用户名: 密码: 验证码:
钯催化的芳香羧酸参与的脱羧偶联反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钯催化的卤代烃与芳基金属交叉偶联反应是合成联芳烃的有效方法。由于多数情况下要预先制备化学计量的有机金属试剂,因此有必要发展更加高效、绿色的偶联反应。Goossen开创了钯催化的芳香羧酸与卤化烃的脱羧偶联反应,从而为金属钯催化开辟一个新的研究方向,这一课题成为最近十年金属有机化学研究的热点。
     芳香羧酸在偶联反应中具有既可作为亲电试剂,又可作为亲核试剂的特殊性质,这样可以参与的反应非常多,应用前景广泛。使用芳香羧酸作为偶联反应底物,制备简单,来源丰富。本文发展一系列钯催化的芳香羧酸为底物构建碳碳键的有机合成新反应,且反应原子经济性较高,对环境污染较小。
     本论文的具体内容包括以下几个方面:
     1、综述了近年来钯催化芳香羧酸的脱羧偶联反应,钯或铜催化的联苯类化合物的合成反应,钯催化的烯基芳烃的芳构化反应、铟催化的C-C键的形成反应等研究进展。
     2、研究了钯催化的苯并噻唑、苯并噁唑以及五氟苯类化合物与取代苯甲酸的脱羧偶联反应。采用的反应体系是20mol%氯化钯作催化剂,40mol%三苯基膦作配体,3.0当量碳酸银作碱和氧化剂,DMSO作溶剂,反应温度130oC。利用该反应条件,合成了一系列的噻唑、噁唑的衍生物和多氟取代联苯类化合物,并对反应提出了两种可能性的机理。通过后续处理可回收一部分的银盐,使得该反应原子经济性较高,对环境友好,适应于绿色化学。
     3、研究了钯催化的芳香羧酸的自身偶联和交叉偶联反应,合成了一系列的对称与不对称的联苯型化合物。与传统的重氮化反应及Ullmann反应相比,具有条件简单、底物来源丰富的优点,可应用于众多天然产物、手性配体、液晶材料的合成。
     4、实现了钯催化的芳香羧酸与苯硼酸的脱羧偶联反应。反应体系有低毒性、原料易于保存的特点,但存在着有较大量的副产物干扰产物分离的缺点。
     5、研究了钯催化的烯基酰胺的氧化脱氢反应,芳构化生成乙酰苯胺类化合物。该反应同样使用Pd-Ag-酸-DMSO的催化体系,其中催化量的羧酸作为助剂,较大幅度提高了反应的产率。该反应方法条件温和,产率高,在合成天然芳香化合物以及生物碱中可起到一定的作用。
     6、研究了铟盐催化的芳基烯烃分子内环化反应,合成了四氢化萘和苯并二氢吡喃类化合物,并提出了可能机理。四氢化萘和苯并二氢吡喃广泛存在于天然产物中,具有一定的生理活性和药用价值。相比于钌盐和银盐共催化的分子内环化反应,使用三氟甲基磺酸铟作催化剂,产率较高,区域选择性也较高,且铟的价格比钌更便宜,适合较大规模生产。
     7、应用强碱和菲啰啉配体,在较高温度下实现了卤代芳烃分子内的自由基关环反应。加入无水Fe(OAc)2催化剂也可以得到相应产物。该反应方法可应用于含有氧原子或氮原子的稠环化合物的合成。
     以上有机合成新方法的研究,拓展了芳香羧酸在偶联方面的应用范围,可应用于天然产物、医药化合物、生物碱、手性配体及联苯型液晶材料等合成,适应于现代有机化学发展的趋势。
Pd-catalyzed cross-coupling between aryl halides and aryl metals has becomeone of the most powerful methods for the syntheses of biaryls. However, onefundamental drawback with these coupling reactions is that they require the use of astoichiometric amount of an expensive organometallic reagent that often has to beprepared either beforehand or in situ. Recently, benzoic acids have emerged as viablecoupling partners, largely through the efforts of Goossen and others.
     What is interesting is that benzoic acids can be used not only as the source ofthe aryl electrophile but also as the aryl metal equivalent after undergoing in situdecarboxylation to generate the aryl-Pd species. As a result, we have decided to developPd-catalyzed couplings that use benzoic acids as substates.
     In this thesis a series of reactions catalzyled either by Pd or In were studied andthe results are described.
     In chapter1, a general review on Pd-catalyze decarboxylation coupling, Pd-orCu-catalyzed biphenyl synthesis and In-catalyze carbon-carbon bond-formingreaction was given.
     In chapter2, we have shown that, using Pd as the catalyst and Ag2CO3as thebase and the oxidant, substituted benzoic acids can be used to arylate thiazoles,benzoxazole and polyfluorobenzenes after in situ decarboxylation. We opted to usethe combination of PdCl2/2PPh3/Ag2CO3as our standard conditions. The reactionoccurs with high chemo-and regioselectivity, representing an excellent alternative tothose Pd-, Ni-, or Cu-catalyzed coupling with aryl halides and sulfonates.
     In chapter3, we have demonstrated that not only symmetrical but alsounsymmetrical biaryls can be efficiently synthesized through the Pd-catalyzeddecarboxylative homo-or heterocoupling of substituted benzoic acids. Compared tothe traditional route of first converting the acids into amines, followed bydiazotization to form aryl halides, which are then subjected to Ullmann couplingconditions to produce the desired biaryls,this method is much more straightforwardand simple to run, provided that the needed benzoic acid is commercially availableor can be readily synthesized.
     In chapter4, an efficient Pd-catalyzed decarboxylative coupling reaction forpreparing biaryl from benzoic acid and phenyl boronic acid has been developed.
     In chapter5, a novel way of converting cyclohexenamides into anilides wasdeveloped with Pd-catalysis using Ag2CO3as the oxidant. The high yield of thereaction was found to be critically dependent on the addition of a catalytic amount ofacid as additive.
     In chapter6, we have developed a method for the synthesis of tetralin andchromane derivatives via an intramolecular hydroarylation of ω-aryl-1-alkenes viaIn-catalysis. Tetralins and chromanes are important structural motifs and they arepresent in a wide variety of natural products and pharmaceuticals. The use ofcheaper indium salts instead of the expensive noble metal Ru could be advantageouswhen the reaction is run on a large scale. Though narrower in substrate scope, theindium catalyzed reaction could potentially be useful in selected cases andcomplementary to the Ru-catalyzed version.
     In chapter7, we found that the intramolecular cyclization of aryl halides couldbe mediated by base with the aid of a catalytic amount of1,10-phenanthrolinederivative to from dibenzofurans, carbozole and other heterocyclic compoundsthrough a free radical mechanism. Anhydrous Fe(OAc)2as catalyst can also be used.
     Through the above works, the scope of Pd-catalyze decarboxylation coupling ofarycarboxylic acids has been greatly expanded, and these transformations can findapplications in the synthesis of natured products, drugs, alkaloids, ligands andbiphenyl liquid crystals, etc.
引文
[1] Miyaura N. Cross-Coupling Reactions. Topics in Current Chemistry, Vol.219.Springer-Verlag Berlin Heidelberg2002
    [2] Corbet J-P, Mignani G. Selected Patented Cross-Coupling ReactionTechnologies. Chem. Rev.,2006,106(7):2651-2710
    [3]麻生明.金属参与的现代有机合成反应.广州:广东科技出版社,2001
    [4] Roberts S M, Xiao J, Whittall J, Pickett T E. Metal Catalysed Carbon-CarbonBond-Forming Reactions. Wiley,2004
    [5] Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis.New York: Wiley,2002
    [6] Tsuji J. Palladium Reagents and Catalysts. Wiley,2004
    [7] Miyaura N, Yamada K, Suzuki A. A new stereospecific cross-coupling by thepalladium-catalyzed reaction of1-alkenylboranes with1-alkenyl or1-alkynylhalides. Tetrahedron Lett.,1979,20(36):3437-3440
    [8] Miyaura N, Suzuki A. Stereoselective synthesis of arylated (E)-alkenes by thereaction of alk-1-enylboranes with aryl halides in the presence of palladiumcatalyst. J. Chem. Soc., Chem. Commun.,1979,15(19):866-867
    [9] Negishi E. King A O, Okukado N. Selective carbon-carbon bond formation viatransition metal catalysis.3. A highly selective synthesis of unsymmetricalbiaryls and diarylmethanes by the nickel-or palladium-catalyzed reaction ofaryl-and benzylzinc derivatives with aryl halides. J. Org. Chem.,1977,42(10):1821-1823
    [10] Kosugi M, Sasazawa K, Shimizu Y, et al. Reactions of allyltin compounds III.Allylation of aromatic halides with allyltributyltin in the presence oftetrakis(triphenylphosphine)palladium(0). Chem. Letters,1977,6(3):301-302
    [11] Milstein D, Stille J K. A general, selective, and facile method for ketonesynthesis from acid chlorides and organotin compounds catalyzed by palladium.J. Am. Chem. Soc.,1978,100(11):3636-3638
    [12] Stille J K. The Palladium-Catalyzed Cross-Coupling Reactions of OrganotinReagents with Organic Electrophiles [New Synthetic Methods (58)]. Angew.Chem. Int. Ed. Engl.,1986,25(6):508-524
    [13] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenesand bromopyridines. Tetrahedron Lett.1975,16(50):4467-4470
    [14] Heck R F, Nolley J P. Palladium-catalyzed vinylic hydrogen substitutionreactions with aryl, benzyl, and styryl halides. J. Org. Chem.1972,37(14):2320-2322
    [15] Heck R F. Palladium Reagents Organic Syntheses. New York: Academic Press.1985
    [16] Goossen L J, Paetzold J. Pd-catalyzed decarbonylative olefination of aryl esters:Towards a waste-free Heck reaction. Angew. Chem. Int. Ed.,2002,41(7):1237-1241
    [17] Goossen L J, Paetzold J. Decarbonylative Heck olefination of enol esters:Salt-free and environmentally friendly access to vinyl arenes. Angew. Chem.Int. Ed.,2004,43(9):1095-1098
    [18] Goossen L J, Rodríguez N, Melzer B, et al. Biaryl synthesis via Pd-catalyzeddecarboxylative coupling of aromatic carboxylates with aryl halides. J. Am.Chem. Soc.,2007,129(15):4824-4833
    [19] Goossen L J, Deng G, Levy L M. Synthesis of Biaryls via CatalyticDecarboxylative Coupling. Science2006,313(5799):662-664
    [20] Myers A G, Tanaka D, Mannion M R. Development of a decarboxylativepalladation reaction and its use in a Heck-type olefination of arenecarboxylates. J. Am. Chem. Soc.,2002,124(38):11250-11251
    [21] Tanaka D, Romeril S P, Myers A G. On the mechanism of thePalladium(II)-catalyzed decarboxylative olefination of arene carboxylic acids.Crystallographic characterization of non-phosphine Palladium(II) intermediatesand observation of their stepwise transformation in Heck-like processes. J.Am.Chem. Soc.2005,127(29):10323-10333
    [22] Tanaka D, Myers A G. Heck-type arylation of2-cycloalken-1-ones witharylpalladium intermediates formed by decarboxylative palladation and by aryliodide insertion. Org. Lett.,2004,6(3):433-436
    [23] Hu P, Kan J, Su W, et al. Pd(O2CCF3)2/benzoquinone: a versatile catalystsystem for the decarboxylative olefination of arene carboxylic acids. Org. Lett.,2009,11(11):2341-2344
    [24] Dickstein J S, Mulrooney C A, O’Brien E M, et al. Development of a catalyticaromatic decarboxylation reaction. Org. Lett.,2007,9(13):2441-2444
    [25] Becht J-M, Catala C, Drian C L, et al. Synthesis of biaryls via decarboxylativePd-catalyzed cross-coupling reaction. Org. Lett.,2007,9(9):1781-1783
    [26] Becht J-M, Drian C L. Biaryl synthesis via decarboxylative Pd-catalyzedreactions of arenecarboxylic acids and diaryliodonium triflates. Org. Lett.,2008,10(14):3161-3164
    [27] Goossen L J, Paetzold J. New synthesis of biaryls via Rh-catalyzedeecarbonylative Suzuki-coupling of carboxylic anhydrides with arylboroxines.Adv. Synth. Catal.,2004,346(13-15):1665-1668
    [28] Goossen L J, Rudolphi F, Oppel C, et al. Synthesis of ketones fromα-oxocarboxylates and aryl bromides by Cu/Pd-catalyzed decarboxylativecross-coupling. Angew. Chem. Int. Ed.,2008,47(16):3043-3045
    [29] Nakano M, Tsurugi H, Satoh T, et al. Palladium-catalyzed perarylation of3-thiophene-and3-furancarboxylic acids accompanied by C H bond cleavageand decarboxylation. Org. Lett.,2008,10(9):1851-1854
    [30] Lu P, Sanchez C, Cornella J, et al. Silver-Catalyzed Protodecarboxylation ofHeteroaromatic Carboxylic Acids. Org. Lett.,2009,11(24):5710-5713
    [31] Cornella J, Sanchez C, Banawa D, et al. Silver-catalysed protodecarboxylationof ortho-substituted benzoic acids. Chem. Commun.,2009,45(46):7176-7178
    [32] Cornella J, Lu P, Larrosa I. Intermolecular decarboxylative direct C-3arylationof indoles with benzoic acids. Org. Lett.,2009,11(23):5506-5509
    [33] Shang R, Xu Q, Jiang Y-Y, et al. Pd-catalyzed decarboxylative cross couplingof potassium polyfluorobenzoates with aryl bromides chlorides and triflates.Org. Lett.,2010,12(5):1000-1003
    [34] Shang R, Fu Y, Li J-B, et al. Synthesis of aromatic esters via Pd-catalyzeddecarboxylative coupling of potassium oxalate monoesters with aryl bromidesand chlorides. J. Am. Chem. Soc.,2009,131(16):5738-5739
    [35] Wang C, Piel I, Glorius F. Palladium-catalyzed intramolecular direct arylationof benzoic acids by tandem decarboxylation/C-H activation. J. Am. Chem. Soc.,2009,131(12):4194-4195
    [36] Wang X, Lane B S, Sames D. Direct C-arylation of free (NH)-indoles andpyrroles catalyzed by Ar-Rh(III) complexes assembled in situ. J. Am. Chem.Soc.,2005,127(14):4996-4997
    [37] Yanagisawa S, Sudo T, Noyori R, et al. Direct C-H arylation of (hetero)areneswith aryl iodides via Rhodium catalysis. J. Am. Chem. Soc.,2006,128(36):11748-11749
    [38] Lewis J C, Berman A M, Bergman R G, et al. Rh(I)-catalyzed arylation ofheterocycles via C-H bond activation: expanded scope through mechanisticinsight. J. Am. Chem. Soc.,2008,130(8):2493-2500
    [39] Okazawa T, Satoh T, Miura M, et al. Palladium-catalyzed multiple arylation ofthiophenes. J. Am. Chem. Soc.,2002,124(19):5286-5287
    [40] Yokooji A, Okazawa T, Satoh T, et al. Palladium-catalyzed direct arylation ofthiazoles with aryl bromides Tetrahedron2003,59(30):5685-5689
    [41] Pivsa-Art S, Satoh T, Kawamura Y, et al. Palladium-catalyzed arylation ofazole compounds with aryl halides in the presence of alkali metal carbonatesand the use of copper indide in the reaction. Bull. Chem. Soc. Jpn.,1998,71(2):467-473
    [42] Gallagher W P, Maleczka R E, Jr. PMHS-mediated couplings of alkynes orbenzothiazoles with various electrophiles: application to the synthesis of(-)-Akolactone A. J. Org. Chem.,2003,68(17):6775-6779
    [43] Li W, Nelson D P, Jensen M S, et al. Palladium-catalyzed regioselectivearylation of imidazo[1,2-a]pyrimidine. Org. Lett.,2003,5(25):4835-4837
    [44] Alagille D, Baldwin R M, Tamagnan G D. One-step synthesis of2-arylbenzothiazole (‘BTA’) and-benzoxazole precursors for in vivo imagingof β-amyloid plaques. Tetrahedron Lett.,2005,46(8):1349-1351
    [45] Bressy C, Alberico D, Lautens M. A route to annulated indoles via aPalladium-catalyzed tandem alkylation/direct arylation reaction. J. Am. Chem.Soc.,2005,127(38):13148-13149
    [46] Deprez N R, Kalyani D, Krause A, et al. Room temperaturePalladium-catalyzed2-arylation of indoles. J. Am. Chem. Soc.,2006,128(15):4972-4973
    [47] Chiong H A, Daugulis O. Palladium-catalyzed arylation of electron-richheterocycles with aryl chlorides. Org Lett.,2007,9(8):1449-1451
    [48] Turner G L, Morris J A, Greaney M F. Direct arylation of thiazoles on water.Angew. Chem. Int. Ed.,2007,46(42):7996-8000
    [49] Martin T, Verrier C, Hoarau C, et al. Direct C-2arylation of alkyl4-thiazolecarboxylates: New insights in synthesis of heterocyclic core ofthiopeptide antibiotics. Org. Lett.,2008,10(13):2909-2912
    [50] Wang J-X, McCubbin J A, Laufer R S, et al. Palladium-catalyzed direct Heckarylation of dual π-deficient/π-excessive heteroaromatics. Synthesis of C-5arylated imidazo[1,5-a]pyrazines. Org. Lett.,2008,10(14):2923-2926
    [51] Ackermann L, Althammer A, Fenner S. Palladium-catalyzed direct arylationsof heteroarenes with tosylates and mesylates. Angew. Chem. Int. Ed.,2009,48(1):201-204
    [52] Do H-Q, Daugulis O. Copper-catalyzed arylation of heterocycle C-H bonds. J.Am. Chem. Soc.,2007,129(41):12404-12405
    [53] Do H-Q, Khan R K M, Daugulis O. A general method for Copper-catalyzedarylation of arene C H bonds. J. Am. Chem. Soc.,2008,130(45):15185-15192
    [54] Yoshizumi T, Tsurugi H, Satoh T, et al. Copper-mediated direct arylation ofbenzoazoles with aryl iodides. Tetrahedron Lett.,2008,49(10):1598-1600
    [55] Phipps R J, Grimster N. P, Gaunt M J. Cu(II)-catalyzed direct and site-selectivearylation of indoles under mild conditions. J. Am. Chem. Soc.,2008,130(26),8172-8174
    [56] Zhao D, Wang W, Yang F, et al. Copper-catalyzed direct C arylation ofheterocycles with aryl bromides: Discovery of fluorescent core frameworks. J.Angew. Chem. Int. Ed.,2009,48(18):3296-3300
    [57] Fanta P E. The Ullmann synthesis of biaryls. Chem. Rev.,1946,38(1):139-196
    [58] Hassan J, Sevignon M, Gozzi C, et al. Aryl-aryl bond formation one centuryafter the discovery of the Ullmann reaction. Chem. Rev.,2002,102(5):1359-1469
    [59] Fujita K, Nonogawa M, Yamaguchi R. Direct arylation of aromatic C-H bondscatalyzed by Cp*Ir complexes. Chem. Commun.,2004,40(17):1926-1928
    [60] Oi S, Aizawa E, Ogino Y, et al. Ortho-selective direct cross-coupling reactionof2-aryloxazolines and2-arylimidazolines with aryl and alkenyl halidescatalyzed by Ruthenium complexes. J. Org. Chem.,2005,70(8):3113-3119
    [61] Do H Q, Daugulis O. Copper-catalyzed arylation and alkenylation ofpolyfluoroarene C-H bonds. J. Am. Chem. Soc.,2008,130(4):1128-1129
    [62] Cairncross A, Sheppard W A. Fluorinated organocopper compounds. J. Am.Chem. Soc.,1968,90(8):2186-2187
    [63] Sheppard W A. Pentafluorophenyl group electronic effect as a substituent. J.Am. Chem. Soc.,1970,92(18):5419-5422
    [64] Ljusberg H, Wahren R. Copper promoted arylation of pentafluorobenzene. ActaChem. Scandina.,1973,27(8):2717-2721
    [65] Shang R, Fu Y, Wang Y, et al. Copper-catalyzed decarboxylativecross-coupling of potassium polyfluorobenzoates with aryl iodides andbromides. Angew. Chem. Int. Ed.,2009,48(49):9350-9354
    [66] Suzuki A. Organoboron compounds in new synthetic reactions. Pure&Appl.Chem.,1985,57(12):1749-1758
    [67] Suzuki A. Synthetic studies via the cross-coupling reaction of organoboronderivatives with organic halides. Pure&Appl. Chem.,1991,63(3):419-422
    [68] Suzuki A. New synthetic transformations via organoboron compounds. Pure&Appl. Chem.,1994,66(2):213-222
    [69] Brown H C. Organic synthesis via boranes. New York: Wiley,1975,38and44
    [70] Litike A F, Fu G C. A convenient and general method for Pd-catalyzed Suzukicross-coupling of aryl chlorides and arylboronic acids. Angew. Chem. Int. Ed.,1999,37(24):3387-3388
    [71] Litike A F, Fu G C. Versatile catalysts for the Suzuki cross-coupling ofarylboronic acids wiyh aryl and vinyl halides and triflates under mildconditions. J. Am. Chem. Soc.,2000,122(17)4020-4028
    [72] Leblond C, Anderws A, Sun Y, et al. Activation of aryl chlorides for Suzukicross-coupling by ligandless, heterogenerous palladium. Org. Lett.,2001,3(10):1555-1557
    [73] Alimardanov A, Vondervoot L S, Devries A H, et al. Use of “homeopathic”ligand-free palladium as catalyst for aryl-aryl coupling reactions. Adv. Synth.Catal.,2004,346(13-15):1812-1817
    [74] Feuerstein M, Doucet H, Santtelim. Efficient coupling of heteroaryl halideswith arylboronic acid in the presence of a palladium-tetraphosphine catalyst. J.Organomet. Chem.,2003,687(2):327-336
    [75] Kitamura Y, Sako S, Udzu T, et al. Ligand-free Pd/C-catalyzed Suzuki-miyauracoupling reation for the synthesi of heyerobiaryl derivatives. Chem. Commun.,2007,43(47):5069-5071
    [76] Deng J Z, Paone D V, Ginnetti A T, et al. Copper-facilitated Suzuki reations:application to2-heterocyclic boronates. Org. Lett.,2009,11(2):345-347
    [77] Fu P P, Harvey R D. Dehydrogenation of polycyclic hydroaromatic compounds.Chem. Rev.,1978,78(4):317-361
    [78] Linstead R P, Millidge A F, Thomas S L, et al. Dehydrogenation. I. Thecatalytic dehydrogenation of hydronaphthalenes with and without an angularmethyl group. J. Chem. Soc.,1937,1937,1146-1157
    [79] Bachmann W E, Carmack M.4',5-Dimethylene-3,4-benzpyrene. J. Am. Chem.Soc.,1941,63(6):1685-1688
    [80] Bachmann W E, Struve W S. The Synthesis of derivatives of chrysene. J. Org.Chem.,1939,04(4):456-463
    [81] Lee H, Harvey R D. New synthetic approaches to cyclopenta[a]phenanthrenesand their carcinogenic derivatives. J. Org. Chem.,1988,53(18):4253-4256
    [82] Lee H, Harvey R D. Synthesis of cyclopentanobenz[a]anthracene compoundsrelated to carcinogenic benz[a]anthracene and cholanthrene hydrocarbons. J.Org. Chem.,1990,55(12):3787-3791
    [83] Horrillo-Martinez P, Virolleaud M-A, Jaekel C. Selective Palladium-catalyzeddehydrogenation of limonene to dimethylstyrene. Chemcatchem,2010,2(2),175-181
    [84] Ishikawa T, Uedo E, Tani R, et al. Aromatization of enamines promoted by astoichiometric amount of Palladium(II) salts: A novel method for the synthesisof aromatic amines. J. Org. Chem.,2001,66(1):186-191
    [85] Cossy J, Belotti D. Aromatization of enamines promoted by a catalytic amountof Pd/C. Synthesis of aromatic amines. Org. Lett.,2002,4(15):2557-2559
    [86] Bigdeli M A, Rahmati A, Abbasi-Ghadim H, et al. SnCl4and SbCl5promotedaromatization of enamines. Tetrahedron Lett.,2007,48(26):4575-4578
    [87] Li C-J, Chan T H. Organic syntheses using Indium-mediated and catalyzedreactions in aqueous media. Tetrahedron,1999,55(37):11149-11176
    [88] Ranu B C. Indium metal and its halides in organic synthesis. Eur. J. Org. Chem.,2000,2000(13):2347-2356
    [89] Chauhan K K, Frost C G. Advances in Indium-catalysed organic synthesis. J.Chem. Soc. Perkin Trans.1,2000,18:3015-3019
    [90] Ghosh R, Maiti S. Advances in Indium triflate catalyzed organic syntheses.Journal of Molecular Catalysis A: Chemical,2007,264(1-2):1-8
    [91] Friedel C, Crafts J M. Compt. Rend.,1877,84:1392,1450
    [92] Nagarajan R, Perumal P T. InCl3and In(OTf)3catalyzed reactions: systhesis of3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives.Tetrahedron,2002,58(6):1229-1232
    [93] Chauhan K K, Hartley J P, Krakowski M, et al. Indium triflate catalyzed eneand Friedel-Crafts additions to α-amino esters: A one pot synthesis of α–aminoacid derivatives. Lett. Org. Chem.,2006,3(3):228-230
    [94] Miyai T, Onishi Y, Baba A. Indium trichloride catalyzed reductiveFriedel-Crafts alkylation of aromatics using carbonyl compounds. TetrahedronLett.,1998,39(35):6291-6294
    [95] Miyai T, Onishi Y, Baba A. Novel reductive Friedel-Crafts alkylation ofaromatics catalyzed by indium compounds: Chemoselective utilization ofcarbonyl moieties as alkylating reagents. Tetrahedron,1999,55(4):1017-1026
    [96] Hayashi R, Cook G R. Remarkably mild and efficient intramolecularFriedel-Crafts cyclization catalyzed by In(III). Org. Lett.,2007,9(7):1311-1314
    [97] Loh T P, Pei J, Lin M J. Indium trichloride (InCl3) catalysed Diels-Alderreaction in water. Chem. Soc. Chem. Commun.1996,(20):2315-2316
    [98] Gadhwal S, Sandhu J S J. Indium triflate: A new catalyst for(4+2)-cycloaddition of chromone Schiff’s bases. Chem. Soc. Perkin Trans.1,2000,16:2827-2829
    [99] Loh T P, Tan K T, Hu Q Y. The first In(OTf)3-catalyzed conversion ofkinetically formed homoallylic alcohols into the thermodynamically preferredregioisomers: Application to the synthesis of22α-sterols. Angew. Chem. Int.Ed.,2001,40(15):2921-2922
    [100]Yadav J S, Abraham S, Reddy B V S, et al. InCl3-catalysed conjugate additionof indoles with electron-deficient olefins. Synthesis,2001,2001(14):2165-2169
    [101]Yadav J S, Abraham S, Reddy B V S, et al. Addition of pyrroles to electrondeficient olefins employing InCl3. Tetrahedron Lett.,2001,42(45):8063-8065
    [102]Makaiyama T, Ohno T, Han J S, et al. Reversal phenomena of the preferentialactivation of aldehydes to the corresponding acetals under non-basicconditions. The chemoselective Aldol reaction of aldehydes witht-butyldimethylsilyl enol ethers using TBSCl-InCl3as a catalyst. Chem. Lett.,1991,20(6):949-951
    [103]Borah H N, Prajapati D, Boruah R C. A novel indium-catalyzed Sonogashiracoupling reaction, effected in the absence of a copper salt, phosphine ligandand palladium. Synlett,2005,2005(18):2823-2825
    [104]Kauffmann T. Nonstabilized alkyl complexes and alkyl-cyano-ate complexesof Iron(II) and Cobalt(II) as new reagents in organic synthesis. Angew. Chem.Int. Ed.,1996,35(4):386-403
    [105]Ramon D J, Yus M. New methodologies based on arene-catalyzed lithiationreactions and their application to synthetic organic chemistry. Eur. J. Org.Chem.,2000,2000(2):225-237
    [106]Hoffmann R W. Redox catalysts for reduction with base metals. Angew. Chem.Int. Ed.,2005,44(39):6277-6279
    [107]Uchiyama M, Matsumoto Y, Nakamura S, et al. Development of a catalyticelectron transfer system mediated by transition metal ate complexes:Applicability and tunability of electron-releasing potential for organictransformations. J. Am. Chem. Soc.,2004,126(28):8755-8759
    [108]Wade R S, Castro C E. Oxidation of Iron(II) porphyrins by alkyl halides. J. Am.Chem. Soc.,1973,95(1):226-230
    [109]Vallee V, Mousseau J J, Charette A B. Iron-catalyzed direct arylation throughan aryl radical transfer pathway. J. Am. Chem. Soc.,2010,132(5):1514-1516
    [110]Shirakawa E, Itoh K-I, Higashino T, et al. tert-Butoxide-mediated arylation ofbenzene with aryl halides in the presence of a catalytic1,10-phenanthrolinederivative. J. Am. Chem. Soc.,2010,132(44):15537-15539
    [111]Stuart D R, Fagnou K. The catalytic cross-coupling of unactivated arenes.Science,2007,316(5828),1172-1175
    [112]Pattenden, G. Synthetic studies with natural oxazoles and thiazoles, J.Heterocycl. Chem.,1992,29(3):607-618
    [113]Mizuhara S, Handler P. Mechanism of thiamine-catalyzed reactions. J. Am.Chem. Soc.,1954,76(2):571-573
    [114]Riego E, Hernandez D, Albericio F, et al. Directly linked polyazoles:Important moieties in natural products. Synthesis,2005,2005(12):1907-1922
    [115]Jimonet P, Audiau F, Barreau M, et al. Riluzole series. Synthesis and in vivo“antiglutamate” activity of6-substituted-2-benzothiazolamines and3-substituted-2-imino-benzothiazolines. J. Med. Chem.,1999,42(15):2828-2843
    [116]Bougrin K, Loupy A, Soufiaoui M. Trois nouvelles voies de synthese desderives1,3-azoliques sous micro-ondes. Tetrahedron1998,54(28):8055-8064.
    [117]Choi S-J, Park H J, Lee S K, et al. Solid phase combinatorial synthesis ofbenzothiazoles and evaluation of topoisomerase II inhibitory activity. Bioorg.Med. Chem.2006,14():1229-1235.
    [118]Billeau S, Chatel F, Robin M, et al.1H and13C chemical shifts for2-aryl and2-N-arylamino benzothiazole derivatives. Magn. Reson. Chem.,2006,44(1):102-105.
    [119]Tanaka K, Kumagai T, Aoki H, et al. Application of2-(3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl)benzoxazole and-benzothiazole to fluorescentprobes sensing pH and metal cations. J. Org. Chem.,2001,66(22):7328-7333.
    [120]Sharghi H, Asemani O. Methanesulfonic acid/SiO2as an efficient combinationfor the synthesis of2-substituted aromatic and aliphatic benzothiazoles fromcarboxylic acids. Synth. Commun.,2009,39(5):860-867.
    [121]Ljusberg H, Wahren R. Copper-promoted arylation of pentaflurobenzene. ActaChem. Scand.,1973,27(8):2717-2721.
    [122]Noyori R. Chemical multiplication of chirality: science and applications. Chem.Soc. Rev.,1989,18(2):187-208
    [123]Pu L.1,1’-Binaphthyl dimers, oligomers, and polymers: molecularrecognition, Asymmetric catalysis, and new materials. Chem. Rev.,1998,98(7):2405-2494
    [124]Yamamoto T, Maruyama T, Zhou Z-H, et al. π-Conjugated poly(pyridine-2,5-diyl), poly(2,2'-bipyridine-5,5'-diyl), and their alkyl derivatives. Preparation,linear structure, function as a ligand to form their transition metal complexes,catalytic reactions, n-type electrically conducting properties, optical properties,and alignment on substrates. J. Am. Chem. Soc.,1994,116(32):4832-4845
    [125]Zhu S S, Swager T M. Design of conducting redox polymers: Apolythiophene-Ru(bipy)3; Hybrid Material. Adv. Mater.,1996,8(6):497-500
    [126]Papillon J, Schulz E, Gelinas S, et al. Towards the preparation of modifiedchiral electrodes for heterogeneous asymmetric catalysis: synthesis andelectrochemical properties of (S,S)-5,5'-bis-[3-(3-methylpentyl)-2-thienyl]-
    [2,2']-bipyridine. Synth. Met.,1998,96(2):155-160
    [127]Meier H. Conjugated oligomers with terminal donor–acceptor substitution.Angew. Chem. Int. Ed.,2005,44(17):2482-2506
    [128]Nielsen M B, Driedrich F. Conjugated oligoenynes based on thediethynylethene unit. Chem. Rev.,2005,105(5):1837-1868
    [129]McCulloch I, Heeney M, Chabinyc M L, et al. Semiconducting thienothiophenecopolymers: Design, synthesis, morphology, and performance in thin-filmorganic transistors. Adv. Mater.,2009,21(10-11):1091
    [130]Yamamura K, Ono S, Tabushi I. New liquid crystals having4,4’-biphenanthrylcore. Tetrahedron Lett.,1988,29(15):1797-1798
    [131]Bringmann G, Gunther C, Osche M, et al. Progress in the Chemistry of OrganicCompounds, Springer, New York,2001,82:1-23
    [132]Lloyd-Williams P, Giralt E. Atropisomerism, biphenyls and the Suzukicoupling: peptide antibiotics. Chem. Soc. Rev.,2001,30(3):145-157
    [133]Vrettou M, Gray A A, Brewer A R E, et al. Strategies for the synthesis of C2symmetric natural products. Tetrahedron,2007,63(7):1487-1536
    [134]Nicolaou K C, Boddy C N C, Brase S, et al. Chemistry, biology, and medicineof the glycopeptide antibiotics. Angew. Chem. Int. Ed.,1999,38(15):2096-2152
    [135]Baudoin O, Cesario M, Guenard D, et al. Application of the Palladium-catalyzed borylation/Suzuki coupling (BSC) Reaction to the synthesis ofbiologically active biaryl lactams. J. Org. Chem.,2002,67(4):1199-1207
    [136]Zhang Y J, Wei H, Zhang W. Synthesis of atropisomeric5,5’-linked biphenylbisaminophosphine ligands and their applications in asymmetric catalysis.Tetrahedron,2009,65(7):1281-1286
    [137]Taniguchi K, Katsura Y, Ueda I, et al, New2-aryliminoimidazolidines. II.Synthesis and antihypertensive activity of2-(biphenylimino)-imidazolidines.Chem. Pharm. Bull.1992,40,240-244.
    [138]Cornella J, Lahlali H, Larrosa I. Decarboxylative homocoupling of(hetero)aromatic carboxylic acids. Chem. Commun.,2010,46:8276-8278.
    [139]Bjorsvik H-R, Gonzalez R R, Liguori L. Investigations of a Novel Process tothe Framework of Benzo[c]cinnoline. J. Org. Chem.,2004,69(22):7720-7727.
    [140]Do H-Q, Daugulis O. An Aromatic Glaser-Hay Reaction. J. Am. Chem. Soc.,2009,131(47):17052-17053.
    [141]Muzart J, Pete J P. Dehydrogenation of cydohexanones catalyzed byPalladium(II) trifluoroacetate. J. Mol. Catal.,1982,15(3):373-376
    [142]Schuda P F, Prices W A. Total synthesis of isoflavones: jamaicin,calopogonium isoflavone-B, pseudobaptigenin, and maxima substance-B.Friedel-Crafts acylation reactions with acid-sensitive substrat. J. Org. Chem.,1987,52(10):1972-1979
    [143]Wenzel T T. Cationic palladium nitro complexes as catalysts for theoxygen-based oxidation of alkenes to ketones, and for the oxydehydrogenationof ketones and aldehydes to the α, β-unsaturated analogueses. J. Chem. Soc.,Chem. Commun.,1989,1989(14):932-933
    [144]Yi C S, Lee D W. Efficient dehydrogenation of amines and carbonylcompounds catalyzed by a tetranuclear Ruthenium-μ-oxo-μ-hydroxo-hydridecomplex. Organometallics,2009,28(4):947-949
    [145]Muzart J. One-pot syntheses of α,β-unsaturated carbonyl compounds throughPalladium-mediated dehydrogenation of ketones, aldehydes, esters, lactonesand amides. Eur. J. Org. Chem.,2010,2010(20):3779-3790
    [146]Choi J, MacArthur A H R, Brookhart M, et al. Dehydrogenation and relatedreactions catalyzed by Iridium pincer complexes. Chem. Rev.,2011,111(3):1761-1779
    [147]Ahuja R, Punji B, Findlater M, et al. Catalytic dehydroaromatization ofn-alkanes by pincer-ligated iridium complexes. Nature Chemistry,2011,3(2):167-171
    [148]Zhang X, Wang D Y, Emge T J, et al. Dehydrogenation of ketones bypincer-ligated iridium: Formation and reactivity of novel enone complexes.Inorg. Chim. Acta,2011,369(1):253-259
    [149]Izawa Y, Pun D, Stahl S S. Palladium-catalyzed aerobic dehydrogenation ofsubstituted cyclohexanones to phenols. Science,2011,333(6039):209-213
    [150]Yu J-Q, Wu H-C, Corey E J. Pd(OH)2/C-mediated selective oxidation of silylenol ethers by tert-butylhydroperoxide, a useful method for the conversion ofketones to α, β-enones or β-silyloxy-α, β-enones. Org. Lett.,2005,7(7):2727-2730
    [151]Yu J-Q, Corey E J. Diverse pathways for the Palladium(II)-mediated oxidationof olefins by tert-butylhydroperoxide. Org. Lett.,2002,4(16):2727-2730
    [152]Zhou H, Chung W-J, Xu Y-H, et al. Direct arylation of cyclic enamides viaPd(II)-catalyzed C–H activation. Chem. Commun.,2009,45(23):3472-3474
    [153]Zhou H, Xu Y-H, Chung W-J, et al. Palladium-catalyzed direct arylation ofcyclic enamides with aryl silanes by sp2C-H activation. Angew. Chem. Int. Ed.,2009,48(29):5355-5357
    [154]Guan Z-H, Zhang Z-Y, Ren Z-H, et al. Synthesis of enamides viaCuI-catalyzed reductive acylation of ketoximes with NaHSO3. J. Org. Chem.,2011,76(1):339-341.
    [155]Zhao H, Vandenbossche C P, Koenig S G, et al. An efficient synthesis ofenamides from ketones. Org. Lett.,2008,10(3),505-507.
    [156]Kharasch M S, Tawney P O. Factors determining the course and mechanisms ofGrignard reactions. II. The effect of metallic compounds on the reactionbetween isophorone and methylmagnesium bromide. J. Am. Chem. Soc.,1941,63(9):2308-2316.
    [157]Fang P, Li M, Ge H. Room temperature palladium-catalyzed decarboxylativeortho-acylation of acetanilides with α-oxocarboxylic acids. J. Am. Chem. Soc.,2010,132(34):11898-11899.
    [158]Saito M, Kayama Y, Watanabe T, et al. Synthesis and immunological activityof5,6,6a,8,9,1la-hexahydronaphth[1’,2’:4,5]imidazo[2,1-b]thiazoles and5,6,6a,9,10,1la-hexahydronaphth[2’,1’:4,5]imidazo[2,1-b]thiazoles. J. Med.Chem.,1980,23(12):1364-1372
    [159]Welch W. M, Kraska A R, Sarges R, et al. Nontricyclic antidepressant agentsderived from cis-and trans-1-amino-4-aryltetralins. J. Med. Chem.,1984,27(11):1508-1515
    [160]New J S, Yevich J P, Eison M S, et al. Buspirone analogs.2. Structure-activityrelationships of aromatic imide derivatives. J. Med. Chem.,1986,29(8):1476-1482
    [161]Johansson A M, Arvidsson L-E, Hacksell U, et al. Resolved cis-andtrans-2-amino-5-methoxy-1-methyltetralins: central dopamine receptoragonists and antagonists. J. Med. Chem.,1987,30(4):602-611
    [162]Wyrick S D, Booth R G, Myers A M, et al. Synthesis and pharmacologicalevaluation of1-phenyl-3-amino-1,2,3,4-tetrahydronaphthalenes as ligands fora novel receptor with σ-like neuromodulatory activity. J. Med. Chem.,1993,36(17):2542-2551
    [163]Snyder S E, Berardi F, Aviles-Garay F A, et al. Synthesis and evaluation of6,7-dihydroxy-2,3,4,8,9,13b-hexahydro-1H-benzo[6,7]cyclohepta[1,2,3-ef][3]benzazepine,6,7-dihydroxy-1,2,3,4,8,12b-hexahydroanthr[10,4a,4-cd]azepine,and10-(aminomethyl)-9,10-dihydro-1,2-dihydroxyanthracene asconformationally restricted analogs of β-phenyldopamine. J. Med. Chem.,1995,38(13):2395-2409
    [164]Perrone R, Berardi F, Colabufo N A, et al. High affinity and selectivity on5-HT1Areceptor of1-aryl-4-[(1-tetralin)alkyl]piperazines.2. J. Med. Chem.,1995,38(6):942-949
    [165]Zhao H, Xin Z, Liu G, et al. Discovery of tetralin carboxamide growthhormone secretagogue receptor antagonists via scaffold manipulation. J. Med.Chem.,2004,47(27):6655-6657
    [166]Tu Z, Efange S M N, Xu J, et al. Synthesis and in vitro and in vivo evaluationof18F-labeled positron emission tomography(PET) Ligands for imaging thevesicular acetylcholine transporter. J. Med. Chem.,2009,52(5):1358-1369
    [167]Bergmann, E. Isomerization of unsaturated hydrocarbons. Chem. Rev.1941,29(3):529-551
    [168]Liu C, Han X Q, Wang X, et al. Platinum-catalyzed intramolecular alkylationof indoles with unactivated olefins. J. Am. Chem. Soc.,2004,126(12):3700-3701
    [169]Han X Q, Widenhoefer R A. Platinum-catalyzed intramolecular asymmetrichydroarylation of unactivated alkenes with indoles. Org. Lett.,2006,8(17):3801-3804
    [170]Thalji R K, Ahrendt K A, Bergman R G, et al. Annulation of aromatic iminesvia directed C-H activation with Wilkinson’s catalyst. J. Am. Chem. Soc.,2001,123(39):9692-9693
    [171]Tan K L, Bergman R G, Ellman J A. Intermediacy of an N-heterocyclic carbinecomplex in the catalytic C-H activation of a substituted benzimidazole. J. Am.Chem. Soc.,2002,124(13):3202-3203
    [172]Ahrendt K A, Bergman R G, Ellman J A. Synthesis of a tricyclic mescalineanalogue by catalytic C-H bond activation. Org. Lett.,2003,5(8):1301-1303
    [173]Thalji R K, Ahrendt K A, Bergman R G, et al. Annulation of aromatic iminesvia directed C-H bond activation. J. Org. Chem.,2005,70(17):6775-6781
    [174]Harada H, Thalji R K, Bergman R G, et al. Enantioselective intramolecularhydroarylation of alkens via directed C-H bond activation. J. Org. Chem.,2008,73(17):6772-6779
    [175]Youn S W, Pastine S J, Sames D. Ru(III)-catalyzed cyclization of arene-alkenesubstrates via intramolecular electrophilic hydroarylation. Org. Lett.,2004,6(4):581-584
    [176]姚峰,阳年发,杨利文.三苯基取代烯烃的合成.精细化工中间体.2004,24(34):28-35
    [177]Overman L E, Flann C J, Malone T C. Regioselective synthesis oftetrahydropyridines:1-(4-methoxyphenyl)-1,2,5,6-tetrahydropyridine. Org.Synth.,1990,68:188-197
    [178]Wolter M, Nordmann G, Job G E. Copper-catalyzed coupling of aryl iodideswith aliphatic alcohols. Org. Lett.,2002,4(6):973-976
    [179]Fuchs S, Berl V, Lepoittevin J P. A highly stereoselective divergent synthesisof bicyclic models of photoreactive sesquiterpene lactones. Eur. J. Org. Chem.2007,2007(7):1145-1152
    [180]Davies G C R E, Gilbert A, Heath P. Substituent effects on the intramolecularphotochemical reactions of phenyl-ethenyl non-conjugated bichromophoricsystems. J. Chem. Soc. Perkin Trans. II,1984,9:1833-1841
    [181]Mukaiyama T, Fujisawa T. The preparation of diethyl phosphate. Bull. Chem.Soc. Jap.,1961,34(6):812-813
    [182]Nowotny S, Tucker C E, Jubert C, et al. Chromium(II)-mediatedstereodivergent additions of allylic phosphates and halides to aldehydes. J. Org.Chem.,1995,60(9):2762-2772
    [183]Campeau L-C, Parisien M, Leblanc M, et al. Biaryl synthesis via directarylation: Establishment of an efficient catalyst for intramolecular processes. J.Am. Chem. Soc.,2004,126(30):9186-9187
    [184]Lafrance M, Blaquiere N, Fagnou K. Direct intramolecular arylation ofunactivated arenes: application to the synthesis of aporphine alkaloids. Chem.Commun.,2004,40(24):2874-2875
    [185]Lafrance M, Blaquiere N, Fagnou K. Aporphine alkaloid synthesis anddiversification via direct arylation. Eur. J. Org. Chem.,2007,2007(5):811-825
    [186]Ruiz J, Ardeo A, Ignacio R, et al. An efficient entry to pyrrolo[1,2-b]isoquinolines and related systems through Parham cyclisation. Tetrahedron,2005,61(13):3311-3324
    [187]张丽,曾润生. Benziodoxole的合成.苏州大学学报(自然科学版).2008,24(1):68-69,73
    [188]Liu Z, Larock R C. Facile N-arylation of amines and sulfonamides. Org.Lett.,2003,5(24):4673-4675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700