOCE:Preparation of the GOCE level 1 to level 2 data processing. Report PM 1 to the European Space Agency ESA, ESA/ESTEC, Noordwijk,2001
    [68]Bouman, J., M. Kern, R. Koop, R. Pail, R. Haagmans, and T. Preimesberger. Comparison of outlier detection algorithms for GOCE gravity gradients. In C. Jekeli, L. Bastos, and J. Fernandes, IAG Symposia 129-Gravity,2005, Geoid and Space Missions Springer.,83-88
    [69]Bouman, J. Quick-look outlier detection for GOCE gravity gradients. Newton's Bulletin 2,2004,78-87
    [70]Bouman, J. and R. Koop. Error assessment of GOCE SGG data using along track interpolation. Advances in Geosciences,2003,27-32
    [74]Bouman, J. Quick-look outlier detection for GOCE gravity gradients:Newton's Bulletin 2,2004,78-87
    [72]Bouman, J., R. Koop, C. Tscherning, and P. Visser. Calibration of GOCE SGG data using high-low SST, terrestrial gravity data, and global gravity field models. Journal of Geodesy,2004,78:124-137
    [73]Bouman, J., Rispens, S., Gruber, T., Koop, R., Schrama, E., Visser, P., Tscherning, C.C. Veicherts, M. Preprocessing of Gravity Gradients at the GOCE High-level Processing Facility. Journal of Geodesy, 2008, DOI:10.1007/s00190-008-0279-9
    [74]Chuji Tsuboi, Gravity, George Allen & Unwin Ltd,1983
    [75]Dimiter Zidarov. Inverse Gravimetric Problem in Geoprospecting and Geodesy. Elsevier Science Publishing Company, New York,1990
    [76]Dobslaw, H. and M. Thomas. Simulation and observation of global ocean mass anomalies. Journal of Geophysical Research 112(C05040),2007.
    [77]Drinkwater. GOCE Calibration and Validation Plan for L1b Data Products.ESA,2006
    [78]Drinkwater. The GOCE Gravity Mission:ESA's First Core Earth Explorer.ESA,2006
    [79]ECMWF. IFS documentation, http://www.ecmwf.int/research/ifsdocs/CY31r1/index.html.2007
    [80]E.Groten R.Straub. GPS-Techniques Applied to Geodesy and Surveying. Proceedings of the International GPS-Workshop Darmatadt, April 10 to 13,1988
    [81]Erik W.Grafarend, Friedrich W.Krumm, Volker S.Schwarze. Geodesy The Challenge of the Third Millennium. Springer-Verlag, Berlin Heidelberg,2003
    [82]Erik W.Grafarend. Linear and Nonlinear Models Fixed Effects,Random Effects,and Mixed Models. Walter de Gruyter and Co.KG,10785 Berlin,2006
    [83]ESA. Calibration of GOCE gradiometer data in the MBW using ground data.2006
    [84]ESA. Implementation of Tidal Acceleration in UCPH Energy Conservation SW,2008
    [85]ESA. From Eotvos to Milligal, Final Report. ESA/ESTS, Contract No.13392/98/NL/GD,2000
    [86]ESA. From Eotvos to Milligal+, Final Report. ESA/ESTS, Contract No.14287/00/NL/DC,2002
    [87]ESA. GOCE Ground Segment Concept and Architecture.ESA,2003
    [88]ESA. GOCE L1b Products user handbook. GOCE-GSEG-EOPG-TN-06-0137,2006
    [89]ESA. GOCE Mission Requirements Document.ESA,2000
    [90]ESA. GOCE Performance Requirements and Error Budget of Gradiometer,2001
    [91]ESA. Gravity Field and Steady-State Ocean Circulation Mission. Reports for mission selection, the four candidate earth explorer core missions, ESA SP-1233(1),1999
    [92]ESA. Gradiometer Calibration Plan,2002
    [93]ESA. Preparation of the GOCE Levell to Level2 Data Processing_Final Report.ESA,2002
    [94]ESA. Satellite Gravity Field Missions:Simulation Scenarios.ESA,2001
    [95]Flechtner, F. AOD1B product description document for product release 01 to 04. Document GRACE, issue 3.1,2007
    [96]Foerste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. Koenig, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn. The Geo-ForschungsZentrum Potsdam/ Groupe de Recherche de G'eod'esie Spatiale satellite-only and combined gravity eld models: EIGEN-GL04S1 and EIGENGL04C. Journal of Geodesy.2007, doi:10.1007/s00190-007-0183-8.
    [97]G.Beutler, R.Rummel, M.R.Drinkwater, R.von Steiger. Earth Gravity Field from Space-from Sensors to Earth Sciences. Proceedings of an ISSI Workshop 11-15 March 2002, Bern, Switzerland
    [98]F.Sanso, R.Rummel. Theory of Satellite Geodesy and gravity Field Determination. Springer-Verlag,1989
    [99]Gruber, R. Rummel et al. GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110,2007
    [100]Gruber, T. and R. Rummel. Concept and Capability of GOCE. In Proceedings of the GOCINA Workshop, Volume 25. Cahiers du Centre Europeen de Geodynamique et de Seismologie.2006
    [101]Gunter Seeber. Satellite Geodesy. Walter de Gruyter. Berlin, New York,2003
    [102]Guochang Xu. GPS Theory, Algorithms and Applications. Springer-verlag, Berlin Heidelberg,2007
    [103]Hartmann, T., Wenzel, H. G.The HW95 Tidal Potential Catalogue. Geophysical Research Letters,1995,22, no.24,3553-3556
    [104]Hans Sunkel. Mathematical and Numerical Techniques in Physical Geodesy. Springer-Verlag,1986
    [105]Helmut Moritz. Physical Geodesy. W. H. Freeman and Company, London,1967
    [106]Huaan Fan. Geoid Determination by Global Geopotential Models and Integral Formulas. The Royal Institute of Technology Department of Geodesy Stockholm, Sweden,1989
    [107]James R.Smith. Introduction to Geodesy-The History and Concepts of Modern Geodesy. John Wiley and Sons, New York,1996
    [108]J.Muller. GOCE gradients in various reference frames and their accuracies. Advances in Geosciences,2003, 1:33-38
    [109]J. B. Zielinski, M. S. Petrovskaya. The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer. Advances in Geosciences,2003,1:149-153
    [110]K.Arsov, R.Pail. Assessment of two methods for gravity field recovery from GOCE GPS-SST orbit solution. Advances in Geosciences,2003,1:121-126
    [111]Kaula, William M. The theory of satellite geodesy:applications of satellites to geodesy. Dover ed, New York,1966
    [112]Kern M., R. Haagmans. Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data. IAG Symposia 129-Gravity, Geoid and Space Missions,2005, 95-100, Springer.
    [113]Kern M., T. Preimesberger, M. allesch, et al. Outlier detection algorithms and their performance in GOCE gravity field processing. Journal of Geodesy,2005,78:509-519
    [114]Koop, R. Global Gravity Field Modeling Using Satellite Gravity Gradiometry. Netherlands Geodetic Mission, Publications on Geodesy, No.38, Delft,1993
    [115]Koop R, Bouman J, Schrama E; Visser P. Calibration and error,assessment of GOCE data. IAG Symposia 125-Vistas for geodesy in the new millennium,167-174, Springer,2002
    [116]Ludmila Kubackova, Lubomir Kubacek, Jan Kukuca. Probability and Statistics in Geodesy and Geophysics. Elsevier,1987
    [117]McCarthy D. IERS Conventions. IERS Technical Note 32,2003
    [118]Mitrovica, X., Peltier, R. Present Day Secular Variations in the Zonal Harmonics of the Earth's Geopotential. Journal of Geophysical Research,1993,98:4509-4526
    [119]Migliaccio F, M.Reguzzoni, F.Sanso.Space-wise approach to satellite gravity field determination in the presence of coloured noise. Journal of Geodesy,2004,78:304-313
    [120]Moritz, H.:Least-squares Collocation, Review of Geophysics and Space Physics.1978.
    [121]M.Reguzzoni. From the time-wise to space-wise GOCE observables. Advances in Geosciences,2003, 1:137-142
    [122]Oliver Glockner. On numerical aspects of gravitational field modelling from SST and SGG by Harmonic splines and Wavelets. PH.d Diss, kaiserslautern University,2002
    [123]Oliver Montenbruck Eberhard Gill. Satellite Orbits,Models,Methods,and Applications. Springer,2000
    [124]P.Ditmar, P.Visser, R.Klees. On the joint inversion of SGG and SST data from the GOCE mission. Advances in Geosciences,2003,1:87-94
    [125]Pail, R, G.Plank. GOCE Gravity Field Processing Strategy. Stud. Geophys. Geod.,2004,48,289-309
    [126]Pail, R. GOCE Quick-Look Gravity Field Analysis:Treatment of Gravity Gradients Defined in the Gradiometer Reference Frame. In Proceedings of the 2nd International GOCE User Workshop. ESA-ESRIN, Frascati, Italy.8-10 March 2004, ESA SP-569.2004
    [127]Pail, R. A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. Journal of Geodesy 79,231-241,2005
    [128]Preimesberger T, Pail R. GOCE quick-look gravity solution:application of the semianalytic approach in the case of data gaps and non-repeat orbits. Stud Geoph Geod 47:435-453,2003
    [129]Reiner Rummel, Fernando Sanso. Satellite Altimetry in Geodesy and Oceanography. Springer-Verlag, Berlin Heidelberg,1993
    [130]R.Forsberg, M.Feissel, R.Dietrich. Geodesy on the Move:Gravity,Geoid,Geodynamics,and Antarctica. IAG Scientific Assembly Rio de Janeiro September 3-9,1997
    [131]Richard J.Blakely. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press 1996
    [132]R. Pail, M.Wermuth. GOCE SGG and SST quick-look gravity field analysis. Advances in Geosciences, 2003,1:5-9
    [133]Roland Pail. GOCE Data Archiving and Processing Center.ASAP,2004
    [134]Rummel R, Gruber T, Koop R. High level processing facility for GOCE:Products and procedding strategy. In Proceedings of the 2nd International GOCE User Workshop. ESA-ESRIN, Frascati, Italy.8-10 March 2004, ESA SP-569.2004
    [135]Schmidt, R., P. Schwintzer, F. Flechtner, et al. GRACE observations of changes in continental water storage. Global and Planetary Change,2006,50,112-126
    [136]Schrama, E., Ray, R. A preliminary tidal analysis of Topex/Poseidon altimetry [J]. Journal of Geophysical Research,1994,99(C12):24799-24808
    [137]Siegfried Heitz. Coordinates in Geodesy. Springer-Verlag, Berlin Heidelberg,1988
    [138]Standish, E. JPL planetary and lunar ephemerides DE405/LE405 [R]. Technical report, JPL IOM 312.F-98-047, JPL Pasadena CA,1998
    [139]Teunissen, P. Testing theory:An introduction. Delft University Press,2000
    [140]Thomas, M. Ocean induced variations of the Earth's rotation-Results from a simultaneous model of global circulation and tides. Ph. D. thesis, University of Hamburg, Germany.2002
    [141]Tscherning, C., M. Veicherts, and D. Arabelos. Calibration of GOCE gravity gradient data using smooth ground gravity. In Proceedings of the GOCINA Workshop, Volume 25. Cahiers du Centre Europeen de Geodynamique et de Seismologie.2006
    [142]Tscherning, C.C., Testing frame transformation, gridding andfiltering of GOCE gradiometer data by Least-SquaresCollocation using simulated data. IAG Symposia,2005., (128)77-282, Springer Verlag,
    [143]Visser P. GOCE gradiometer validation by GPS. Advances in Space Research,2007,39(10):1630-1637.
    [144]Visser, P., J. van den IJssel. GPS-based precise orbit determination of the very low Earth orbiting gravity mission GOCE. Journal of Geodesy,2000,74(7/8),590-602.
    [145]Visser, P., J. van den IJssel, R. Koop,and R. Klees. Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE. Journal of Geodesy,2001,75(2/3),89-98.
    [146]Visser, P., J. van den IJssel, T. van Helleputte, H. Bock, A. Jaeggi, G Beutler, U. Hugentobler, and D. Svehla. Rapid and Precise Orbit Determination for the GOCE Satellite. In Proceedings of the 3rd International GOCE User Workshop. ESA-ESRIN, Frascati, Italy.6-8 November 2006, ESA SP-627.2007
    [147]William, Duncan MacMillan. The theory of the potential. Dover publications, New York,1958
    [148]Willi Freeden. Progress in Geodetic Science at GW 98. Shaker Verlag, Aachen,1998
    [149]Wolff, J., E. Maier-Reiner, and S. Legutke. The Hamburg Ocean Primitive Equation Model hope. Technical report No.13, DKRZ, Hamburg.1996
    [150]Wolfgang Torge. Geodesy. Walter de Gruyter. Berlin. New York,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700