用户名: 密码: 验证码:
云南稻种核心种质功能营养成分遗传评价及其地带性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮食结构不合理导致人类慢性病急剧增加;饮食预防疾病是人类健康的关键。2008年全球糖尿病约2.5亿人,高血脂、高血压和超重均超过10亿人,钙铁锌缺乏影响全球30多亿人口。稻米是全球50%以上人口的主食,也是矿物质和功能食品的重要源泉。稻属核心种质形态、分子评价及其构建技术体系研究相对较多,但核心种质糙米矿质元素和功能成分研究国内外未见报道。云南是中国稻种资源最大的遗传多样性中心,也是优异种质和营养功能稻米资源的富集地区。本研究通过云南稻种初级核心种质的糙米矿质元素含量和进化、功能成分评价及其地带性特征分析,改良品种精米、糙米与土壤元素含量间相关性,并研究了核心种质的表型变异、糙米矿质元素含量及其SSR标记间的关系,具有重要的理论意义和较高实用价值,并取得如下进展:
     1.首次明确了云南稻种初级核心种质糙米矿质元素含量呈现明显的地带性特征,揭示了籼粳亚种、生态型及其分类性状的系统关系。863份云南稻种初级核心种质糙米P平均含量是土壤总磷的7.17倍,土壤总钾含量是糙米K平均含量的7.56倍。来自云南省5个稻作区16个州市789份地方品种糙米8种矿质元素含量分析显示:糙米元素含量(mg·kg-1)依次为P(3834.83±486.49) > K(2567.72±336.74) > Mg(2567.72±336.74) > Ca(153.67±55.90) > Zn(33.35±13.65) > Fe(32.08±25.51) > Cu(14.22±11.85) > Mn(13.58±3.22);滇西北糙米P含量高,滇中糙米Ca、Mg、Fe和Zn含量高,滇西南糙米Cu和Mn含量高;糙米高磷钾、中钙镁锰和低铁锌分布区是世界生物多样性最丰富及矿产资源的富集区。总体上789份云南地方稻糙米5种元素(K, Ca, Mg, Fe和Cu)平均含量明显低于94份改良品种,其中Ca元素在籼粳分化增强对冷害的适应性中起了重要作用;地方品种到改良品种随着糙米5种矿质元素的提高而增强了广适性;系统树聚类显示云南稻种分为地方品种和改良品种两类,其中地方品种又分为5个亚组,即A组为紫米,B组为陆稻和光壳稻,C组为糯稻,D组为红米;E组由I组(籼稻、晚稻、白米、地方品种)和II组(粳稻、水稻、非光壳稻、早中稻、粘稻)组成。
     2.揭示了云南稻种改良品种糙米18种矿质元素含量明显高于精米,且16种元素含量明显低于土壤;微量元素间比大量元素关系密切,其中糙米所含的8种促进人体健康的矿质元素是精米的2倍以上。55个云南省水稻改良品种精米、糙米及其相应的土壤18种矿质元素含量测定显示: 18种矿质元素是功能稻米活性成分的重要部分,其平均含量依次为精米P > K > S > Mg > Ca > Zn > Na > Al > Mn > Fe > Cu > B > Mo > Ni > Sn > Cr > Ba > Sr,糙米P > K > Mg > S > Ca > Zn > Mn > Al > Na > Fe > Cu > B > Mo > Sn > Ni > Cr > Ba > Sr,而土壤则为Fe > Al > Ca > K > Mg > P > S > Mn > B > Na > Ba > Zn > Cr > Cu > Ni > Sn > Mo > Sr;精米和糙米除S、P外16种元素含量均明显低于土壤;发现精米和糙米8种微量元素(Mo、Ni、Cr、Sr、Mn、Zn、Cu、Na)含量间相关性明显比6种大量元素(P、K、Mg、Ca、S和Al)含量间的关系密切。云南土壤以富铁铝高钙为主,而精米和糙米则以磷钾镁硫为主;以精米为主食比糙米更易导致人类健康问题。
     3.首次发现了云南稻种初级核心种质不同类型间糙米3种功能成分差异显著,呈现明显的地带性特征。996份云南稻种初级核心种质糙米的抗性淀粉、γ-氨基丁酸和总黄酮含量及其栽培型间差异表明:糙米总黄酮含量地方品种极显著高于改良品种,但GABA含量则改良品种显著高于地方品种;抗性淀粉含量则改良品种极显著高于地方品种。其中来自五个稻区16个州市905份地方品种初级核心种质功能成分检测显示:糙米平均抗性淀粉含量(%)为0.75±0.29,滇中极显著高于北部稻作区,滇西北的丽江和滇东北的昭通极显著低于除迪庆州外的13个州市;籼稻显著高于粳稻,粘稻极显著高于糯稻,晚稻极显著高于早中稻,红米和紫米极显著高于白米。糙米γ-氨基丁酸含量(mg·kg~(-1))为74.3±25.3,滇南单双季籼稻区明显高于滇西北高寒粳稻区,滇南的思茅、滇中的玉溪和保山至少与5个州市差异显著;水稻极显著高于陆稻,糯稻极显著高于粘稻,晚稻极显著高于早中稻,白米极显著高于红米和紫米。糙米总黄酮含量(mg·kg~(-1))为3069.8±1927.5,滇南极显著高于滇中,思茅显著高于8个州市而保山则显著低于7个州市;陆稻极显著高于水稻,粘稻显著高于糯稻,早中稻极显著高于晚稻,红米和紫米极显著高于白米,光壳稻显著高于白壳稻。揭示了糙米总黄酮、γ-氨基丁酸和抗性淀粉含量在水陆、沾糯、早中晚、米色间差异极显著,但籼粳、有无芒和米味间差异不大。
     4.云南稻种核心种质表型性状、糙米矿质元素含量与其SSR标记有一定相关,首次以SSR标记为基础揭示了糙米矿质元素的含量易受环境的影响,而籽粒的性状主要受遗传基因的控制。基于628份糙米8种元素、23个表型性状及其20个SSR标记间关系研究显示,这些性状组成的620对性状间有182对呈极显著相关;尤其SSR等位基因大小与籽粒性状构成的180对性状中94对呈显著相关,又与穗部性状构成的160对性状中48对呈显著相关。20个SSR标记等位基因大小与一些表型性状呈极显著相关,其中RM224等位基因大小与23个表型性状及8种元素呈显著相关。SSR标记等位基因大小与籽粒或穗部性状间的关系比糙米元素含量和植株性状更密切,籼粳分类的籽粒长宽比及1~2节长与14个SSR标记等位基因大小相关显著。以地方稻20个SSR标记的等位基因数目和距离一些级别间糙米矿质元素含量间呈显著差异(P<0.05);即云南稻种糙米矿质元素含量与基因多样性有关。628份糙米矿质元素含量变异较大,即P为2160~5500 mg·kg~(-1)为1130~ 3830 mg·kg~(-1), Ca为61.8~488 mg·kg~(-1), Mg为864~2020 mg·kg~(-1), Fe为0.40~147 mg·kg~(-1), Zn为15.1~ 124 mg·kg~(-1), Cu为0.10~59.1 mg·kg~(-1), Mn为6.7~26.6 mg·kg~(-1)。因此,检测出云南稻核心种质糙米Ca、Fe和Zn基因型间差异7倍以上,而培育高Ca、Fe和Zn新品种是解决人类矿质营养缺乏的一条经济有效途径。
The mankind caused by an irrational diet is dramatic increase in the chronic diseases. The dietary prevention of disease is the key to human health. In 2008, there are approximately 250 million people of diabetes, more than one billion for hyperlipidemia and hypertension as well as overweight people in the world. Ca, Fe and Zn deficiency affect more than 3 billion of the global population. Rice is more than 50% of the staple food, minerals and a source of functional food for the world's population. Evaluation of phenotype and molecule as well as establishment of technology system on Oryza were relatively more, but elemental elements and functional components in brown rice has not been reported so far. Yunnan is the largest center of genetic diversity as well as rich region of functional and nutrition of rice germplasm resources in China. In this study, their zonal characteristics and evolution of ecotype for the content of mineral elements as well as evaluation of functional components in brown rice of the primary core collection in Yunnan rice, corelation between milled or brown rice and soil elements of improved varieties, the phenotypic variation and mineral elements as well as their inter-relationship between the SSR marker of core collection, which has great theoretical significance and high practical value. The results are as following progress:
     1.There was fist clear zone characteristics of mineral element contents in brown rice of 863 accessions of primary core collection in Yunnan rice, which revealed that systemic relations including indica-japonica subspecies and ecotype differentiation of mineral elements in classification traits. Average P contents in brown rice of 863 accessions of core collection in Yunnan rice are 7.17 times than that of the total phosphorus in soil, and total potassium content of soil are 7.56 times of average K contents in brown rice. The contents (mg·kg-1) of 8 elements in brown rice of 789 accessions core collection for rice landrace from 16 prefectures of five rice regions in Yunnan Province were in turn P(3834.83±486.49) > K(2567.72±336.74) > Mg(2567.72±336.74) > Ca(153.67±55.90) > Zn(33.35±13.65) > Fe(32.08±25.51) > Cu(14.22±11.85) > Mn (13.58±3.22). P content in brown rice was the highest from the northwest Yunnan, the highest Ca, Mg, Fe and Zn concentrations in brown rice from the middle Yunnan, and the highest Cu and Mn contents in brown rice from the southwest Yunnan. The distributing zones with the highest (P, K), middle (Ca, Mg and Mn) and lowest(Fe and Zn) in Yunnan are the enrichment zone of minal resources and most the largest biodiversity. In general, the results show that the mean levels of K, Ca, Mg, Fe and Cu in brown rice for 789 accessions of rice landraces was distinctly lower than that of 94 improved cultivars. They further demonstrate that Ca plays an important role in the differentiation of subspecies indica-japonica, especially to enhance adaptation of cold stress, and that five mineral elements in brown rice enhance the eurytopicity from landrace to improved cultivar. Based on eight mineral elements in brown rice, hierarchical cluster analysis, showed that Yunnan rice could be grouped into rice landrace and improved cultivar, with the rice landrace being further clustered into five subgroups, including group A (purple rice), group B (upland and nuda), group C (glutinous), group D (red rice), group E divided into two subgroup: I (indica, late, white rice, and landrace) and II (japonica, lowland, non-nuda, early–mid, and non-glutinous).
     2. The contents of 18 mineral elements in brown rice of improve cultivers in Yunnan rice are clear higher than that of milled rice, 16 elements except P and S are clear lower that of corresponding soils. The correlation of microelements in rice are closer than that of macroelements. The first discovered that 8 elements-related health of human being in brown rice is over 2 times than that of milled rice. The contents of 18 mineral elements in milled and brown rice of 55 accessions elite cultivers as well as corresponding soils, were determined by ICP-AES technique. The analytical results showed that 18 mineral elements (S, Mo, Ba, Ni, Fe, Cr, Na, Al, Cu, P, Sn, Zn, B, Mn, Mg, Ca, Sr and K) are the important active compositions of functional rice,their mean content in milled rice are in turn P > K > S > Mg > Ca > Zn > Na > Al > Mn > Fe > Cu > B > Mo > Ni > Sn > Cr > Ba > Sr, brown rice for P > K > Mg > S > Ca > Zn > Mn > Al > Na > Fe > Cu > B > Mo > Sn > Ni > Cr > Ba > Sr, but soil for Fe > Al > Ca > K > Mg > P > S > Mn > B > Na > Ba > Zn > Cr > Cu > Ni > Sn > Mo > Sr; 16 Mineral elements in milled and brown rice (exception S and P) are clear lower than that of soils. The correlation of 8 microelements (Mo, Ni, Cr, Sr, Mn, Zn, Cu and Na) in milled and brown rice are closer than that of 6 macroelements (P, K, Mg, Ca, S, and Al). There are rich in Fe and Al and Ca in Yunnan soils,but 4 elements (P, K, Mg, and S) give priority to milled and brown rice; The milled rice used for the staple is easier to bring on health problem of human being than that of brown rice.
     3. The first discovered that there was significantly difference of three functional components in brown rice among different types of primary core collection in Yunnan rice, which showed a clear zone characteristics. The difference of contents and cultivated types of resistant starch andγ-amino butyric acid (GABA) as well as total flavone in brown rice of 996 accessions for primary core collection for Yunnan rice are as follows: Flavonoids contents in brown rice of landraces are the most significantly higher than that of improved cultivars, but GABA content of improved cultivars was significantly higher than that of landraces; resistant starch content of improved cultivars is the most significantly higher than that of landraces. The analytical results showed that the average content (%) for resistant starch in brown rice of 905 accessions from 16 prefectures among five rice regions is 0.75±0.29, it was the most significant highest (p < 0.01) for contents of resistant starch from the middle and South Yunnan province (I, II, III) than that of northern rice regions(V, IV), and the most significant lowest for contents of resistant starch of Lijiang prefecture of northwestern and Zaotong of northeastern in this province than that of 13 prefectures except Diqing prefectures; Indica is significant higher than japonica, glutinous is the most significant higher than non-glutinous, late is the most significant higher than early–mid, red rice and purple rice is the most significant higher than white rice. The average content (mg?kg-1) for GABA in brown rice is 74.3±25.3, and the content of GABA from South Yunnan single/double cropping rice region is clear higher than that of Northwest Yunnan cold highland japonica rice region; It is significant difference of GABA content in brown rice for that Simao prefecture South Yunnan and Yuxi as well as Baoshan prefecture,at least than that of 5 prefectures; Lowland is the most significant higher than that of upland, non-glutinous is the most significant higher than glutinous, late is the most significant higher than early–mid, white rice is the most significant higher than red rice and purple rice. The average content (mg·kg~(-1)) for total flavone in brown rice is 3069.8±1927.5, it was the most significant highest (p < 0.01) for contents of total flavone from South Yunnan (II, III) than that of middle Yunnan; It is the most significant highest from Simao prefecture than that of 8 prefectures, but the most significant lowest from Baoshan prefecture than that of 7 prefectures; Upland is the most significant higher than that of lowland, glutinous is significant higher than non-glutinous, early–mid is most significant higher than late, red rice and purple rice are most significant higher than white rice, and nuda was significant higher than non-nuda. These results revealed that most significant difference between lowland versus upland, glutinous versus nonglutinous, early/mid rice versus, and red/purple versus white rice based on the contents of total flavone and resistant starch as well asγ-amino butyric acid (GABA) in brown rice (p < 0.01), but no significant difference between indica and japonica, awn versus no-awn, common rice and aromatic/soft rice.
     4. There are some relation between SSR markers and phenotypic traits as well as 8 mineral elements in brown rice of rice landrace in Yunnan Province, which first revealed that mineral elements in brown rice was liable to environmental affect, and grain traits major be controled for genes. It was investigated that allele size of microsatellites associated with phenotypic traits of rice landraces in Yunnan,based on 20 SSR markers and 23 phenotypic traits as well as 8 mineral elements in brown rice within the core collection of 628 accessions; and there was a significant correlation for 182 of 620 pairs among these markers and traits as well as elements. Surprisingly, there was significant correlation for 94 of 180 pairs between allele size of microsatellites and grain traits, and 48 of 160 pairs between allele size of microsatellites and panicle traits. There was a significant correlation between the allele size of 20 SSR markers and some phenotypic traits, such as the significant correlation of 17 pairs between allele size of RM224 and 23 phenotypic traits as well as 8 elements. The allele size of microsatellites was more associated with grain or panicle traits than that of plant traits or element contents in brown rice. Grain length/width ratio and 1―2 internode length, as indica-japonica classification traits, in which two traits were closely associated with the allele size of 14 SSR markers.The 8 elemental concentrations in brown rice among some grades based on number and distance coefficients of alleles for SSR twenty markers for landraces are significantly different (P<0.05), and further understanding the relationship of mineral elements associated with gene diversity. A large variation in elemental concentrations of brown rice, it was ranged from 2160 to 5500 mg P kg~(-1), from 1130 to 3830 mg K kg~(-1), from 61.8 to 488 mg Ca kg~(-1), from 864 to 2020 mg Mg kg~(-1), from 0.40 to 147 mg Fe kg~(-1), from 15.1 to 124 mg Zn kg~(-1), from 0.10 to 59.1 mg Cu kg~(-1), and from 6.7 to 26.6 mg Mn kg~(-1). Therefore, genotypic differences of germplasm evaluations for Ca, Fe, and Zn concentrations in rice grain had be detected up to over seven times, which suggesting that selection for high Ca, Fe and Zn cultivars was a effective approach.
引文
[1]陈刚,周卫东,刘爱平,等. Ca在水稻籽粒中的富集及其与其它7种元素的关系[J].生态学报, 2007, 27(12): 5318– 5324.
    [2]程侃声.亚洲稻籼粳亚种的鉴别[M].昆明:云南科技出版社, 1993, 1– 45.
    [3]程式华,李建.现代中国水稻[M].北京:金盾出版社, 2007, 313.
    [4]程式华,庄杰云,曹立勇,等.超级杂交稻分子育种研究[J].中国水稻科学, 2004, 18(5): 377– 383.
    [5]丁颖.中国栽培稻分类.见:丁颖中国栽培稻[M].北京:农业出版社, 1959: 181– 215.
    [6]董玉琛,曹永生,张学勇,等.中国普通小麦初选核心种质的产生[J].植物遗传资源学报, 2003, 4(1): 1– 8.
    [7]高志红,章镇,韩振海,等.中国果梅核心种质的构建与检测[J].中国农业科学, 2005, 38(2): 363– 368.
    [8]关颖,赵海英,丁喜峰,等.不同产地的螺旋藻粉中元素含量分析[J].光谱学与光谱分析, 2007, 27(5): 1029– 1031.
    [9]何余堂,涂金星,傅廷栋,等.陕西省白菜型油菜核心种质的初步构建[J].中国油料作物学报, 2002, 24(1):6– 9.
    [10]姜慧芳,任小平,廖伯寿,等.中国花生核心种质的建立及与ICRISAT花生微核心种质的比较[J].作物学报, 2008, 34(1): 25– 30.
    [11]焦桂爱,唐绍清,罗炬,等.水稻抗性淀粉突变体抗性淀粉结构的比较研究[J].中国水稻科学, 2006, 20 (6):645– 648.
    [12]金日光,牟雪雁.关于生物高分子元素活性中心分布规律的第4统计力学理论标度的研究(IV)——生物高分子活性中心的阴阳性与氧化电位的关系[J].北京化工大学学报, 2003, 30(5): 52– 54.
    [13]李学进,曾亚文.功能稻米研究利用进展[J].种子, 2008, 27(9): 64– 67.
    [14]李自超,张洪亮,孙传清,等.植物遗传资源核心种质的现状与展望[J].中国农业大学学报, 1999, 4(5): 51– 62.
    [15]林亲录,王婧,陈海军.γ-氨基丁酸的研究进展[J].现代食品科技, 2008, 24(5): 496– 500.
    [16]刘士军.人体所需的蛋白质?微生素?矿物质全典[M].哈尔滨:哈尔滨出版社, 2007: 70– 106.
    [17]楼启正,徐润生.微波高压消解HG-ICP-AES法测定不同品种麦冬的微量元素[J].光谱学与光谱分析, 2007, 27(6): 1218– 1221.
    [18]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学, 2002, 35(9): 1095– 1103.
    [19]芮玉奎,郝彦玲,张福锁,等.应用ICP-MS/ICP-AES测定榆钱中22种微量元素的含量[J].光谱学与光谱分析, 2007, 27(10): 2111– 2113.
    [20]孙传清,李自超,王象坤,等.普通野生稻和亚洲栽培稻核心种质遗传多样性的检测研究[J].作物学报, 2001, 27(3): 313– 318.
    [21]孙强,林秀云,李明生,等.吉林省稻种资源核心种质构建的研究[J].吉林农业科学, 2006 (1): 21– 24.
    [22]孙正海,曾亚文,杨树明,等.十和田近等基因系糙米锌含量QTL定位[J].分子植物育种, 2009, 7(2): 264– 268.
    [23]汤圣祥,江云珠,魏兴华,等.中国稻种资源核心种质同工酶多样性研究[J].作物学报, 2002, 28(2): 203– 207.
    [24]王述民,曹永生,胡家蓬.中国小豆种质资源核心样品的初步建立[J].华北农学报, 2002, 17(1): 34– 40.
    [25]席冬梅,邓卫东,高宏光,等.云南省土壤和植物性饲料中矿质元素含量及相关性研究[J].水土保持学报, 2006, 20(6): 187– 191.
    [26]薛国庆,韩玉琦,宋海,等. FAAS法测定不同消化方法栽培桔梗中12种金属元素含量的研究[J].光谱学与光谱分析, 2007, 27(6): 1231– 1234.
    [27]余萍.中国普通野生稻核心种质研究及SSR多样性分析[D].中国农业大学硕士学位论文, 2002年6月.
    [28]延玺,刘会青,邹永青.黄酮类化合物生理活性及合成研究进展[J].有机化学, 2008, 28(9): 1534– 1544.
    [29]曾亚文,李绅崇,普晓英,等.云南稻核心种质苗期耐冷性及其地理生态差异[J].生态环境, 2006, 15(2): 345– 349.
    [30]曾亚文,李自超,杨忠义,等.云南稻种主要性状多样性分布中心及其规律研究[J].华中农业大学学报, 2000, 19(6): 510– 516.
    [31]曾亚文,李自超,申时全,等.云南地方稻种的多样性及优异种质研究[J].中国水稻科学, 2001, 15(3): 169– 174.
    [32]曾亚文,李自超,杨忠义,等.云南地方稻种籼粳亚种与生态群分类及其地理生态分布[J].作物学报, 2001, 27(1): 15– 20.
    [33]曾亚文,刘家富,汪禄祥,等.云南稻核心种质矿质元素含量及其变种类型[J].中国水稻科学, 2003, 17(1): 25– 30.
    [34]曾亚文,刘家富,汪禄祥,等.云南栽培稻生态型矿质元素含量的多样性[J].作物学报, 2006, 32(6): 867– 872.
    [35]曾亚文,申时全,普晓英,等.云南稻种资源核心种质研究进展[J].西南农业学报(增), 2004: 322– 324.
    [36]曾亚文,汪禄祥,普晓英,等. ICP-AES检测云南稻核心种质矿质元素含量的地带性特征[J].光谱学与光谱分析, 2009a, 29(6):1691– 1695.
    [37]曾亚文,汪禄祥,杜娟,等. ICP-AES法检测云南稻精米和糙米与土壤矿质元素间的关联性[J].光谱学与光谱分析, 2009b, 29(5):1413– 1417.
    [38]曾亚文,汪禄祥,孙正海,等. ICP-AES法测定粳稻近等基因系群体间糙米的矿质元素[J].光谱学与光谱分析, 2008, 28(12): 2966– 2969.
    [39]曾亚文,徐福荣,申时全,等.云南光壳稻籼粳分类与形态性状的相关性研究[J].中国水稻科学, 2000, 14(2): 115– 118.
    [40]曾亚文,杨树明,杜娟,等.高抗性淀粉稻米防治慢性病研究进展[J].农业科技通讯, 2009c, (1): 37– 38.
    [41]张胜帮,李锦燕,郭玉生.金银花中多种金属元素的炭化酸溶法-ICP-AES研究[J].光谱学与光谱分析, 2007, 27(6): 1222– 1224.
    [42]张桂寅,王省芬,刘素娟,等.低酚棉品种资源聚类分析及核心品种抽取方法的探讨[J].棉花学报, 2004, 16(1): 8– 12.
    [43]张帆,周峰,王桂花,等.微波辅助萃取-分光光度法测定卫矛中总黄酮[J].光谱学与光谱分析, 2008, 28(7): 1633– 1636.
    [44]张海容,武晓燕.荧光探针法研究10种中药多糖及黄酮对DNA的保护作用[J].光谱学与光谱分析, 2007, 27(2): 346– 349.
    [45]张浩,曾亚文,杜娟,等.云南稻核心种质对土壤无效磷的活化特性及其生态差异[J].中国水稻科学, 2006, 20(3): 333– 336.
    [46]张洪亮,李自超,曹永生,等.表型水平上检验水稻核心种质的参数比较[J].作物学报, 2003, 29(2): 252– 257.
    [47]张琳琳,舒小丽,卢怀江,等.富含γ-氨基丁酸降压功能稻米研究进展[J].核农学报, 2006, 20(3): 218– 221.
    [48]赵玉芬,赵国辉,麻远.磷与生命化学[M].北京:清华大学出版社, 2004: 1– 269.
    [49]庄向平,虞杏英,杨更生,等.银杏叶黄酮含量的测定和提取方法[J].中草药, 1992, 23(3): 122– 124.
    [50] ABADIE T, CORDEIRO C M, FONSECA, J R, et al.. Constructing a rice core collection for Brazil [J]. Pesquisa Agropecuária Brasileira, 2005, 40 (2): 129– 136.
    [51] ABDELKHALIK A F, SHISHIDO R, NOMURA K, et al.. QTL-based analysis of heterosis for grain shape traits and seedling characteristics in an indica-japonica hybrid in rice (Oryza sativa L.) [J]. Breeding Science, 2005, 55 (1): 41– 48.
    [52] ABELSON P H. A potential phosphate crisis [J]. Science, 1999, 283: 2015– 2021.
    [53] ANDERSEN J R, LüBBERSTEDT T. Functional markers in plants [J]. Trends in Plant Science, 2003, 8 (11): 554– 560.
    [54] AMALRAJ V A, BALAKRISHNAN R, JEBADHAS A W, et al.. Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures [J]. Genetic Resources and Crop evolution, 2006, 53: 1563– 1572.
    [55] AMANDA J G, THOMAS H T, Jason C, et al.. Genetic structure and diversity in Oryza sativa L [J].Genetics, 2005, 169: 1631– 1638.
    [56] ASCHNER J L, ASCHNER M. Nutritional aspects of manganese homeostasis [J]. Molecular Aspects of Medicine, 2005, 26: 353– 362.
    [57] BAEK S, PARK S, LEE H G. Cholesterol-lowering action of fermented brown rice [J]. Journal of Food Science, 2005, 70: 527– 531.
    [58] BAKKER C, RODENBURG J, VAN BODEGOM P M. Effects of Ca- and Fe-rich seepage on P Availability and plant performance in calcareous dune soils [J]. Plant and Soil, 2005, 275: 111– 122.
    [59] BALAKRISHNAN R, NAIR N V. Strategies for developing core collections of sugarcane (Saccharum officin arum L.) germplasm-comparison of sampling from diversity groups constituted by three different methods [J]. Plant Genetic Resources Newsletter, 2003, 134: 33– 41.
    [60] BALFOURIER F, CHARMET G, PROSPERI J M, et al. Comparison of different spatial strategies for sampling a core collection of natural populations of fodder crops [J]. Genetics Selection Evolution, 1998, 30 (Suppl.1): 215– 235.
    [61] BANFIELD J F, MARSHALL C R. Genomics and the geosciences [J]. Science, 2000, 28, 287: 605– 606.
    [62] BASSAM B J, CAETANO-ANOLLES G, GRESSHOFF P M. Fast and sensitive silver staining of DNA in polyacrylamide gels [J]. Analytical Biochemistry, 1991, 196 (1): 80– 83.
    [63] BHATTACHARJEE R, KHAIRWAL I S, BRAMEL P J, et al. Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits [J]. Euphytica, 2007, 155: 35–45.
    [64] BISHT I S, MAHAJAN R K, PATEL D P. The use of characterization data establish the Indian mung bean core collection and assessment of genetic diversity [J]. Genetic Resources and Crop evolution, 1998, 45: 127– 133.
    [65] BROWN A H D. A case for core collections [M]. In BROWN A H D, FRANKEL O H, MARSHALL D R et al(eds.) The Use of Plant Genetic Resources. Cambridge University Press, Cambridge. 1989, p. 136– 156.
    [66] BROWN A H D, GRACE J P, SPEER S S. Designation of a“core”collection of perennial Ghycine [J]. Sobean Genetic Newsletter, 1987, 14: 59– 70.
    [67] CAKMAK I. Enrichment of cereal grains with zinc:Agronomic or genetic biofortification [J]. Plant and Soil, 2008, 302: 1–17.
    [68] CHANG C R,HU Y B, SUN S B, et al.. Proton pump OsA8 is linked to phosphorus uptake and translocation in rice [J]. Journal of Experimental Botany, 2009, 60 (2): 557– 565.
    [69] CHANG T T. The origin, evolution, cultivation, dissemination and diversification of Asian and African rices [J]. Euphytica, 1976, 5: 425– 441.
    [70] CHANG Z Q, HUANG X Q, ZHANG Y Z, et al.. Diversity in the content of some nutritionalcomponents in husked seeds of three wild rice species and rice varieties in Yunnan province of China [J]. Journal of Integrative Plant Biology, 2005, 47: 1260– 1270.
    [71] CUI K H, PENG S B, YING Y Z, et al.. Molecular dissection of the relationships among tiller number, plant height and heading date in rice [J]. Plant Production Science, 2004, 7 (3): 309– 318.
    [72] DESAI V, KALER S G. Role of copper in human neurological disorders [J]. American Journal of Clinical Nutrition, 2008, 88: 855– 858.
    [73] DIAMOND J. Evolution, consequences and future of plant and animal domestication [J]. Nature, 2002, 418: 700– 707.
    [74] DIWAN N, BAUCHAN G R, MCINTOSH M S. A core collection for the United States annual Medicago germplasm collection [J]. Crop Science, 1994, 34 (1): 279– 285.
    [75] DOYLE J J, DOYLE J L. Isolation of plant DNA from fresh tissue [J]. Focus, 1990, 12 (1): 13– 15.
    [76] DUAN Y L, LI W M, WU W R, et al.. Genetic analysis and mapping of gene fzp(t) controlling spikelet differentiation in rice [J]. Science in China (Series C), 2003, 46 (4): 328– 334.
    [77] DUSSERT S, CHABRILLANGE N, ANTHONY F, et al.. Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions [J]. Plant Cell Reports, 1997, 16: 344– 348.
    [78] DWIVEDI S L, PUPPALA N, UPADHYAYA H D, et al.. Developing a core collection of Peanut specific to valencia market type [J]. Crop Science, 2008, 48: 625– 632.
    [79] ERSKINE W, MUEHLBAUER F J. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm [J].Theoretical and Applied Genetics, 1991, 83: 119– 125.
    [80] ESCRIBANO P, VIRUEL M A, HORMAZA J I. Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species [J]. Annals of Applied Biology, 2008, 153 (1): 25– 32.
    [81] FAO. Report on the state of the world’s plant genetic ressources for food and agriculture [M]. FAO, Rome, 1996: 75pp.
    [82] FEYT H, DUBOIS C, CLéMENT G, et al.. Analysis of the diversity of rice genetic resources for use in Europe-determination of a core collection [M]. In: Rice genetic resources and breeding for Europe and other temperate areas: proceedings of Eurorice 2001 Symposium, Cirad, Ird, Ksau, Krasnodar Territory, Vniirisa, September, 3-8, 2001, Krasnodar, Russia. [Cd-Rom]. Montpellier: CIRAD. Eurorice 2001 Symposium, 2001-09-03/2001-09-08, Krasnodar, Russie.
    [83] FRANKEL O H. Genetic perspectives of germplasm conservation [M]. In: Genetic Manipulation: Impact on Man Society. Arber W. et al.(eds), Cambridge, U K, Cambridge University Press, 1984, pp161-170.
    [84] GAO L Z, GE S, HONG D Y. Allozyme variation and population genetic structure of common wildrice Oryza rufipogon Griff. in China [J]. Theoretical and Applied Genetics, 2000, 101: 494– 502.
    [85] GAO L Z, GE S, HONG D Y, et al. Allozyme variation and conservation genetics of common wild rice (Oryza rufipogon Griff.) in Yunnan, China [J]. Euphytica, 2002, 124 (4): 273– 281.
    [86] GARRIS A J, TAI T H, COBURN J, et al.. Genetic structure and diversity in Oryza sativa L[J]. Genetics, 2005, 169: 1631– 1638.
    [87] GLASZMANN J C. Isozymes and classification of Asian rice varieties [J]. Theoretical and Applied Genetics, 1987, 74: 21– 30.
    [88] GO?I I, GARCíA-DIAZ L, MA?AS E, et al.. Analysis of resistant starch:a method for food products [J]. Food Chemistry 1996, 56: 445– 449.
    [89] GRENIER C, HAMON P, BRAMEL-COX P J. Core collection of Sorghum: II. Comparison of three random sampling strategies [J]. Crop Science, 2001, 41: 241– 246.
    [90] HAJIBOLAND R, BEIRAMZADEH N. Rhizosphere properties of rice genotypes as influenced by anoxia and availability of zinc and iron [J]. Pesquisa Agropecuária Brasileira, 2008, 43: 613-622.
    [91] HAO C Y, ZHANG X Y, WANG L F, et al.. Genetic diversity and construction of core collection in Chinese wheat genetic resources [J].Chinese Science Bulletin, 2008, 53 (10): 1518– 1526.
    [92] HOLBROOK C C, ANDERSON W F, PITTMAN R N. Selection of core collection from the U.S. germplasm collection of peanut [J]. Crop Science, 1993, 33: 859–861.
    [92] HORIE T, COSTA A, KIM T H, et al.. Rice OsHKT2,1 transporter mediates large Na+ influx component into K+-starved roots for growth [J]. The EMBO Journal, 2007, 26: 3003–3014.
    [94] HU P S, ZHAO H J, DUAN Z Y, et al. Starch digestibility and the estimated glycemic score of different types of rice differing amylose contents [J]. Journal of Cereal Science, 2004, 40: 231– 237.
    [95] HUAMáN Z, AGUILAR C, ORTIZ R. Selecting a Peruvian core collection of sweetpotato on the basis of morphological, eco-geographical and disease and pest reaction data [J]. Theoretical and Applied Genetics, 1999, 98: 840– 844.
    [96] HUANG B A, ZHAO Y C, SUN W X, et al.. Relationships between distributions of longevous population and trace elements in the agricultural ecosystem of Rugao County, Jiangsu, China [J]. Environmental Geochemistry and Health, 2009,31(3):379– 390.
    [97] HUBER C, WACHTERSHAUSRE G.α-Hydroxy andα-amino acids under possible hadean, volcanic origin-of-life conditions [J]. Science, 2006, 314: 630– 632.
    [98] HSU T F, KISE M, WANG M F, et al. Effects of pre-germinated brown rice on blood glucose and lipid levels in free-living patients with impaired fasting glucose or type 2 diabetes [J]. Journal of Nutritional Science and Vitaminology, 2008, 54(2):163– 168.
    [99] INATOMI K, SLAUGHTER J C. The role of glutamate decarbozylase andγ-aminobutyric acid in germinating barley [J]. Journal of Experimental Botony, 1971, 22: 561– 571.
    [100]INTERNATIONAL RICE GENOME SEQUENCING PROJECT(IRGSP). The map-basedsequence of the rice genome [J]. Nature, 2005, 436: 796– 800.
    [101]ISE K, SUN Y Q, DAI L Y, et al.. Genetic variation in endosperm amylose content in rice genetic resources of Yunnan, China and artificial induction of mutants with low amylose content [J]. Tropical Agriculture Research Series, 2000, 44: 269– 275.
    [102]JANSEN J, VAN HINTUM T. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce [J]. Theoretical and Applied Genetics, 2007, 114: 421– 428.
    [103]JARADAT A A. Wild emmer wheat in Jordan:a core collection [J]. Israel Journal of Plant Sciences, 1997, 45: 45– 51.
    [104]JIANG N, BAO Z, ZHANG X, et al.. An active DNA transposon family in rice [J]. Nature, 2003, 421: 163– 167.
    [105]JIANG H, GUO L B,QIAN Q. Recent progress on rice genetics in China [J]. Journal of Integrative Plant Biology, 2007, 49 (6): 776?790.
    [106]JING R C, LI X M, YI P, et al.. Mapping fertility-restoring genes of rice WA cytoplasmic male sterility using SSLP markers [J]. Botanical Bulletin of Academia Sinica, 2001, 42 (3): 167– 171.
    [107]JUNG K H, AN G, PAMELA C, et al.. Towards a better bowl of rice: assigning function to tens of thousands of rice genes [J]. Nature Reviews Genetics, 2008, 9: 91– 101.
    [108]JUNG M C, YUN S T, LEE J S, et al.. Baseline study on essential and trace elements in polished rice from South Korea [J]. Environmental Geochemistry and Health, 2005, 27: 455– 464.
    [109]KANG C W, KIM S Y, LEE S W, et al.. Selection of a core collection of Korean sesame germplasm by a stepwise clustering method [J]. Breeding Science, 2006, 56: 85– 91.
    [110]KATZEL J A, HARI P, VESOLE D H. Multiple myeloma: charging toward a bright future [J]. CA: A Cancer Journal for Clinicians, 2007, 57: 301– 318.
    [111]KHUSH G. Origin, dispersal, cultivation and variation of rice [J]. Plant Molecular Biology, 1997, 35: 25– 34.
    [112]KILLILEA D W, AMES B N. Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts [J]. Proceedings of the National Academy of Sciences, 2008, 105: 5768– 5773.
    [113]KIM E O, OH J H,LEE K T, et al.. Chemical compositions and antioxidant activity of the colored rice cultivars [J]. Korean Journal of Food Science and Technology, 2008, 15(1): 118– 124.
    [114]KIM S K, PARK P J, BYUN H G, et al.. Recovery of fish bone from hoki (Johnius belengeri) frame using a proteolytic enzyme isolated from mackerel intestine [J]. Journal of Food Biochemistry, 2003, 27: 255– 266. [1115]KING L M, SCHAAL B A. Ribosomal DNA variation and distribution in Rudbckia missouriensis [J]. Evolution, 1989, 43: 1117-1119.
    [116]KOTTAPALLI K R, BUROW M D, BUROW G, et al.. Molecular characterization of the U.S. Peanut mini core collection using microsatellite markers [J]. Crop Science, 2007, 47: 1718– 1727.
    [117]LAHNER B, GONG J, MAHMOUDIAN M, et al.. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana [J]. Nature Biotechnology, 2003, 21: 1215– 1221.
    [118]LAWSON M J, ZHANG L Q. Distinct patterns of SSR distribution in the Arabidopsis thaliana and comment rice genomes [J]. Genome Biology, 2006, 7 (2): R14.
    [119]LEE Y J, KIM B G,CHONG Y, et al.. Cation dependent O-methyltransferases from rice [J]. Planta, 2008, 227 (3): 641– 647.
    [120]LI L, WANG X F, STOLC V, et al.. Genome-wide transcription analyses in rice using tiling microarrays [J]. Nature genetics, 2006, 38: 124-129.
    [121]LI T H, LI Y X, LI Z C, et al.. Simple sequence repeat analysis of genetic diversity in primary core collection of Peach (Prunus persica) [J]. Journal of Integrative Plant Biology, 2008, 50 (1): 102– 110.
    [122]LI Y C, KOROL A B, FAHIMA T, et al.. Microsatellites within genes: structure, function and evolution[J]. Molecular Biology and Evolution, 2004, 21(6): 991– 1007.
    [123]LI Z, RUTGER J N. Geographic distribution and multilocus organization of isozyme variation of rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2000, 101: 379– 387.
    [124]LI Z C. Studies on sampling strategy for core collection of Chinese landraces and genetic diversity of phenotypes and isozymes (D). PhD dissertation, China Agricultural University, Beijing, 2001.
    [125]LI Z C, ZHANG H L, ZENG Y W, et al.. Studies on sampling schemes for the establishment of core collection of rice landraces in Yunnan, China [J]. Genetic Resources and Crop Evolution, 2002, 49: 67– 74.
    [126]LIANG F S, DENG Q Y, WANG Y Q, et al.. Molecular marker-assisted selection for yield- enhancing genes in the progeny of“9311×O. rufipogon”using SSR [J]. Euphytica, 2004, 139(2): 159– 165.
    [127]LIN N F, Tang J, Bian J M. Geochemical environment and health problems in China [J]. Environmental Geochemistry and Health, 2004, 26: 81– 88.
    [128]LINH L H, JIN F X, KANG K H, et al. Mapping quantitative trait loci for heading date and awn length using an advanced backcross line from a cross between Oryza sativa and O. minuta [J]. Breeding Science, 2006, 56 (4): 341– 349.
    [129]LITT M, LUTY J A. A hypervariable microsatellite revealed by in virtro amplification of dinucleotide repeat within the cardiac mucle actin gene [J]. American Journal of Human Genetics, 1989, 44: 397– 401.
    [130]LIU Q, Wang D J, JIANG X J, et al.. Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza Sativa) [J]. Environmental Geochemistry and Health, 2004, 26: 325– 330.
    [131]LIU Q L, XU X H,REN X L,et al.. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2007, 114: 803– 814.
    [132]LO?C L C, ALEXANDRE F L, VALéRIE L, et al.. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. Sativa [J]. BMC Plant Biology, 2008, 8:31,doi:10.1186/1471-2229-8-31.
    [133]LOGOZZO G, DONNOLI R, MACALUSO L, et al.. Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection [J]. Genetic Resources and Crop Evolution, 2007, 54: 1763– 1779.
    [134]LONDO J P, CHIANG Y C, Hung K H, et al.. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa [J]. Proceedings of the National Academy of Sciences, 2006, 103 (25): 9578– 9583.
    [135]LU K Y, LI L Z, ZHENG X F, et al.. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains [J]. Journal of Genetics, 2008, 87, 305– 310.
    [136]MA G, JIN Y, PIAO J, et al.. Phytate, calcium, iron and zinc contents and their molar ratios in foods commonly consumed in China [J]. Journal of Agriculture and Food Chemistry, 2005, 53: 10285– 10290.
    [137]MA J F, TAMAI K, YAMAJI N, et al.. A silicon transporter in rice [J]. Nature, 2006, 440: 688– 691.
    [138]MA J F, YAMAJI N, MITANI N, et al.. An efflux transporter of silicon in rice [J]. Nature, 2007, 448: 209– 212.
    [139]MACKAY M C. Utilizing wheat genetic resources in Australia (C). In: Proc. 5th Assembly Wheat Breed Soc. Australia. McLean R.(eds), Perth Merredin, Australia, 1986, pp 56– 61.
    [140]MACKAY M C. One core collection or many? In‘Core collections of plant genetic resources’(M). (Eds HODKIN T, Brown A H D,THVAN HINTUM J L, Morales E A V), (John Wiley &Sons: Chichester, UK). 1995, pp. 199– 210.
    [141]MACNEISH R S. The Origins of Agriculture and Settled Life [M]. Norman: University of Oklahoma Press, 1992: 150– 156.
    [142]MAHAJAN R K, BISHT I S, Agrawal R C, et al.. Studies on South Asian Okra collection: methodology for establishment a representing core set using characterization data [J]. Genetic Resources and Crop Evolution, 1996, 43: 249– 255.
    [143]MALOSETTI M, ABADIE T. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits [J]. Genetic Resources and Crop Evolution, 2001, 48: 381– 390.
    [144]MANN C. Reseeding the green revolution [J]. Science, 1997, 277: 1038– 1042.
    [145]MAO W H,YI J X, DARASINH S. Development of core subset for the collection of Chinese cultivated eggplants using morphological-based passport data. Plant Genetic Resources [M]: Characterization and Utilization, Cambridge University Press, 2008, 6: 33– 40.
    [146]MCCLUNG A M, CHEN M, BOCKELMAN H E, et al.. Characterization of a core collection of rice germplasm and elite breeding lines in the US with genetic markers associated with cooking quality (C). Proceedings, 2nd International Rice Functional Genomics Conference,Tucson, Arizona. 2004, p. 127.
    [147]MCCOUCH S R, TEYTELMAN L, XU Y, et al.. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) [J]. DNA Research, 2002, 9 (6): 199– 207.
    [148]MCDONALD G K,GENC Y, GRAHAM R D. A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield [J]. Plant and Soil, 2008, 306: 49– 55.
    [149]MCKHANN H I, CAMILLERRI C, BERARD A, et al.. Nested core collections maximizing genetic diversity in Arabidopsis thaliana [J]. The Plant Journal, 2004, 38(1): 193– 202.
    [150]MEHARG A A, LOMBI E, WILLIAMS P N, et al.. Speciation and localization of arsenic in white and brown rice grains [J]. Environmental Science and Technology, 2008, 42: 1051– 1057.
    [151]MIYATA M, YAMAMOTO T, KOMORI T, et al.. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background [J]. Theoretical and Applied Genetics, 2007, 114 (3): 539– 548.
    [152]MURATA K, KAMEI T, TORIUMI Y, et al.. Effect of processed rice with brown rice extracts on serum cholesterol level [J]. Clinical and Experimental Pharmacology and Physiology, 2007, 34: 87– 89.
    [153]NAGAMINE T. Genetic variation in isozymes of indigenous rice varieties in Yunnan Province of China [J]. Japanese Journal of Breeding, 1992, 42: 507– 513.
    [154]NAKAGAHRA M. The differentiation, classification and center of genetic diversity of cultivated rice (Oryza sativa L.) by isozyme analysis [J]. Tropical Agriculture Research Series, 1978, 11: 77– 82.
    [155]NAKAGAHRA M, AKIHAMA T, HAYSHI K I. Geographical distribution of esterase genotypes of rice in Asia [J]. Rice Genetic Newsletter, 1984, 1: 118– 120.
    [156]NAKAGAHRA M, HAYASHI K I. Origin of cultivated rice as detected by isozyme variations [J]. Japan Agricultural Research Quarterly, 1977, 11: 1– 5.
    [157]NEI M. F-statistics and analysis of gene diversity I subdivided populations [J]. Annals of Human Genetics, 1977, 41: 225– 233.
    [158]NI J J, WU P, SENADHIRA D, et al.. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L) [J]. Theoretical and Applied Genetics, 1998, 97: 1361– 1369.
    [159]OKA H I. Origin of Cultivated Rice [M]. The Japan Science Society Press, Tokyo. 1988.
    [160]OLSEN K M, CAICEDO A L, POLATO N, et al.. Evidence for a sweep in the rice waxy genomic region [J]. Genetics, 2006, 173: 975– 983.
    [161]ONISHI K, HORIUCHI Y, ISHIGOH-OKA N, et al.. A QTL cluster for plant architecture and itsecological significance in Asian wild rice [J]. Breeding Science, 2007, 57: 7– 16.
    [162]OSA J L, BATEMAN D A, HO S, et al.. Getting specificity from simplicity in putative proteins from the prebiotic Earth [J]. Proceedings of the National Academy of Sciences, 2007, 104: 14941– 14946.
    [163]PANAUD O, CHEN X, MCCOUCH S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.) [J]. Molecular General Genetics, 1996, 252 (5): 597– 607.
    [164]PARK K B, OH SH. Production of yogurt with enhanced levels of gamma-aminobutyfic acid and valuable nutrients using lactic acid bacteria and germinated soybean extract [J]. Bioresource Technology, 2007, 98: 1675– 1679.
    [165]PASEK M A. Rethinking early earth phosphorus geochemistry [J]. Proceedings of the National Academy of Sciences, 2008, 105: 853-858.
    [166]PEET R K.The measurement of species diversity [J]. A nnual Review of Ecology System, 1974, 5: 285– 307.
    [167]PERRY M C, MCINTOSH M S. Geographical patterns of variation in the USDA soybean germplasm collection: I. Morphological traits [J]. Crop Science, 1991, 31: 1350– 1355.
    [168]PHUONG T D, CHUONG P V, KHIEM D T, et al.. Elemental content of vietnamese rice: Part 1. Sampling, analysis and comparison with previous studies [J]. The Analyst, 1999, 124: 553-560.
    [169]PKANIA C K,WU J G, XU H M, et al.. Addressing rice germplasm genetic potential using genotypic value to develop quality core collections [J]. Journal of the Science of Food and Agriculture. 2007, 87 (2): 326– 333.
    [170]POWELL K. Functional foods from biotech ?—an unappetizing prospect? [J]. Nature Biotechnology, 2007, 25: 525– 531.
    [171]POWER M L, Heaney R P, Kalkwarf H J, et al.. The role of calcium in health and disease[J]. American Journal of Obstetrics & Gynecology, 1999, 181 (6): 1560– 1569.
    [172]PRADEEP R M, SARLA N, LAMINARATANA V R, et al.. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon [J]. BMC genetics,2005, 6: 33
    [173]PRASAD A S. Zinc in human health: Effect of zinc on immune cells [J]. Molecular Medicine, 2008, 14: 353– 357.
    [174]RAAMSDONK L W D, VAN WIJNKER J. The development of a new approach for establishing a core collection using multivariate analyses with tulip as case [J]. Genetic Resources and Crop Evolution, 2000, 47 (4): 403– 416.
    [175]RAMAKRISHNA W, DAVIERWALA A P, GUPTA V S, et al.. Expansion of a (GA) dinucleotide at a microsatellite locus associated with domestication in rice [J]. Biochemical Genetics, 1998, 36 (9– 10): 323– 327.
    [176]RODI?O A P, SANTALLA M, DE RON A M, et al.. A core collection of common bean from theIberian Peninsula [J]. Euphytica, 2003, 131: 165– 175.
    [177]RONALD P, LEUNG H. The most precious things are not jade and pearls [J]. Science, 2002, 296: 58-59.
    [178]RUAN J, MA L F, SHI Y Z. Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization [J]. Environmental Geochemistry and Health, 2006, 28: 519–528.
    [179]SAKAMOTO S, HAYASHI T, HAYASHI K, et al.. Pre-germinated brown rice could enhance maternal mental health and immunity during lactation [J]. European Journal of Nutrition, 2007, 46: 391–396.
    [180]SAJILATA M G, SINGHAL R S, KULKARNI P R. Resistant starch—A review [J]. Comprehensive Reviews in Food Science and Food Safety, 2006, 5: 1– 17.
    [181]SANG T, GE S. The puzzle of rice domestication [J]. Journal of Integrative Plant Biology, 2007, 49: 60– 768.
    [182]SANO R, MORISHIMA H. Indica-Japonica differentiation of rice cultivars viewed from the variation in key characters and isozymes with special reference to landraces from the Himalayan hilly areas [J]. Theoretical and Applied Genetics, 1992, 84: 266–274.
    [183]SASAKI T. Rice genome analysis to understand the rice plant as an assembly of genetic codes [J]. Photosynthesis Research, 2001, 70: 119– 127.
    [184]SATO Y I. Variation in spikelet shape of indica and japonica rice cultivars of Asian origin [J]. Japanese Journal of Breeding, 1991, 41: 121– 134.
    [185]SCOND G. Origin of the genetic diversity of cultivated rice (Orzya sativa): study of polymorphism scored at 40 isoezyme loci [J]. The Japanese Journal of Genetics, 1982, 57: 25– 75.
    [186]SEPTININGSIH E M, TRIJATMIKO K R, MOELJOPAWIRO S, et al.. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O.rufipogon [J]. Theoretical and Applied Genetics, 2003, 107 (8): 1433– 1441.
    [187]SHEN Y J, JIANG H, JIN J P,et al.. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes [J]. Plant Physiology, 2004, 135 (3): 1198– 1205.
    [188]SICA D A, STRUTHERS A D, CUSHMAN W C, et al.. Importance of potassium in cardiovascular disease [J]. Journal of Clinical Hypertension, 2002, 4:198– 206.
    [189]SIMPSON B B, CONNER-OGORZALY M. Economic Botany: Plants in our World [M]. New York: McGraw-Hil, 1986: 182– 183.
    [190]SINGH D, MACE E S, GODWIN I D, et al.. Assessment and rationalization of genetic diversity of Papua New Guinea taro (Colocasia esculenta) using SSR DNA fingerprinting [J]. Genetic Resources and Crop Evolution, 2008, 55: 811– 822.
    [191]SOWERBY S J, COHN C A, HECKL W M, et al.. Differential adsorption of nucleic acid bases: Relevance to the origin of life [J]. Proceedings of the National Academy of Sciences, 2001, 98: 820– 822.
    [192]SPAGONLETTI Z P L, QUASLSET C O. Evaluation of five stratigies for obtaining a core subsetfrom a large genetic resources collection of durum wheat [J]. Theoretical and Applied Genetics,1991, 87: 295– 304.
    [193]STOROZHENKO S, BROUWER V D, VOLCKAERT M, et al.. Folate fortification of rice bymetabolic engineering [J]. Nature Biotechnology, 2007, 25: 1277– 1279.
    [194]SUN G X, WILLIAMS P N, CAREY A M, et al.. Inorganic arsenic in rice bran and its products arean order of magnitude higher than in bulk grain [J]. Environmental Science and Technology, 2008,42 (19): 7542– 7546.
    [195]SWEENEY M, MCCOUCH S.The complex history of the domestication of rice [J]. Annals ofBotany, 2007, 100: 951– 957.
    [196]SWINBANKS D, OBRIEN J. Japan explores the boundary between food and medicine [J].Nature, 1993, 364: 180.
    [197]TAN L B, LIU F X, XUE W, et al.. Development of Oryza rufipogon and O. sativa introgressionlines and assessment for yield-related quantitative trait loci [J]. Journal of Integrative Plant Biology,2007, 49 (6): 871– 884.
    [198]TANG T, Shi S. Molecular population genetics of rice domestication [J]. Journal of IntegrativePlant Biology, 2007, 49: 769– 775.
    [199]TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNAmarkers [J]. Nucleic Acids Research, 1989, 17: 6463– 6471.
    [200]TAUTZ D, RENZ M. Simple sequences are ubiquitous repetitive components of eukaryoticgenomes [J]. Nucleic Acids Research, 1984,12: 4127– 4138.
    [201]TEMNYKH S, PARK W D, AYRES N, et al.. Mapping and genome organization of microsatellitesequences in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 2000, 100: 697– 712.
    [202]THOMSON M J, TAI T H, MCCLUNG A M, et al.. Mapping quantitative trait loci for yield, yieldcomponents and morphological traits in an advanced backcross population between Oryzarufipogon and the Oryza sativa cultivar Jefferson [J]. Theoretical and Applied Genetics, 2003, 107(3): 479– 493.
    [203]TILMAN D. The greening of the green revolution [J]. Nature, 1998, 396: 211– 212.
    [204]TOHME J, JONES P, BEEBE S, IWANAGA M. The combined use of agroecological andcharacterization data to establish the CIAT Phaseolus vulgaris core collection [C]. In Corecollections genetic resources (HODGKIN T, BROWN A H D, VAN HINTUM T J L, et al, eds.).John Wiley & Sons, Chichester, UK. 1995, pp. 95– 107.
    [205]UAUY C, DISTELFELD A, FAHIMA T, et al.. A NAC gene regulating senescence improves grainprotein, zinc and iron content in wheat [J]. Science, 2006, 314: 1298– 1301.
    [206]UMESAWA M, ISO H, DATE C, et al.. Relations between dietary sodium and potassium intakesand mortality from cardiovascular disease [J]. American Journal of Clinical Nutrition, 2008, 88: 195– 202.
    [207]UPADHYAYA H D, ORTIZ R, BRAMEL P J, et al.. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors [J]. Genetic Resources and Crop Evolution, 2003, 50: 139– 148.
    [208]UPADHYAYA H D, REDDY K N, GOWDA C L L, et al.. Phenotypic diversity in the pigeonpea (Cajanus cajan) core collection [J]. Genetic Resources and Crop Evolution, 2007, 54: 1167– 1184.
    [209]VAN HINTUM T, VON BOTHMER R, FISCHBECK G, et al.. The establishment of the barley core collection [J]. Barley Newsletter, 1990, 34: 41– 42.
    [210]VAN TREUREN R, TCHOUDINOVA I, VAN SOEST L, et al.. Marker-assisted acquisition and core collection formation: A case study in barley using AFLPs and pedigree data [J]. Genetic Resources and Crop Evolution, 2006, 53(1): 43– 52.
    [211]VERSCHOYLE R D, GREAVES P, CAI H, et al.. Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis [J]. British Journal of Cancer, 2007, 96: 248– 254.
    [212]WANG L. Report of China National Nutrition and Health Survey 2002(1): Summary Report [R]. People’s Medical Publishing House, Beijing. 2005, pp 18– 45.
    [213]WANG L X, GUAN R X, LI Y H, et al.. Genetic diversity of Chinese spring soybean germplasm revealed by SSR Markers [J]. Plant Breeding, 2008, 127: 56– 61.
    [214]WANG X K, SUN C Q. Origin and Differentiation of Chinese Cultivated rice [M]. China Agricultural University Press, Beijing. 1997, pp. 1– 91.
    [215]WANG X M, YI K K, TAO Y, et al.. Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level [J]. Plant, Cell and Environment, 2006, 29: 1924– 1935.
    [216]WELCH R M. The impact of mineral nutrients in food crops on global human health [J]. Plant and Soil, 2002, 247: 83– 90.
    [217]WISSUWA M, ISMAIL A M, GRAHAM R D, et al.. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization [J]. Plant and Soil, 2008, 306:37– 48.
    [218]WHITE P J, BROADLY M R. Biofortifying crops with essential mineral elements [J]. Trends in Plant Science, 2005, 10: 586– 593.
    [219]WIENERS R R, FEI S Z, JOHNSON R C. Characterization of a USDA Kentucky bluegrass (Poa pratensis L.) core collection for reproductive mode and DNA content by flow cytometry [J]. Genetic Resources and Crop Evolution, 2006, 53: 1531– 1541.
    [220]XIAO J, GRANDILLO S, AHN S A, et al.. Genes from wild rice improve yield [J]. Nature, 1996, 384: 223– 224.
    [221]XU H M, MEI Y J, HU J,et al.. Sampling a core collection of Island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits [J]. Genetic Resources and Crop Evolution, 2006,53 (3): 515– 521.
    [222]XU J L, YU S B, LUO L J, et al.. Molecular dissection of the primary sink size and its related traits in rice [J]. Plant Breeding, 2004, 123 (1): 43– 50.
    [223]XU J C, WILKES A. Biodiversity impact analysis in northwest Yunnan, southwest China [J]. Bio- diversity and Conservation, 2004, 13: 959– 983.
    [224]XUE W Y, XING Y Z, WENG X Y, et al.. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice [J]. Nature Genetics, 2008, 40: 761– 767.
    [225]YAMANAKA S, NAKAMURA I, NAKAI H, et al.. Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, Oryza nivara and O. rufipogon [J]. Genetic Resources and Crop Evolution, 2003, 50: 529– 538.
    [226]YAN W, RUTGER J N, BOCKELMAN H E, et al.. Evaluation of the core subset of the USDA -ARS rice germplasm collection. Rice Technical Working Group Meeting Proceedings(C). 2005 p52.
    [227]YANG J C, HUANG J H, PAN Q M, et al.. Soil phosphorus dynamics as influenced by land use changes in humis tropical, Southwest China [J]. Pedosphere, 2005, 15(1): 24– 32.
    [228]YANG X, YE Z Q, SHI CH, et al.. Genotypic differences in concentrations of iron, manganese, copper and zinc in polish rice grain [J]. Journal of Plant Nutrition, 1998, 21: 1453– 1462.
    [229]YANG X E, CHEN W R, FENG Y. Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study [J]. Environmental Geochemistry and Health, 2007, 29: 413– 428.
    [230]YASUI A,SHINDOH K. Determination of the geographic origin of brown rice with traceelement composition [J]. Bunseki Kagaku, 2000, 49: 405– 410.
    [231]YOSHIDA S, IKEGAMI M, KUZE J, et al.. QTL analysis for plant and grain characters of sake- brewing rice using a doubled haploid population [J]. Breeding Science, 2002, 52 (4): 309– 317.
    [232]ZARCINAS B A, ISHAK C F, MCLAUGHLIN M J, et al.. Heavy metals in soils and crops in Southeast Asia: 1. Peninsular Malaysia [J]. Environmental Geochemistry and Health, 2004, 26: 343– 357.
    [233]ZENG Y W, LI S C, SHEN S Q, et al.. Geographical distribution and cold tolerance at booting stage of the second core collection of rice landraces (Oryza sativa) from Yunnan, China [J]. Plant Genetic Resources Newsletter, 2005b, 143: 51-55.
    [234]ZENG Y W, LIU J F, WANG LX, et al.. Ecogeographic difference and variation pattern of mineral concentrations for Yunnan rice landraces [J]. Acta Agronomica Sinica, 2006, 32(8): 1174– 1181.
    [235]ZENG Y W, SHEN S Q, LI Z C, et al.. Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China [J]. Genetic Resources and Crop Evolution, 2003, 50 (6): 566– 577.
    [236]ZENG Y W, SHEN S Q, WANG L X, et al.. Correlation of plant morphological and grain qualitytraits with mineral element contents in Yunnan rice [J]. Rice Science, 2005a, 12: 101– 106.
    [237]ZENG Y W, WANG J J, YANG Z Y, et al.. The diversityand sustainable development ofcropgenetic resourcesin the Lancang River Valley [J]. Genetic Resources and Crop Evolution, 2001, 48(1): 297– 306.
    [238]ZENG YW, WANG LX, DU J, et al.. Elemental content in brown rice by inductively coupled plasma atomic emission spectroscopy reveals the evolution of Asian cultivated rice [J]. Journal of Integrative Plant Biology, 2009b,51 (5): 466– 475.
    [239]ZENG Y W, ZHANG H L, LI Z C, et al.. Evaluation of genetic diversity in the rice landraces (Oryza sativa L.) in Yunnan, China [J]. Breeding Science, 2007, 57 (2): 91– 99.
    [240]ZEWDIE Y, TONG N, BOSLAND P. Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions [J]. Genetic Resources and Crop Evolution, 2004, 51: 147– 151.
    [241]ZHANG H L, SUN J L,WANG M X, et al.. Genetic structure and phylogeography of rice landraces in Yunnan, China revealed by SSR [J]. Genome, 2006, 50: 72– 83.
    [242]ZHANG L L, HU P S, TANG S Q, et al.. Comparative studies on major nutritional components of rice with giant ermbryo [J]. Journal of Food Biochemistry, 2005, 29: 653– 661.
    [243]ZHANG X G, SIVETER D J, WALOSZEK D, et al.. An epipodite-bearing crown-group crustacean from the Lower Cambrian [J]. Nature, 2007, 449: 595– 598.
    [244]ZIURYS L M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life [J]. Proceedings of the National Academy of Sciences, 2006, 103: 12274– 12279.
    [245]ZONG Y, CHEN Z, INNES J B, et al.. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China [J]. Nature, 2007, 449: 456– 462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700