用户名: 密码: 验证码:
p38MAPK在H9N2-SIV诱导小鼠急性肺损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性肺损伤(Acute lung injury,ALI)是由心源性以外的各种肺内外致病因素导致的急性、进行性加重的呼吸困难、难治性低氧血症和肺水肿,病情严重时发展为急性呼吸窘迫综合征(Acute respiratory distress syndrome,ARDS),重症者出现死亡。ALI是流感病毒感染哺乳动物的主要症状之一,其确切发病机理目前仍不很清楚,近期的研究表明,流感病毒引起的ALI可导致多器官的损害,近年来对其发病机理的研究主要集中在细胞因子和炎症介质的作用上。p38MAPK与炎症反应的调控密切相关,离体研究显示其参与调节多种炎性因子的表达。有资料显示,p38MAPK在肺损伤过程中发挥了重要的调控作用。研究发现,流感的历次大流行都与猪有关,猪流感病毒在人类流感的流行与病毒变异过程中较禽流感病毒具有更密切的关系。但有关p38MAPK在H9N2亚型猪流感病毒(H9N2-SIV)感染小鼠引起ALI的研究还末见相关报道。
     为了对p38MAPK在H9N2-SIV诱导小鼠ALI中作用进行研究,我们以6-8周龄SPF级BALB/c雌性小鼠为研究对象,利用本课题组分离的A/swine/HeBei/012/2008(H9N2)(H9N2-SIV),采用鸡胚尿囊腔接种法扩增病毒,经鼻腔滴鼻接种小鼠,以各组小鼠的临床症状、肺病理组织学变化、肺水肿的变化、支气管肺泡灌洗液(BALF)中炎性细胞的变化和血流动力学的变化等作为标准,建立H9N2-SIV诱导小鼠ALI模型,同时设立p38MAPK的特异性抑制剂SB203580处理组(SB组),选择小鼠ALI过程的不同时期进行测定,采用的主要方法:
     ①观察小鼠的临床症状,统计小鼠死亡率,定时称量活鼠的体质量和采食量,测定小鼠肺系数、肺W/D、支气管肺泡灌洗液中炎性细胞的变化和血流动力学的变化;
     ②建立H9N2-SIV感染小鼠的ALI模型;
     ③应用HE染色技术、免疫组织化学技术和透射电镜技术动态观察肺脏的病理变化;
     ④应用酶联免疫法测定炎症因子(TNF-α、IL-1β、IL-6、IL-10)的表达调控;
     ⑤应用免疫组织化学技术和免疫印迹(Western-blot)技术测定磷酸化p38MAPK在肺组织中的分布及表达。
     测定结果显示:
     ①感染组小鼠在感染病毒后2-3d开始发病,早期表现为背毛粗糙无光泽、活动减少、爱扎堆、精神沉郁、反应迟钝、食欲减退、眼睛缩小或紧闭、眼周围有分泌物;后期出现呼吸急促、被毛逆立、缩头弓背、拒食、消瘦等临床症状,蜷缩于鼠笼一隅,跑动缓慢或蹒跚样行走,个别小鼠出现明显的神经症状,死亡率达60%,体质量出现先降后升的趋势,小鼠出现严重肺水肿。从第8d开始症状逐渐减轻,14d后基本恢复正常。
     与对照组比较,感染组小鼠动脉血中氧分压从第2d开始降低,第4d出现明显的差异(P<0.01),第6d最低时仅为(6.79±1.27)kPa,呈现严重的低氧血症,同时,二氧化碳分压显著上升(P<0.05);BALF内炎性细胞在感染后第4-8d显著增加,尤其以肺泡巨噬细胞和多核型白细胞增加最为明显(P<0.01)。
     SB组小鼠体征表现比感染组减轻,比对照组加重,介于感染组和对照组之间。
     ②病理组织学观察,感染组小鼠肺泡腔内有以嗜中性细胞为主的炎性细胞、红细胞和大量的粉红色的蛋白渗出物和水肿液,肺泡腔变小,肺泡壁增厚,肺泡间质不同程度增宽,细支气管和小血管周围间质水肿、疏松,可见中等量淋巴细胞和单核细胞浸润,支气管部分黏膜上皮细胞坏死,脱落;SB组血管及支气管壁周围稍有增厚、水肿,肺泡大小形态稍不规则,损伤程度亦明显小于病毒组。
     ③感染组和SB组在各时间点肺组织匀浆中的TNF-α、IL-1β、IL-6和IL-10浓度均显著高于对照组(P<0.05)。感染组的TNF-α和IL-1β在损伤后第2d急剧升高,第4d达到高峰后开始下降,至14d后趋于正常;IL-6及IL-10于损伤后第2d开始升高,至第6d达到高峰,第8d虽然有所下降,但下降幅度不大,到14d仍高于正常对照组;SB组各时间点细胞因子水平较感染组降低,但仍高于对照组。
     ④免疫组织化学测定,对照组小鼠肺组织基本正常,仅仅在肺泡隔上皮细胞和气道上皮细胞有极少量的磷酸化p38MAPK阳性表达。感染组磷酸化p38MAPK阳性表达增多,特别是肺泡隔中的上皮细胞几乎全部呈阳性,肺泡管结节状膨大部的肌样细胞同样呈阳性反应。同时磷酸化p38MAPK阳性表达还广泛分布于气道上皮细胞、血管内皮细胞、浸润炎性细胞的胞浆和胞核中,在浸润炎性细胞中表达量也较高;SB组相对于感染组磷酸化p38MAPK阳性表达明显减少,仅见肺泡隔中上皮细胞的胞浆有少量阳性表达,可见肺泡隔内的毛细血管内皮细胞阳性表达消失,至14d磷酸化p38MAPK阳性表达量基本恢复至对照组。
     ⑤经Western-blot法检测,在H9N2-SIV感染小鼠的不同时间点,对照组小鼠肺脏有浅淡的磷酸化p38MAPK蛋白条带表达,但在对照组中任何观察时间点都未发现有统计学意义的变化。感染组小鼠磷酸化p38MAPK蛋白在感染后第2d,表达即明显增强,和对照组比较,差异有显著性(P<0.05);至第6d蛋白表达达高峰,差异有极显著性(P<0.01),第8d磷酸化p38MAPK蛋白表达有所下降;到14d仍高于对照组。SB组小鼠肺脏在各时间点磷酸化p38MAPK蛋白表达均明显低于感染组,但仍高于对照组。
     通过对H9N2-SIV诱导小鼠ALI的研究,我们得出如下结论:本课题组分离的A/swine/HeBei/012/2008(H9N2)能够感染BALB/c小鼠,肺脏是其侵害的主要靶器官,引起小鼠的ALI,BALB/c小鼠可以作为流感病毒感染哺乳动物相关研究的良好模型动物;在ALI的病程中TNF-α、IL-1β起致炎因子的作用;IL-6在本试验中可能发挥抗炎作用,IL-10起抗炎因子的作用并在ALI的转归过程中发挥重要作用;p38MAPK能够被H9N2-SIV激活并介导ALI,p38MAPK参与了H9N2-SIV诱导小鼠ALI的发生和发展过程;p38MAPK特异性抑制剂SB203580可以下调磷酸化p38MAPK的表达水平,降低炎症因子的表达,减轻ALI中肺组织的病理损伤。
Acute lung injury(ALI) refers to acute and progressively increased dyspnea, hypoxemiaand pulmonary edema caused by pathogenetic factors inside and outside the lung excludingcardiogenic ones. As the disease worsens, ALI develops into Acute respiratory distresssyndrome(ARDS), and even can be fatal to severe patients. ALI is one of the main symptomsof mammals infected by influenza virus. Its precise pathogenesis still remain unknown now.But recently, the research shows that AlI caused by influenza virus results in damages of manyorgans. These recent reseaches of pathogenesis focus on the function of cytokines andinflammatory mediator. p38MAPK is closely related to the regulation of the inflammatoryresponse. And in vitro studies shows that it is involved in regulating the expression of a varietyof inflammatory cytokines. According to data, p38MAPK plays an important regulatory role inthe process of lung injury. It is found that all previous pandemic influenza is associated withpigs, and the swine influenza virus(SIV) has a closer relationship in the process of humaninfluenza pandemic and virus variation than the avian influenza virus(AIV). But these relatedstudy that p38MAPK can cause ALI of mice infected by H9N2-SIV has not been reported.
     To study the role of p38MAPK on ALI of mice infected H9N2-SIV, We take6to8weeksof SPF BALB/c female mice as the research objects, use A/swine/HeBei/012/2008(H9N2)(H9N2-SIV) separated by this research group, and adopt the method of chicken embryoallantoic cavity inoculation to multiply the virus. And mice are infected through intranasalinoculation. The standard depends on change of clinical symptoms, histopathological changesin lung disease, pulmonary edema, the inflammatory cells in bronchoalveolar lavagefluid(BALF), and hemodynamics of each group. A mouse model of ALI induced byH9N2-SIV is built, and p38MAPK specific inhibitor——SB203580treatment group is alsobuilt. The different periods in the process of ALI of mice are measured. The principle methodsare as follows:
     ①Observe clinical symptoms and count the mortality of mice, weigh body weight and feed intake of living mice regularly, determination of lung coefficient, W/D,the inflammatorycells in BALF, and hemodynamics of each group;
     ②Bulid mice model ofALI induced by H9N2-SIV;
     ③Dynamically observe the pathological changes of lung by the HE staining technique,immunohistochemical technique and transmission electron microscopy technology;
     ④Measure the expression and regulation of inflammatory factor(TNF-α、IL-1β、IL-6、IL-10)by ELISA;
     ⑤Measure the distribution and expression level of phospho-p38MAPK in lung tissue byusing immunohistochemistry and Western-blot.
     The results showed:
     ①The mice of infected group got ill on2or3days post-infection (p.i.). The earlysymptoms were that back fur gets rough and unpolished, activities were less, and they loved toflock together; that they were depressed in spirit and slow in response; that they decreased inappetite, and the eyes were constricted or even closed, and covered with secretion. Then atlater stage, they appeared shortness of breath, reverse stand of back fur, retraction of heads andbend of backs, loss of appetite, and thinness etc.. Additionally, they crouched in a corner in thecage, and ran slowly or stumbled. And even some mice appeared obviously neurologicsymptoms. The death rate reached to60%. Body weight descended firstly then ascended, andmice were attacked by severe pulmonary edema. From8day p.i., the symptoms graduallyreduce, and basically recovered on14day p.i..
     On2day p.i.,the partial pressure of arterial oxygen(PaO2) for infected mice began toreduce compared with that of control group,which showed significant difference(P<0.01) on4day p.i.,and only6.79kPa±1.27kPa on6day p.i.,infected group appeared serioushypoxemia,moreover, the partial pressure of arterial carbon dioxide(PaCO2) rosesignificantly(P<0.05).Inflammatory cells in BALF increased significantly,especially thealveolar macrophage and polymorphonuclear leukocytosis,and from4-8days after infectionshowed extremely significant difference(P<0.01) compared with that of control group.
     Physical symptoms of SB group were lighter than infection group, but severer thancontrol group, between infected and control group.
     ②By the observation of the pathological histology, there were inflammatory cells mainlycontaining neutrophils, erythrocyte, a great deal of pink fibrinous exudate and edema fluid in the pulmonary alveoli of infected mice. And alveolar space became less, alveolar wall wasthickened, alveolar interstitial was widened to varying degree, Around bronchioles and smallvessels showed interstitial edema and loosen, moderate levels of lymphocytes and monocytewere infiltrated can be seen, and part of epithelial cells of bronchial mucosa underwentnecrosis and fall off; blood vessels and bronchus wall of SB group were slightly thickeningand edema, alveolar size were slightly irregular, and injury degree was also less thaninfected group.
     ③Compared with the control group at each time point, the concentration of TNF-α、IL-1β、IL-6and IL-10in Lung tissue homogenate increased significantly in infection groupand SB group (P<0.05). TNF-α and IL-1β of infection group were remarkably increased on2day p.i., reached maximal levels on4day p.i. and then decreased, and finally almost returnedto the control levels on14day p.i.. IL-6and IL-10increased on2day p.i., reached maximallevels on6day p.i., then decreased on8day p.i., but drop slightly, and remained higher thancontrol group on14day p.i.. Cytokine levels of SB group decreased compared with infectiongroup at each time point, but were still higher than control group.
     ④By the determination of immunohistochemistry, mice lungs in control group werenormal, but Positive expression of phospho-p38MAPK exsited in epithelial cell of alveolarsepta and airway in small quantities. Positive expression of phospho-p38MAPK in infectiongroup increased obviously, especially almost all of alveolar septa epithelial cells were positive,and myoid cells of the alveolar ducts nodular enlargement were positive too. Meanwhile,Positive expression of phospho-p38MAPK also exsited in cytoplasm and karyon of airwayepithelial cells, vascular endothelial cells, infiltrating inflammatory cells, and express quantityis higher in infiltrating inflammatory cells. The positive expression in SB group droppedsignificantly compared with infection group. It can only be founded in the cytoplasm ofAlveolar septa epithelial cells in small quantities. So positive expression of capillaryendothelial cells in alveolar septa disappeared. Positive expression of phospho-p38MAPKrecovered to level of the control group on14day p.i..
     ⑤By the determination of Western-blot, mice lungs of control group have lightphospho-p38MAPK protein bands at different time point when mice were infected byH9N2-SIV. However, no significant changes were found in control group at any time point.Compared with control group, the expression of phospho-p38MAPK protein in infection group was stronger with significant difference(P<0.05) on2day p.i.,;it reached to the top withextremely significant difference (P<0.01) on6day p.i.,,decreased on8day p.i., but remainedhigher than control group on14day p.i.. The expression of phospho-p38MAPK protein in SBgroup was lower than infection group, but higher than control group.
     The following conclusions were drawn by this study. A/swine/HeBei/012/2008(H9N2)could infect BALB/c mouse. The lung is the main target organs, and it can cause ALI ofmouse. BALB/c mouse can be used as good animal model to study mammal infected byinfluenza virus. TNF-α and IL-1β play the role of inflammatory factors in the process of ALI,IL-6may play a role of anti-inflammatory action in this study, and IL-10also has the role ofanti-inflammatory factors and play an important part in the sequelae process of ALI.p38MAPK can be activated by H9N2-SIV and cause ALI, and p38MAPK takes part in theoccurrence and development of ALI induced by H9N2-SIV. p38MAPK specificinhibitor——SB203580can lower the expression of phospho-p38MAPK, and decrease theexpression of inflammation factors, lighten pathological injury of lung in ALI.
引文
[1] Guan,Yi.Molecular epidemiology of swine influenza A viruses from southern China. Thesis(Ph.D.),TheUniversity of Hong Kong,Hong Kong,1997,9. http://dx.doi.org/10.5353/th_b3123691
    [2] Shope RE.Swine influenza:III.Filtration experiments and aetiology[J].J Exp Med.1931,54(3):373-385.
    [3] Shope RE.Swine influenza.I.Experimental transmission and pathology[J].J Exp Med.1931,54(3):349-359.
    [4] Wilson Smith, C. H. Andrewes, P. P. Laidlaw, et al. A Virus obtained from influenza patients [J].MedicalVirology.1995,5(4):187-191.
    [5]流行性感冒病毒.[EB/OL]. http://baike.baidu.com/view/30570.htm?fromId=84307.2013,3,31.
    [6] Matrosovich M, Tuzikov A, Bovin N, et al.Early alterations of the receptor-binding properties of H1,H2,and H3avian influenza virus hemagglutinins after their introduction into mammals[J]. JVirol.2000,74(18):8502-8512.
    [7]金奇主编.医学分子病毒学(第一版)[M].北京:科学出版社,2001年2月.633-655。
    [8] Steinhauer D A.Role for the pathogenicity of influenza virus[J]. Virology,1999,258(1):1-20
    [9] Daniele, R.P. Immunoglobulin secretion in the airways. Annu. Rev. Physiol.,1990,52,177-195.
    [10] Hinshaw VS, Webster RG, Turner B.The perpetuation of orthomyxoviruses and paramyxoviruses inCanadian waterfowl.Can[J]. J Microbiol.,1980,26:622-629
    [11] McMichael AJ, Gotch FM, Dongworth DW, et al. Declining T-cell immunity to influenza,1977-82[J].Lancet.1983,2(8353):762-764.
    [12]赵有淑.3株H9N2猪流感福建株的分离鉴定及分子衍化研究[D].硕士学位论文.兰州:甘肃农业大学,2005.
    [13] Ito T,Kawaoka Y.Host-range barrier of influenza A viruses[J].Vet-Microbiol,2000,74(1-2):71-5.
    [14] Beare AS,Webster RG. Replication of avian influenza viruses in humans[J]. Arch Virology,1991,119(122):37-42.
    [15] Vines A,Wells K,Matrosovich M,et al.The role of influenza A virus hemagglutinin residues226and228in receptor specificity and host range restriction[J].J-Virol,1998,72(9):7626-7631.
    [16] Subbarao k,Klimov A,Katz J,et al.Characterization of an avian influenza A(H5N1) virus isloated from achild with a fatal respiratory illness[J].Science,1998,279:393-396.
    [17] Chass E·C,Osterhaus AD,Vanbeek R,et al.Human influenza A H5N1virus related to a highly pathogenicavian influenza virus[J]. L ancet,1998,351:472-477.
    [18] Yuan KY,Chan PK,Peiris M,et al.Clinical features and rapid viral dignosis of human diseases associatedwith avian influenza A H5N1virus[J].L ancet,1998,351:467-471.
    [19] Horimoto T, Kawaoka Y. Pandemic threat posed by avian influenza A viruses[J].Clin MicrobiolRev,2001,14(1):129-149.
    [20]国家卫生和计划生育委员会.上海、安徽发生3例人感染H7N9禽流感确诊病例[EB/OL].http://www.chinanews.com/gn/2013/03-31/4691328.shtml.2013,3,31.
    [21] David AJ.Tyrrell of Pigs,poultry and permafrost[J].Nature,2000,403(13):137-138.
    [22] Gregory V,Lim W,Cameron K,et al.Infection of a child in Hong Kong by an influenza A H3N2virusclosely related to viruses circulating in European pigs[J].J Gen Virol,2001,82(Pt6):1397-1406.
    [23] Rimmelzwaan GF,De Jong JC,Bestebroer TM,et al.Antigenic and genetic characterization of swineinfluenza A(H1N1) viruses isolated from pneumonia patients in The Netherlands[J]. Virology,2001,282(2):301-306.
    [24] Zhou NN,Senne DA,Landgraf JS,et al.Genetic reassortment of avian,swine,and human influenza Aviruses in American pigs[J].J-Virol,1999,73(10):8851-8856.
    [25]包红梅,陈化兰.动物流感病毒与人流感流行株起源变异关系的探讨[J].畜牧兽医科技信息,2004,(3):4-6
    [26] Gorman OT,Bean WJ,Kawaoka Y,et al.Evolution of influenza A virus nucleoprotein genes: implicationsfor the origins of H1N1human and classical swine viruses[J].J V irol,1991,65(7):3704-3714.
    [27] Webster R G,Bean W J,Gorman O T,et al.Evolution and ecology of influenza A viruses[J].Microbiological reviews,1992,56(1):152-179.
    [28] K Van Reeth, A Nicoll. A human case of swine influenza virus infection in Europe-implications forhuman health and research[J]. Eurosurveillance,2009,14(7):19124.
    [29] B Adiego Sancho,M Ome aca Terés,S Martínez Cuenca,et al. Human case of swine influenzaA(H1N1),Aragon,Spain,November2008[J]. Eurosurveillance,2009,14(7):19120.
    [30] Alexandra P. Newman,Erik Reisdorf,Jeanne Beinemann,et al. Human case of swine influenza A(H1N1)triple reassortant virus infection,Wisconsin[J].Emerg Infect Dis,2008,14(9):1470-1472.
    [31]殷震,刘景华主编.动物病毒学(第二版)[M].北京:科学出版社,1997.
    [32]朱事康,程珏益,刘中勇,等.猪流感研究进展[J].中国动物检疫,2005,22(2):41-43.
    [33]王方昆,王一成,袁秀芳,等.猪流感诊断方法研究进展.动物医学进展,2006,27(4):17-21.
    [34]洪健,周雪平.ICTV第八次报告的最新病毒分类系统[J].中国病毒学,2006,21(1):84-96
    [35]李海燕,于康震,辛晓光,等.部分省市猪群猪流感的血清学调查及猪流感病毒的分离与鉴定.动物医学进展,2003,24(3):57-72.
    [36]许传田,赵宏坤,范伟兴.H9N2亚型猪流感病毒山东分离株的分离鉴定及其HA、NP、NS基因序列分析[J].中国兽医学报,2004,24(6):528-530.
    [37]刘小银,岳华,汤景元,等.猪流感病毒及其人类公共卫生意义[J].西南民族大学学报(自然科学版),2005,增刊:65-68.
    [38] Jank B H.Swine influenza and PRDC[J].Pig Progress,2001,June:28-30.
    [39] Olsen C W.The emergence of novel swine influenza viruses in North America[J].Virus Research,2002,85:199-210.
    [40]仇华吉,童光志.猪流感的再认识[J].动物医学进展,2000,21(3):6-9.
    [41] Van Reeth K,Guan Y.Swine influenza:an update from Europe and Asia[J].Pig Progress,2000,June:4-7.
    [42]倪汉忠,陈伟师,刘少梅,等.1998年广东省猪群血清流感抗体调查分析[J].广东卫生防疫,2000,26(1):35-36.
    [43] Ito T,Kida H,Kawaoka Y.Receptors of influenza A viruses:implications for the role pigs in the generationof pandemic human influenza viruses[M].Options for the Control of Influenza Ⅲ,1996,516-519.
    [44]郭元吉,罗艳,黄雅等.人与猪群中H3N2亚型流感病毒间关系的研究[J].中华实验和临床病毒学杂志,1994,8(3):211-215.
    [45] Karasin A I, Brown I H,Carman S,et al.Isolation and Characterization of H4N6Avian Influenza Virusesfrom Pigs with Pneumonia in Canada[J].Journal of Virology,74(19):9322-9327.
    [46] Lin Y P,Shaw M,Gregory V,et al. Avian-to-human transmission of H9N2subtype influenza Aviruses:Relationship between H9N2and H5N1human isolates[J].PNAS,2000,97(17):9654-9658.
    [47]伍锐,金梅林,陈焕春,等.猪流感病毒研究进展.动物医学进展,2004,25(1):25-28
    [48] Duca M,Morosanu V.Efficiency of complement fixation(CF)test with internal nucleoprotein (NP)antigenand hemagglutination-inhibition(HI)test in the serodiagnosis of A and B influenza infections [J]. ArchRoum Pat hol Exp Microbiol,1979,38(324):331-337.
    [49] Rogers G N,Pritchett T J.Differential sensitivity of human,avian,and equine influenza A viruses to aglycoprotein inhibitor of infection:selection of receptor specific variants [J].Virology,1983,131(2):394-408.
    [50] Ito T,Suzuki Y. Receptor specificity of influenza A viruses correlates with the agglutination oferythrocytes from different animal species[J].Virology,1997,227(2):493-499.
    [51] Van Deusen R A,Hinshaw V S.Microneuraminidase-inhibition for classification of influenza A virusneuraminidases[J].Avian Dis,1983,27(3):745-750.
    [52]倪建强,张春玲,李海燕,等.猪流感病毒核蛋白基因的原核表达及其在诊断中的初步应用[J].中国预防兽医学报,2002,26(1):18221.
    [53] Khairullah N S,Lam S K.Evaluation of WHO monoclonal antibody kit for diagnosis of acute respitatoryviral infections[J].Southeast Asian J Trop Med Public Health,1995,26(2):263-267.
    [54] Hijazi Z,Pacsa A,Eisa S,et al.Laboratory diagnosis of acutelower respiratory tract viral infection inchildren[J].J Trop Pediatr,1996,42(5):276-280.
    [55] Direksin K,Joo H,Goyal S M,et al.An immunoperoxidase monolayer assay for the detection of antibodiesagainst swine influenza virus[J].J Vet Diagn Invest,2002,14(2):169-171.
    [56] Jennings R,Potter C W,Mclaren C,et al.Effect of preinfection and preimmunization on the serumantibody response to subsequent immunization with heterotypic influenza vaccines [J].JImmunol,1974,113(6):1834-1843.
    [57] Skibbe D,Zhou E M,Janke B H,et al.Comparison of a commercial enzyme-linked immunosorbent assaywith hemagglutination inhibition assay for serodiagnosis of swine influenza virus(H1N1)infection[J].JVet Diagn Invest,2004,16(1):86-89.
    [58] Voeten J T,Groen J,Van Alphen D,et al.Use of recombinant nucleoproteins in enzyme-linkedimmunosorbent assays for detection of virus specific immunoglobulin A or Ginfected patients[J].J ClinMicrobiol,1998,36(12):3527-3531.
    [59] Swenson S L,Vincent L L,Lute B M,et al.Acomparison of diagnostic assays for the detection of type Aswine influenza virus from nasal swabs and lungs[J].J Vet Diagn Invest,2001,13(1):36-42.
    [60] Munch M,Nielsen L P,Handberg KJ,et al.Detection and Subtyping(H5and H7) of avian type A influenzavirus by reverset ranscription PCR and PCR-ELISA[J].Arch Virol,2001,146:87-97.
    [61]祁贤,陆承平,王贵平,等.套式RT-PCR方法检测临床样品中的猪流感病毒[J].中国病毒学,2004,20(2):200-202.
    [62]亢文华,郝俊峰,张仲秋,等.PCR-ELISA快速检测高致病性禽流感病毒方法的建立[J].中国畜牧兽医,2005,32(6):54-56.
    [63] Richt J A,Lager K M,Clouser D F,et al.Real-time reverse transcription-polymerase chain reaction assaysfor the detection and differentiation of North American swine influenza viruses[J].J Vet DiagnInvest,2004,16(5):367-373.
    [64]Landolt G A,Karasin A I,Hofer C,et al.Use of real-time reverse transcriptase polymerase chain reactionassay and cell culture methods for detection of swine influenza A viruses[J]. Am J VetRes,2005,66(1):119-124.
    [65]段廷云,陈红英,崔保安.实时荧光定量PCR检测H1N1亚型猪流感病毒[J].畜牧兽医学报,2008,39(6):752-756.
    [66] Lau L T,Banks J,Aherne R,et al.Nucleic acid sequencebased amplification methods to detect avianinfluenza virus[J].Biochem Biophys Res Commun,2004,313(2):336-342.
    [67] Brown I H. The epidemiology and evolution of influenza in pigs[J]. Vet Microbiol,2000,74:29-46.
    [68] Nicholson KG, Webster RG, Hay AJ,ed al. Influenza in pigs and their role in the intermediate host[M].Textbook of influenza,1998:137-145.
    [69] Gregory, V. M. Bennett, Y. Thomas, et a.l Human infection by a swine influenzaA (H1N1) virus inSwitzerland. Archives of Virology,2003,148(4):793-802.
    [70] Herlaar E, Brown Z. p38MAPK signaling cascades in inflammatory disease[J]. Mol Med Today,1999,5(10):439-447.
    [71] Widmann C,Gibson S,Jarpe MB,Johnson GL. Mitogen-activated protein kinase: Conservation of athree-kinase module from yeast to human.Physiol Rev,1999,79(1):143-180.
    [72] Brewster JL, De Valoir T, Dwyer N, et al. An osmosensing signal transduction pathway in yeast[J].Science,1993,259(5099):1760-1763.
    [73]龚小卫,姜勇.丝裂原活化蛋白激酶(MAPK)生物学功能的结构基础.中国生物化学与分子生物学报2003,19:5-11.
    [74]姜勇,韩家淮. p38MAPK信号传导通路.生命科学,1999,11:102-106.
    [75]罗莉漫,李华强.丝裂原活化蛋白激酶在高氧肺损伤中的作用.实用儿科临床杂志,2006,21(16):1106-1108.
    [76] Raingeaud J, Whitmarsh AJ,Barrett T,et al.MKK3and MKK6regulated gene expression is mediated bythe p38mitogen-activated protein kinase signal transduction pathway[J].Mol Cell Biol,1996,16(3):1247-1255.
    [77] Downey JS,Han JH.Cellular activation mechanisms in septic shock[J]. Front Biosci,1998,3(2):468-478.
    [78] Obata T, Brown GE, Yaffe MB.MAP kinase pathways activated by stress: the p38MAPK pathway[J]. CritCare Med,2000,28(4):67-77.
    [79] Dong X,Liu Y,Du M,et al.p38mitogen-activated protein kinase inhibition attenuates pulmonaryinflammatory response in a rat cardiopulmonary bypass model[J].Eur J Cardiothorac Surg,2006,30(1):77-84.
    [80] Jerry A. Nick,Scott K. Young, Patrick G. Arndt, et al. Selective suppression of neutrophil accumulation inongoing pulmonary inflammation by systemic inhibition of p38mitogen-activated protein kinase[J]. JImmunol,2002,169(9):5260-5269.
    [81] Chen BC, Chen YH, Lin WW, et al.Involvement of p38mitogen-activated protein kinase inlipopolysaccharide-induced iNOS and COX2expression in J774macrophages[J]. Immunology,1999,97(1):124-129.
    [82] Tamura DY,Moore EE,Johnson JL,et al.p38mitogen-activated protein kinase inhibition attenuatesintercellular adhesion molecule-1up-regulation on human pulmonarymicrovascular endothelial cells[J].Surgery,1998,124(2):403-408.
    [83] Sheth K,Friel J,Nolan B,et al.Inhibition of p38mitogen activated protein kinase increases LPS inducedinhibition of apoptosis in neutrophils by activating extracellular signal regulated kinase[J].Surgery,2001,130(2):242-248.
    [84] Kennedy NJ,Cellurale C,Davis RJ.A radical role for p38MAPK in tumor initiation[J].Cancer Cell,2007,11(2):101-103.
    [85] Han J,Sun P.The pathways to tumor suppression via route p38[J].Trends Biochem Sci,2007,32(8):364-371.
    [86] Sun P,Yoshizuka N,New L,et al.PRAK is essential for ras-induced senescence and tumor suppression[J].Cell,2007,128(2):295-308.
    [87] Wong SH,Shih RS,Schoene NW,et al.Zinc-induced G2/M blockage is p53and p21dependent in normalhuman bronchial epithelial cells[J].Am J Physiol Cell Physiol,2008,294(6):1342-1349.
    [88] Martinez-Caballero S,Dejean LM,Jonas EA,et al.The role of the mitochondrial apoptosis inducedchannel MAC in cytochrome c release[J].J Bioenerg Biomembr,2005,37(3):155-164.
    [89] Stoneley M,Chappell SA,Jopling CL,et al.c-Myc protein synthesis is initiated from the internal ribosomeentry segment during apoptosis[J].Mol Cell Biol,2000,20(4):1162-1169
    [90] Kommann M,Ishiwata T,Kleeff J,et al.Fas and Fas-ligand expression in human pancreatic cancer[J].AnnSurg2000,231(3):368-379.
    [91] Nagata Y,Todokoro K.Requirement of activation of JNK and p38for environmental stress-inducederythroid differentiation and apoptosis and inhibition of ERK for apoptosis[J].Blood,1999,94(3):853-863.
    [92] Kobayashi M,Takeyoshi I,Yoshinari D,et al.p38mitogen-activated protein kinase inhibition attenuatesischemia-reperfusion injury of the rat liver[J].Surgery,2002,131(3):344-349.
    [93]朱明光,谢淑丽,张华.p38MAPK抑制剂对缺血/再灌注大鼠肾脏功能损伤的保护作用[J].西北国防医学杂志,2003,24(5):361-363.
    [94]李荣山,丁涛,刘晓城.SB203580对肾缺血/再灌注损伤时细胞凋亡及p38MAPK影响的实验研究[J].山西医科大学学报,2004,35(4):317-321.
    [95]张梅,唐嘉薇,李晓玫. p38丝裂素活化蛋白激酶信号转录对IL-1β诱导肾小管细胞转分化的影响[J].中华医学杂志,2003,83(13):1161-1165.
    [96]张文军.p38丝裂原活化蛋白激酶通路及其研究进展[J].医学综述,2007,13(9):663-665.
    [97]张频捷,朱立新,耿小平.p38MAPK信号传导通路及其抑制剂的研究现状[J].2010,14(5):596-598.
    [98] Thurmond RL, Wadsworth SA, Schafer PH, et al. Kinetics of smallmolecule inhibitor binding to p38kinase[J]. Eur J Biochem,2001,268(22):5747-5754.
    [99] Lisnock J, Tebben A, Frantz B, et al. Molecular basis for p38protein kinase inhibitor specificity[J].Biochemistry,1998,37(47):16573-16581.
    [100] Bikkavilli RK, Feigin ME, Malbon CC. p38mitogen-activated protein kinase regulates canonical Wnt-β-catenin signaling by inactivation of GSK3β[J]. J cell sci,2008,121(21):3598-3607.
    [101] Zarubin T, Han J. Activation and signaling of the p38MAP kinase pathway[J]. Cell Res,2005,15(1):11-18.
    [102] Raingeaud J, Gup ta S, Rogers JS, et al. Pro-inflammatory Cytokines and Environmental Stress Causep38Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine[J]. J B iolChem,1995,270(13):7420-7426.
    [103] Pan SL, Tao KY, Guh JH, et al. The p38mitoen-activated protein kinase pathway plays a critical role inPAR2-induced endothelial IL-8production and leukocyte adhesion [J].Shock,2008,30(5):496-502.
    [104] Amada E. Beltra′n, Ana M. Briones, Ana B. Garc′a-Redondo, et al. p38MAPK contributes toangiotensin II-induced COX-2expression in aortic fibroblasts from normotensive and hypertensiverats[J]. J Hypertens,2009,27:142-154.
    [105] Rampalli S,Li L,Mak E,et al. p38MAPK signaling regulates recruitment of Ash2L-containingmethyltransferase complexes to specific genes during differentiation[J]. Nature Structural&MolecularBiology,2007,14(12):1150-1156.
    [106] Khwaja FS, Quann EJ, Pattabiraman N, et al. Carprofen induction of p75NTR-dependent apoptosis viathe p38mitogen-activated protein kinase pathway in prostate cancer cells[J]. Mol Cancer Ther,2008,7(11):3539-3545.
    [107] Boute N, Jockers R, lssad T. The use of resonance energy transfer in high-throughput screening:BRETversus FRET Nicolas boute[J]. Trends Pharm acol Sci,2002,23(8):351-354.
    [108] Ma L, Wang HY. Mitogen-activated protein kinase p38regulates the Wnt/cyclic GMP/Ca2+non-canonical pathway[J].J Biol Chem,2007,282(39):28980-28990.
    [109]张敏.应用基因芯片研究人气道上皮损伤时MAPKs信号通路的变化[J].实用医学杂志,2008,24(9):1481-1483.
    [110]邵攀峰,何叶峰,余彬辉,等.鸡胚增殖病毒技术操作要点[J].养禽与禽病防治,2011,(2):29-30.
    [111]陈声明,刘丽丽.微生物学研究法[M].北京:中国农业科技出版社,1996.127-128.
    [112]孙惠惠.HINI小鼠模型的建立及板蓝根颗粒对H1N1模型小鼠的作用的研究[D].北京协和医学院,北京,2010,5.
    [113]黄文林.分子病毒学[M].北京:人民卫生出版社,2006:56-76.
    [114]樊晓旭,车艳杰,王栋.动物病毒细胞增殖的研究进展.中国兽药杂志,2011,45(11):43-45,55.
    [115]蒲秀瑛.贯叶连翘提取物对甲型流感病毒的作用及免疫调节机制的研究[D].甘肃:甘肃农业大学,2009,6.
    [116]杨子峰,刘妮,黄碧松,等.牛蒡子甙元体内抗甲Ⅰ型流感病毒作用的研究[J].中药材,2005,28(11):1012-1014.
    [117]张烜榕,王涛,申元英,等.甲型流感病毒感染BALB/c鼠动物模型的建立[J].大理学院学报,2007,6(10):25-27.
    [118]杜淑娟,程树军,袁美凤.副流感病毒小鼠动物模型的建立及病理学研究[J].中国比较医学杂志,2006,16(7):387-389.
    [119]张瑞莉,刘明,张卓.鹅源H5N1亚型禽流感病毒感染雏鸡免疫器官细胞凋亡的研究[J].中国预防兽医学报,2011,33(3):177-180.
    [120] Judd AK,Sanchez A,Bucher DJ,et al.In vivo anti-influenza virus activity of a zine peptide[J].Antimicrob Agents Chemother,1997,41(3):687.
    [121] Sidwell RW,Huffman,JH,Barnard DL,et al. Inhibition of influenza virus infections in mice byGS4104,an orally effective influenza virus neuraminidase inhibitor[J]. Antiviral Res,1998,37(2):107-120.
    [122]刘崇海,蒋利萍,魏钰书.流感病毒感染动物模型的研究进展[J].国际病毒学杂志,2006,(1):9-12.
    [123] Maher JA, Destefano J. The ferret: an animal model to study influenza virus[J]. Lab Anim (NY),2004,33(9):50-53.
    [124] Daniels MJ, Selgrade MK, Doerfler D, et al. Kinetic profile of influenza virus infection in three ratstrains [J]. Comp Med.2003,53(3):293-298.
    [125] Van der Laan JW, Herberts C, Lambkin-Williams R, et al. Animal models in influenza vaccine testing[J]. Expert Rev Vaccines.2008,7(6):783-793.
    [126] Vahlenkamp TW, Harder TC, Giese M, et al. Protection of cats against lethal influenza H5N1challengeinfection[J]. J Gen Virol.2008,89(Pt4):968-974.
    [127] Giese M, Harder TC, Teifke JP, et al. Experimental infection and natural contact exposure of dogs withavian influenza virus (H5N1)[J]. Emerg Infect Dis.2008,14(2):308-310.
    [128] Baskin CR,Garcia-Sastre A,Tumpey TM,et al. Integration of clinical data, pathology, and cDNAmicroarrays in influenza virus-infected pigtailed macaques(Macaca nemestrina)[J]. J Virol.2004,78(19):10420-10432.
    [129] Svitek N, Rudd PA, Obojes K, et al. Severe seasonal influenza in ferrets correlates with reducedinterferon and increased IL-6induction[J].Virology.2008,376(1):53-59.
    [130]徐明举,王存连,魏东,等. H9N2亚型猪流感病毒诱导小鼠肺急性损伤模型的研究[J].畜牧兽医学报.2011,42(6):838-844.
    [131] Majeski EI, Paintlia MK, Lopez AD, et al. Respiratory reovirus1/L induction of intraluminal fibrosis,a model of bronchiolitis oblitreans organizing pneumonia, is dependent on T lymphocytes [J]. Am JPathol,2003,163:1467-1479.
    [132] London L,Majeski E I,Paintlia M K, et al.Respiratory reovirus1/L induction of diffuse alveolardamage:A model of acute respiratory distress syndrome[J].Exp Mol Pathol,2002,72:24-36.
    [133] Fagan K A,Fouty B W,Tyler R C, et al.The pulmonary circulation of homozygous or heterozygouseNOS-null mice is hyperresponsive to mild hypoxia[J].J Clin Invest,1999,103:291-299.
    [134]魏东,刘英,徐彤.H9N2亚型猪流感病毒感染BALB/c小鼠动物模型的建立[J].中国实验动物学报.2012,20(5):54-57,98.
    [135] World Health Organization.6August2010, posting date. Pandemic (H1N1)2009-update112. WorldHealth Organization, Geneva, Switzerland. http://www.who.int/csr/don/2010_08_06/en/index.html.
    [136]世卫组织发言人.欧美流感疫情呈扩散态势.人民网.http://health.people.com.cn/n/2013/0115/c14739-20200971.html
    [137]鄢明华,李秀丽,王英珍,等.天津地区猪流感血清学调查[J];动物医学进展,2006,27(10):92-95.
    [138]周伦江,王隆柏,俞玉鸿,等.人源H3N2亚型猪流感重组病毒的分离鉴定及全基因序列分析.中国预防兽医学报,2011,33(9):675-680.
    [139] Dybing JK, Schultz-Cherry S, Swayne DE, et al. Distinct pathogenesis of Hong Kong-origin H5N1viruses in mice compared to that of other highly pathogenic H5avian influenza viruses [J]. J Virol,2000,74:1443-1450.
    [140]陈云新,邓巍,朱华,等. H5N1禽流感病毒感染小鼠和两种灵长类动物的肺组织病理学比较[J].中国实验动物学报,2008,16(2):88-90.
    [141]李梨平,邱美珍,祝兴元,等.禽流感H9N2型病毒致BALB/c小鼠感染模型的建立与研究[J].中国感染控制杂志,2008,7(6):372-376.
    [142]刘忠华,王颖彦,谭文雅,等.禽流感H5N1亚型病毒感染BALB/c小鼠的疾病动物模型[J].中山大学学报(医学科学版),2008,29(4S):9-11.
    [143]朱雯迎,许传田,张秀美,等.6株H9N2禽流感病毒分子进化及对小鼠的致病性[J].中国兽医学报,2011,31(8):1180-1183.
    [144] Myers K P, Olsen CW, Gray GC. Cases of swine influenza in humans: a review of theliterature. ClinInfect Dis,2007,44(8):1084-1088.
    [145] Guangcun Deng, Jianmin Bi, Fuli Kong, et al.Acute respiratory distress syndrome induced by H9N2virus in mice[J]. Arch Virol,2010,155:187-195.
    [146] S. Herfst,J.M.A.van den Brand,E. J. A. Schrauwen,et al.Pandemic2009H1N1influenza virus causesdiffuse alveolar damage in cynomolgus macaques[J].Vet Pathol,2010,47:1040-1047.
    [147] A.Stacey Headley; Elizabeth Tolley;G.Umberto Meduri. Infection and inflammatory response in acuterespiratory distress syndrome[J].Chest,1997,111:1306-1321.
    [148]徐金富.肺部感染相关急性肺损伤发病机制研究进展[J].国外医学呼吸系统分册,2004,24(2):72-75.
    [149] Huang C, Jacobson K, Schaller MD. MAP kinase and cell migration[J]. J Cell Sci,2004,117(Pt20):4619-4628.
    [150] Silvia SC, Valerie FJQ, Franco DP, et al. Dual effects of p38MAPK on TNF-dependentbronchoconstriction and TNF-independent neutrophil recruitment in lipopolysaccharide-induced acuterespiratory distress syndrome[J]. Journal of Immunology,2005,175(1):262-269.
    [151] Powell CS, Wright MM, Jackson RM. p38mapk and MEK1/2inhibition contribute to cellular oxidantinjury after hypoxia. Am J Physiol Lung Cell Mol Physiol,2004,286(4): L826-833.
    [152] Davies M G,Hagen P O. Systemic inflammatory response syndrome. British Journal of Surgery,1997,84(7):920-935.
    [153]刘道利.p38MAPK抑制剂SB203580在重症急性胰腺炎大鼠模型中作用机制的研究[D].四川:泸州医学院,2010
    [154] Peifer C,Wagner G,Laufer S.New approaches to the treatment of in flammatory disorders smallmolecule inhibitors of p38MAP kinase. Curr Top Med Chem,2006,6:113-149.
    [155] Ono K, Han J. The p38signal transduction pathway: activation and function[J]. Cell Signa,l2000,12(1):1-13.
    [156] Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response[J]. Annu Rev Immuno,l2002,20(1):55-72.
    [157]陈旭林,夏照帆,韦多,等. p38丝裂素活化蛋白激酶信号转导通路在严重烧伤大鼠急性肺损伤中的作用.中华外科杂志,2004,42(7):388-390.
    [158]方向明,谢俊然,陈惠香,等. p38MAPK在机械通气所致肺损伤中的作用.中华麻醉学杂志,2002,22(9):546-550.
    [159]黄翠萍,张珍祥.内毒素性急性肺损伤大鼠肺组织p38mRNA及其蛋白质表达的变化.咸宁学院学报(医学版),2004,18(6):394-396.
    [160]侯晓彬,易定华,李廷慧,等.P38丝裂素活化蛋白激酶和核转录因子κB在胸部爆炸伤致急性肺损伤中的作用.中华急诊医学杂志,2005,14(1):26-29.
    [161] Zhang X, Shan P, Alam J, et al. Carbon monoxide modulates Fas/Fas ligand, caspases,and Bcl-2familyproteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lunginjury. J Biol Chem,2003,278(24):22061-22070.
    [162] Carter Y, Liu G, Yang J, et al. Sublethal hemorrhage induces tolerance in animals exposed to cecalligation and puncture by altering p38, p44/42, and SAPK/JNK MAPkinase activation. Surg Infect[J].2003,4(1):17-27.
    [163] Asaduzzaman M,Wang Y,Thorlacius H.Critical role of p38mitogen-activated protein kinase signaling inseptic lung injury[J].Crit Care Med,2008,36(2):482-488.
    [164]孙惠惠,邓巍,占玲俊,等.板蓝根颗粒对甲型流感病毒小鼠的作用[J].中国比较医学杂志,2010,20(7):54-57.
    [165] Nohynelk H, Teppo AM, Laine E, et al. Serum tumor necrsis factor-α concentrations in childrenhosipitalized for acute lower respiratory infection[J].J Infect Dis,1991,163:1029.
    [166]侯佩莉,张茂林,李影,等.A型流感病毒感染免疫应答中细胞因子的作用[J].动物医学进展,2010,31(10):108-112.
    [167]鲍琳琳,孙惠惠,占玲俊,等.甲型H1N1流感病毒感染小鼠的发病机制[J].中国比较医学杂志,2011,21(2):20-22.
    [168] Mogensen TH,Paludan SR.Molecular pathways in virus-induced cytokine production[J], Microbiol MolBiol Rev,2001,65(1):131-150.
    [169] Petrosino AL,MPH,CHES(Northwest Ohio Consortium for Public Health). Cytokine storm and theinfluenza pandemic[J/OL].http://www.cytokinestorm.com/
    [170] Janeway CA,Travers P,Walport M,et al. Immunobiology:The Immune System in Health and Disease[M].5th ed.New York and London:Garland Publishing Inc.,2005.
    [171] Royall JA,Kooy NW,Beekman JS,et al.Nitric oxiderelated oxidants in acute lung injury[J].NewHoriz,1995,3:113-121.
    [172] Hussell T,Pennycook A,Openshaw PJ. Inhibition of tumor necrosis factor reduces the severity ofvirus-specific lung immunopathology[J]. Eur J Immunol,2001,31(9):2566-2573.
    [173] Helen C,Su Leslie P,CousensL D,et al. CD4+and CD8+T cell interactions in IFN-γ and IL-4responsesto viral infections:requirements for IL-2[J]. J Immunol,1998,160:5007-5017.
    [174]马丽梅,郑春兰,马加庆.急性肺损伤与细胞因子相关性的研究进展[J].医学综述,2009,15(19):2909-2912.
    [175]王占海,沈凌鸿,陈向东,等.水飞蓟素对脂多糖性大鼠急性肺损伤的拮抗作用[J].中国病理生理杂志,2007,23(2):280-283.
    [176] Evans SW,Whicher JT.The cytokines:physiological and pathophysiological aspects[J].Adv ClinChem,1993,30:1-88.
    [177] Biffl WL,Moore EE,Moore FA,Peterson VM.Interleukin-6in the injured patient.Marker of injury ormediator of inflammation?[J].Ann Surg,1996,224(5):647-664.
    [178] Proctor MC,Sullivan V, Zajkowski P, et al. A role for interleukin-10in the assessment of venousthromboembolism risk in injured patients [J]. J Trauma,2006,60(1):147-151.
    [179] McAlister V,Gao Z, Peltekian K, et al. Sirolimus-tacrolimus combination immunosuppression. Lancet,2000,355:376-377.
    [180]杨贵贞,吕昌龙,张凤蕴.医学免疫学[M].5版.北京:高等教育出版社,2003.
    [181]陈志玫,张莉,包进.病毒性心肌炎患儿血清白介素-10(IL-10)的表达水平及意义[J].中国妇幼保健,2007,22(3):388-389.
    [182] Jones S.Host response-Viral persistence:IL-10is the key[J].Nat Rev Microbiol,2006,4(12):879-978.
    [183] Goodman RB,Pugin J,Lee JS,et al.Cytokine-mediated inflammation in acute lung injury[J]. CytokineGrowth Factor Rev,2003,14(6):523-535.
    [184] Ware LB, Matthay MA.The acute respiratory distress syndrome[J].N Engl J Med,2000,342(18):1334-1349.
    [185] Luce JM. Acute lung injury and the acute respiratory distress syndrome[J].Crit Care Med,1998,26(2):369-376.
    [186] Berghe WV,Plaisance S,Boone E,et al. P38and extracellular signalregulated kinase mitogen-activatedProtein kinase Pathways are required for nuclear factor-b P65transactivation mediated by tumornecrosis factor[J].J Biol Chem,1998,273:3285-3290.
    [187] Nick JA,Avdi NJ,Young SK,et al.Selective activation and functional significance of p38amitogen-activated protein kinase in lipopolysaccharide stimulated neutrophils[J].J Clin Invest,1999,103:851-858.
    [188] Jerry A.Nick,Scott K.Young,Kevin K.Brown,et al.Role of p38Mitogen-Activated Protein Kinase in aMurine Model of Pulmonary Inflammation[J].The Journal of Immunology,2000,164:2151-2159.
    [189] Jerry A.Nick,Scott K.Young,Patrick G. Arndt,et al.Selective Suppression of Neutrophil Accumulation inOngoing Pulmonary Inflammation by Systemic Inhibition of p38Mitogen-Activated Protein Kinaes[J].The Journal of Immunology,2002,169:5260-5269.
    [190] Ballard-Croft C,White DJ,Maass DL,et al. Role of P38mitogen-activated protein kinase in cardiacmyocyte secretion of the inflammatory cytokine TNF-alpha[J].Am J Physiol Heart Circ Physiol.2001,280(5):H1970-1981.
    [191] Kaminska B.MAPK signalling pathways asmolecular targets for anti-inflammatory therapy-frommolecular mechanisms to therapeutic benefits[J].Biochim Biophys Acta,2005,1754:253-262.
    [192] Takehiro Fujise, Ryuichi Iwakiri, Bin Wu,et al.Apoptotic pathway in the rat small intestinal mucosa isdifferent between fasting and ischemia-reperfusion[J].Am J Physiol Gastrointest Liver Physiol,2006,291(1): G110-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700