用户名: 密码: 验证码:
柔性织物折叠建模技术及展开过程数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学的迅猛发展,柔性充气展开织物的力学性能大大提高,并凭借其折叠后体积小、重量轻、工作效率高的特点在航空、航天、兵器等领域中得到了广泛的应用。织物展开过程在表象上原理简单,但实质上却是一个典型的流固耦合强非线性过程,往往是整个织物工作过程中最薄弱和最危险的环节,展开失效所带来的后果往往很严重。本文主要对柔性织物折叠建模方法进行研究,并对折叠织物充气展开过程开展了流固耦合方法的数值模拟研究,研究结果和一些试验结果进行了对比。
     折叠建模是研究充气展开必须首要解决的关键问题,现有方法很难建立复杂折叠模型,本文提出了逆向折叠建模方法及实现逆向折叠建模的两种方法:基于动力学计算的逆向折叠建模和基于约束变形的逆向折叠建模。本文分别以这两种方法对外形复杂,折叠方式特殊的某气囊进行了折叠建模,通过充气展开模拟验证了本文提出的新型建模方法的可行性和准确性。
     折叠建模往往会产生误差,基于几何原理的传统技术对误差的修正效果有限,本文提出了基于有限元技术的初始矩阵修正方法。通过这种修正方法,本文首次实现了经纬向的降落伞折叠,同样该修正方法还被用于其他折叠模型的修正上。通过对比计算验证了该修正方法的可行性和准确性。
     在完成柔性织物折叠建模和修正研究的基础上,本文建立了基于非线性有限元理论的任意拉格朗日欧拉(ALE)流固耦合模型。开展了如下工作:(1)在无限质量情况下,对降落伞进行了充气过程的三维流固耦合研究,获得了丰富的伞衣结构、流场结果信息。通过对数值结果分析和试验对比,总结了无限质量情况下开伞规律,并提出了在特定情况下,充气过程中会出现“瓶颈”现象;(2)在有限质量情况下,对美国C9伞进行了充气过程的流固耦合研究,不仅得到了伞衣结构和流场结果信息,还获得了该型伞的气动减速特性,计算结果和塔架投放试验和空投试验进行了比较,总结了有限质量情况下降落伞从充气到稳降过程的变化规律;(3)针对不同的透气性织物材料,开展了充气过程的流固耦合模拟,研究了织物透气性对减速特性的影响。
     最后本文开展了绕透气伞衣的CFD流场计算,本文提出了采用多孔介质域代替传统固壁面伞衣边界的处理方法,可以大大提高计算准确性。
     本文的研究结果对了解柔性充气展开织物,尤其是降落伞的工作机理,提高分析水平有重要意义。
With the rapid development of materials science, the mechanical property of flexible inflatablefabric is greatly improved. And the flexible inflatable fabric has been widely used in aviation,aerospace, weapons and other fields with advantages like small folded volume, light weight and highefficiency. The fabric deployment process seems to be simple in principle, but actually it is a typicalFluid-Structure Interaction and nonlinear process. The deployment is the weakest and most dangerouspart in the entire work process of fabric, and the consequence of deployment failure is often severe.This paper mainly focuses on the flexible fabric folded modeling method, and the Fluid-StructureInteraction numerical simulation of folded fabric deployment process is conducted. The numericalresults are compared with tests results.
     Folding modeling is the first problem of inflatable fabric research. Complex folding model isdifficult to be created through current methods. Therefore two methods of reverse folding modelingmethods and realization of this modeling are proposed as: reverse folding modeling based ondynamics calculation and reverse folding modeling based on constraint deformation. These twomethods are utilized for folding modeling an airbag folded in a special way with complex shape, andthe inflation simulation is conducted to verify the feasibility and accuracy of this new modelingmethod. Folding modeling often cause errors, and the effect of traditional error correction technologybased on geometric principles is limited. An initial metric correction method based on finite elementtechnology is proposed. In this paper this correction method is utilized to achieve parachute folding inlatitude and longitude directions, and this method is also suitable for the correction of other foldingmodels. The feasibility and accuracy of this correction method is verified by comparison calculation.Based on the flexible fabric folding modeling and correction research, the arbitrary LagrangianEulerian (ALE) fluid-structure interaction model based on nonlinear finite element theory isestablished. The following work is conducted.(1) Under condition of infinite mass thethree-dimensional FSI research of parachute inflation process is conducted and abundant canopystructure and flow field information is obtained. By comparing the numerical results and test results,the parachute open laws under infinite mass condition are summed, and in particular case the"bottleneck" phenomenon emerges in inflation process.(2) Under condition of finite mass the canopystructure, flow field information and deceleration characteristics of U.S. C9parachute are obtainedthough FSI research in inflation process. By comparing the calculation results, tower test and airdrop test results, the parachute change laws of inflation to terminate descent process under finite masscondition are summed.(3) FSI simulations of inflation process are conducted for fabric with differentporosities, and the influence of fabric permeability in deceleration characteristics is studied.
     At last the CFD calculation of flow field around a porous canopy is conducted, the method ofreplacing traditional canopy wall boundary with porous domain greatly improve the calculationaccuracy.
     The study results are important to improve analysis level of understanding flexible inflatablefabric, especially parachute working mechanism.
引文
[1]张君媛,兰海涛,杨秀坤等.汽车正面气囊充气过程仿真技术.吉林大学学报(工学版),2008,38(6):1262-1266.
    [2]程涵.气囊工作过程仿真研究,[硕士学位论文].南京:南京航空航天大学,2010.
    [3]尹汉锋,文桂林,韩旭.空投设备缓冲气囊的优化设计.系统仿真学报,2008,20(5):1325-1327.
    [4]邓春燕,裴锦华.全向式着陆缓冲气囊的折叠建模与充气过程仿真.南京航空航天大学学报,2009,41(增刊):97-102.
    [5]周福宝,刘应科,张仁贵.新型气囊式自动封闭装备研究.中国矿业大学学报,2008,37(5):604-607.
    [6]陈立勇.带气囊硬管食管镜食管异物取出术37例.临床研究,2008,8(6):366-367.
    [7]陶如意,王浩,黄明等.拦截器毁伤元囊式发射系统内弹道过程数值仿真与试验研究.南京理工大学学报,2007,31(4):474-477.
    [8]余莉.降落伞仿真技术与试验研究,[博士学位论文].南京:南京航空航天大学,2006.
    [9]王利荣.降落伞理论与应用.北京:宇航出版社,1997:389-599.
    [10] Ewing E G, Knacke T W.回收系统设计指南(吴天爵等译).北京:航空工业出版社,1988:5-68.
    [11] Ward M, Gavrilovski A, Costello M. Flight Test Results for Glide Slope Controlof Parafoil Canopies of Various Aspect Ratios. AIAA2011-2620,2011.
    [12]程涵,余莉,禹智.探测器气动减速技术发展概述.中国宇航学会深空探测技术专业委员会第八届学术年会论文集,上海,2011:462-468.
    [13]谭惠丰,李云良,苗常青.空间充气展开结构动态分析研究进展.力学进展,2007,37(2):214-224.
    [14]刘宇艳,朱琦,万志敏等.用于可充气展开结构的热固性复合材料耐折叠性能研究.宇航材料工艺,2005,(3):31-37.
    [15] Yu L, Ming X. Study on transient aerodynamic characteristics of parachute openingprocess. Acta Mechanica Sinica,2007,23(6):627-633.
    [16]余莉,史献林,明晓.降落伞充气过程的数值模拟.航空学报,2007,28(1):52-57.
    [17]夏刚,程文科,秦子增.航天器回收中几种主伞失效案例介绍.航天返回与遥感,2002,23(4):4-8.
    [18]马春生,岳卉,黄世霖等.基于提高乘员保护效能的安全气囊折叠方法研究.汽车工程,2005,27(3):152-156.
    [19]钟志华,杨济匡.汽车安全气囊技术及其应用.中国机械工程,2000,11(1):234-237.
    [20]卫剑征.空间折叠薄膜管充气展开过程气固耦合问题研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [21]卫剑征,谭惠丰,苗常青等.空间折叠薄膜管的充气展开动力学实验研究.力学学报,2011,43(1):202-207.
    [22]汪桂清.降落伞风洞试验中的几个主要问题.航空学报,1993,14(6):230-235.
    [23]代小芳.基于流固耦合方法的气囊展开数值模拟研究,[硕士学位论文].大连:大连理工大学,2007.
    [24]代小芳,宗智,聂春等.折叠气囊展开过程CV和ALE数值模拟方法对比研究.汽车工程,2008,30(8):676-680.
    [25] Stein K R, Benney R J, Steeves E C. A computational model that couples aerodynamicstructural dynamic behavior of parachutes during the opening process.NASA-ADA264115,1993.
    [26] Stein K R, Benney R J. Parachute Inflation: A Problem in Aeroelasticity.NASA-ADA284375,1994.
    [27] Kim Y S, Peskin C S.3-D Parachute simulation by the immersed boundary method.Computers and Fluids,2009,38:1080-1090.
    [28] Tutt B A, Taylor A P. The use of LS-DYNA to simulate the inflation of a parachutecanopy. AIAA2005-1608,2005.
    [29] Tutt B A, Taylor A P, Jean C B, et al. The use of LS-DYNA to assess the performanceof airborne system North America candidate ATPS main parachutes, AIAA2005-1609,2005.
    [30] Kenji T, Tezduyar T E. Computational Methods for Parachute Fluid StructureInteractions. Arch Comput Methods Eng,2012,19:125-169.
    [31] Kenji T. Fluid Structure Interaction Modeling of Spacecraft Parachutes forSimulation-Based Design. Journal of Applied Mechanics,2012,79:1-9.
    [32]肖明兴.基于多体系统动力学的机织织物力学建模与仿真研究,[博士学位论文].上海:东华大学,2010.
    [33]钟跃崎,王善元.织物与服装仿真技术进展.纺织学报,2002,23(6):502-504.
    [34] Weil J. The synthesis of cloth objects. Computer Graphics,1986,20:49-54.
    [35] Hinds B K, Mccartney J. Interactive Garment Design. Visual Computer,1990,(6):53-61.
    [36]陈辉,沈毅.关于织物仿真技术的综述.丝绸,2005,(8):42-45.
    [37] Breen D E, House D H, Getto P H. A Physically-based I article Model of Woven Cloth.Visual Computer,1992,(4):264-277.
    [38] Terzopoulos D, Platt J, Barr A, et al. Elastically Deformable Models. ComputerGraphics,1987,21(4):205-214.
    [39] Collier J R, Collier B J, Toole G O. Drape prediction by means of finite-elementanalysis. Journal of the Textile Institute,1991,82(1):96-107.
    [40] Rudomun I J. Simulating Cloth Using a Mixed Geometric-Physical Method,[Ph DThesis]. Pennsylvania: University of Pennsylvania,1990.
    [41] Kunii T L, Gotoda H. Singularity Theoretical Modeling and Animation of GarmentWrinkle Formation Process. Visual Computer,1990,6(6):326-336.
    [42] Zhang J H, Ma C S, Bai Y L, et al. Airbag mapped mesh auto-flattening method.Tsinghua Science and Technology,2005,10(3):387-390.
    [43] Tanavade A S, Khandelwal H, Lasry D, et al. Airbag modeling using initial metricmethodology. SAE Transactions,1995,104(1):1576-1589.
    [44] Nefske D J. A base Airbag Model. SAE720426,1972.
    [45] Wang J T, Nefske D J. A New CAL3D Airbag Inflation Model. SAE880654,1988.
    [46] Groenenboom P, Lasry D, Subbian TH, et al. A diffusive Gas Jet Model in PAM-SAFEfor Airbag Inflation. SAE930228,1993.
    [47]周涛.某型气囊展开过程数值模拟及试验研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [48]万鑫铭.基于虚拟试验的汽车前碰撞安全气囊防护效率的研究,[博士学位论文].长沙:湖南大学,2005.
    [49]戈嗣诚,施允涛.无人机回收气囊缓冲特性研究.南京航空航天大学学报,1999,31(4):953-958.
    [50]戈嗣诚,施允涛,徐庆华.无人机回收气囊的优化设计初探.振动、测试与诊断,2002,22(1):52-56.
    [51]卫剑征,杜星文,谭惠丰等.Z形折叠管充气展开过程数值模拟与试验.力学与实践,2009,31(3):16-22.
    [52] Purvis J W. Theoretical analysis of parachute inflation including fluid kinetics.AIAA1981-1925,1981.
    [53] Kalro V, Tezduyar T E. A Parallel3D Computational Method for Fluid-StructureInteractions in Parachute code. SAND-97-0833,1997.
    [54]彭勇,张青斌,程文科等.降落伞初始充气阶段数值模拟.中国空间科学技术,2003,3:7-12.
    [55]彭勇,张青斌,秦子增.降落伞主充气阶段数值模拟.国防科技大学学报,2004,26(2):13-16.
    [56]王侃,曹义华,于子文等.降落伞流固耦合问题的数值模拟和流场分析.北京航空航天大学学报,2007,33(9):1029-1031.
    [57] Cao Y H, Wan K, Song Q F, et al. Numerical simulation of parachute Fluid-StructureInteraction in terminal descent. Science China Technological Sciences,2012,55(11):3131-3141.
    [58]余莉,明晓.降落伞的流场特性研究.空气动力学学报,2007,25(3):306-310.
    [59]贾贺,荣伟,陈国良.基于LS-DYNA软件的降落伞充气过程仿真研究.航天器环境工程,2010,27(3):367-373.
    [60] McEWAN A J. An investigation of parachute opening loads, and a new engineeringmethod for their determination. AIAA1970-1168,1970.
    [61] Muller W. Parachutes for aircraft. NACA TM-450,1927.
    [62] Scheubel F N. Notes on opening shock of a parachute. IRE-65,1946.
    [63] O’Hara F. Notes on the opening behavior and the opening forces of parachutes.Royal Aeronautical Society Journal,1949,53:1053-1062.
    [64] Wolf D. A simplified dynamic model of parachute inflation. AIAA1973-450,1973.
    [65] Michael M J. A simple, approximate model of parachute inflation. AIAA1993-1206,1993.
    [66]李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论与工程实践.北京:中国水利出版社,2006:188-251.
    [67] Belytschko T, Liu W K, Moran B.连续体和结构的非线性有限元(庄茁译).北京:清华大学出版社,2002:341-387.
    [68]曾攀.有限元分析及应用.北京:清华大学出版社,2004:50-90.
    [69]白金泽.基于神经网络方法的鸟撞飞机风挡反问题研究,[博士学位论文].西安:西北工业大学,2003.
    [70]李茂生.小环空条件下钻柱动力学及可靠性研究,[博士学位论文].北京:中国石油大学,2007.
    [71] Tallec P L, Mouro J. Fluid structure interaction with large structuraldisplacements. Computer methods in applied mechanics and engineering,2001,190:3039-3067.
    [72] Zhang Q, Hisada T. Analysis of fluid-structure interaction problems withstructural buckling and large domain changes by ALE finite element method.Computer methods in applied mechanics and engineering,2001,190:6341-6357.
    [73]岳宝增,彭武,王照林.ALE迎风有限元法研究进展.力学进展,2005,35(1):21-29.
    [74] Brooks A N, Hughes T J R. Streamline upwind Petrov-Galerkin formulations forconvection dominated flows with particular emphasis on the incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics andEngineering,1982,32(1-3):199-259.
    [75] Liu W K, Chang H, Belytscko T. Arbitrary Lagrangian-Eulerian Petrov-Galerkinfinite elements for nonlinear continua. Computer Methods in Applied Mechanicsand Engineering,1988,68(3):259-310.
    [76]华蕾娜.ALE分步有限元法研究及其在自由表面水波问题中的应用,[硕士学位论文].天津:天津大学,2005.
    [77]岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分步有限元数值方法.力学季刊,2001,22(1):34-39.
    [78] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid-structure interactionproblems. Computer methods in applied mechanics and engineering,2000,190:659-675.
    [79] Gong W J, Wang J M, Gao N. Numerical simulation for abrasive water jet machiningbased on ALE algorithm. International Journal of Advanced ManufactureTechnology,2011,53:247-253.
    [80] Winslow A M. Numerical solution of the quasilinear Poisson equation in anonumiform triangle mesh. J Comput Phys,1967,2:49-172.
    [81] Winslow A M. Equipotential zoning of the interior of a three-dimensional mesh.Lawrence Radiation Laboratory. UCRL-7312,1990.
    [82]陶文铨.数值传热学.西安:西安交通大学出版社,2001:432-478.
    [83] Aquelet N, Wang J, Tutt B A, et al. Euler-Lagrange Coupling with Deformable PorousShells. ASME Pressure Vessels and Piping Division Conference,Vancouver,BC,Canada,2006:23–27.
    [84]孙家广.计算机图形学(第三版).北京:清华大学出版社,1998:361-372.
    [85]万鑫铭,杨济匡,沈斌.气囊折叠方式对展开作用力影响的仿真.机械工程学报,2005,41(12):162-166.
    [86]余莉,程涵,刘雄.气囊充气过程流固耦合数值模拟.南京航空航天大学学报,2010,42(4):472-476.
    [87]白远利,张金换,黄世霖.一种映射算法在IMM法气袋建模中的应用.清华大学学报(自然科学版),2002,42(11):1528-1531.
    [88]竺梅芳,高大全.一种水下使用的大型排水气囊.航天返回与遥感,2005,26(1):45-47.
    [89]邹北骥.三维动画技术中图形图像变形原理研究.湖南大学学报,1998,25(4):103-106.
    [90]张湘玉.基于细分的曲线曲面变形技术研究,[博士学位论文].南京:南京航空航天大学,2010.
    [91]吕状.三维网格模型编辑变形方法的研究与实现,[硕士学位论文].西安:西北大学,2011.
    [92]栗雷雷.基于几何基元的网格变形技术,[硕士学位论文].杭州:浙江大学,2004.
    [93] Sederberg T W, Parry S R. Free-form deformation of solid geometric models.Computer Graphics,1986,20(4):151-160.
    [94] Coquillart S. Extended Free Form Deformation: A Sculpturing Tool for3D GeometricModeling. Computer Graphics,1990,24(4):187-193.
    [95] Kalra P, Mangil A, Thalmann N M, et al. Simulation of facial muscle action basedon rational free-form deformation. Computer Graphics Forum,1992,11(3):59-69.
    [96] Lamousin H J, Waggenspack W N. NURBS-based free-form deformation. IEEE ComputerGraphics and Applications,1994,14(6):59-65.
    [97] MacCracken R, Joy K I. Free-form deformations with lattices of arbitrary topology.Proceedings of the23rd annual conference on Computer graphics and interactivetechniques, New York: ACM SIGGRAPH,1996:181-188.
    [98] Feng J Q, Ma L Z, Peng Q S. A new free-form deformation through the control ofparametric surfaces. Computers Graphics,1996,20(4):531-539.
    [99]冯结青,彭群生,马利庄.沿参数曲面的均匀变形方法.软件学报,1998,9(4):263-267.
    [100] Lazarus F, Coquillart S, Jancene P. Axial deformation: an intuitive deformationtechnique. Computer Aided Design,1994,26(8):607-613.
    [101] Chang Y K, Rockwood A P. A generalized de casteljua approach to3D free-formdeformation. Proceedings of21st International SIGGRAPH Conference on ComputerGraphics, New York: ACM SIGGRAPH,1994:257-260.
    [102] Borrel P, Rappoport A. Simple constrained deformation for geometric modeling andinteractive design. ACM Transaction on Graphics,1994,13(2):137-155.
    [103]金小刚,彭群生.基于广义元球的一般约束变形.软件学报,1998,9(9):677-682.
    [104] Jin X G, Li Y F, Peng Q S. General constrained deformation based on generalizedmeatballs. Computers Graphics,2000,24(2):219-231.
    [105] Raffin R, Neveu M, Jaar F. Curvilinear displacement of free-form-baseddeformation. Visual Computer,2000,16(1):38-46.
    [106]鲍虎军,金小刚,彭群生.计算机动画的算法基础.杭州:浙江大学出版社,2000:399-372.
    [107]谭德伟,李斌,杨智春等.典型折叠充气管的建模修正与展开仿真.宇航学报,2010,31(11):2610-2617.
    [108]马春生,黄世霖,张金换.气袋折叠建模中的几何误差分析与修正.清华大学学报(自然科学版),2004,44(11):1540-1543.
    [109]郭叔伟,王海涛,董杨彪等.降落伞“呼吸”现象研究.航天返回与遥感,2010,31(1):18-23.
    [110] Purvis J W. Improved Prediction of Parachute Line Sail during Lines-FirstDeployment. AIAA1984-0786,1984.
    [111] Purvis J W. Numerical Prediction of Deployment, Initial Fill, and Inflation ofParachute Canopies. AIAA1984-0787,1984.
    [112] Accorsi M L, Charles R D, Benney R J. Computer Simulation and Evaluation of StaticLine Deployment Procedures. AIAA2005-1631,2005.
    [113] Zhang Q B. A New Parachute Deployment Model by Multibody Dynamics. AIAA2003-2134,2003.
    [114]张青斌,彭勇,程文科等.降落伞拉直过程的质量阻尼弹簧模型.弹道学报,2003,15(1):31-36.
    [115]余莉,史献林,袁文明.牵顶伞在降落伞拉直过程中的作用.南京航空航天大学学报,2009,41(2):198-201.
    [116]国家技术监督局,GB/T3923.1-1997,纺织品织物拉伸性能第1部分:断裂强力和断裂伸长率的测定条样法,北京:中国标准出版社1997.
    [117] Delurgio P R. Evolution of the ringsail parachute. AIAA1999-1700,1999.
    [118] Talor A P, Sinclair R J, Allamby R D. Design and testing of the Kistler landingsystem parachutes. AIAA1999-1707,1999.
    [119]李健,唐明章.“神舟八号”飞船主伞的改进设计与试验.航天返回与遥感,2011,32(6):36-32.
    [120] Espinosa C, Bordenave P, Henke L. Fluid-Structure Interaction simulation ofparachute dynamic behaviour. AIAA,2007-2510,2007.
    [121] Coquet Y, Bordenave P, Capmas G,et al. Improvements in Fluid StructureInteraction simulations of parachutes using LS-Dyna. AIAA2011-2590,2011.
    [122] Lingard J S, Darley M G. Simulation of Parachute Fluid Structure Interaction inSupersonic Flow. AIAA2005-1607,2005.
    [123] Lingard J S, Darley M G, Underwood J C. Simulation of Mars Supersonic ParachutePerformance and Dynamics. AIAA2007-2507,2007.
    [124] Tutt B, Roland S, Charles R D, et al. Finite mass simulation techniques in LS-DYNA.AIAA2011-2592,2011.
    [125] Calvin K L. Experimental Investigation of Full-Scale and Model Parachute Opening.AIAA1984-0820,1984.
    [126] Berndt R J, DeWeese J H. The opening Force of Solid Cloth, Personnel TypeParachutes. AIAA1970-1167,1970.
    [127]荣伟,陈旭,陈国良.低密度大气中降落伞开伞动载的研究.航天返回与遥感,2006,37(4):7-11.
    [128] Xiao X L, Zeng X S, Bandara P, et al. Experimental Study of Dynamic airPermeability for Woven Fabrics. Textile Research Journal,2012,82(9):920-930.
    [129] Rowan J. Development of a High Differential Pressure Fabric Permeability Tester.AIAA2001-2071,2001.
    [130]国家技术监督局,GB/T5453-1997,纺织品织物透气性的测定,北京:中国标准出版社1997.
    [131]黄其善.织物中压透气仪.纺织学报,1985,6(4):203-207.
    [132]王淑芬. YG461型织物透气仪的中压标定及织物透气量的探讨.天津纺织工学院学报,2000,19(1):34-36.
    [133]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004:26-144.
    [134] Cao Y H, Jiang C W. Numerical simulation of the flow field around parachute duringterminal decent. Aircraft Engineering and Aerospace Technology,2007,79(3):268-272.
    [135] McQuilling M, Lobosky L, Sander S. Computational Investigation of Flow Arounda Parachute Model. Journal of Aircraft,2011,48(1):34-41.
    [136] Noetscher G, Charles R D. Benchmarking Bluff Body Aerodynamics. AIAA2011-2607,2011.
    [137]谢龙汉,赵新宇,张炯明.ANSYS CFX流体分析及仿真.北京:电子工业出版社,2012:156-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700