用户名: 密码: 验证码:
金纳米棒的合成、加工及作为方向探针在单分子成像上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单分子技术对基础科学研究具有非常重要的意义。这种技术不仅能够获得研究对象的共性,还能得到个体的差异,能够揭示传统方法所不能够得到的信息。金纳米棒作为单分子光学探针拥有传统荧光染料不能够比拟的优势,它不仅光学信号强,光学稳定性好,而且易加工制备。更重要的是它对光的吸收和散射是偏振性的,非常适合用作方向探针。目前,用金纳米棒作为单分子方向探针去研究生物学物理学事件的报道还不多。原因可能来自于三个方面:一是因为缺少良好的制备加工方法得到所需尺寸的金纳米棒,二是没有合适的成像技术手段来破译它的三维方向,三是没有适当的应用研究体系。
     本论文围绕当前研究的难点和热点问题,借鉴前人的研究思路和成果,开展了以下工作:
     (1)在第二章中,我们用H2O2作还原剂首次在碱性条件下通过种子生长法制备得到了高质量的金纳米棒。采用UV-Vis光谱和透射电子显微镜考察了溶液pH、H2O2/Au3+比例和银离子浓度对金纳米棒尺寸和形貌的影响,发现这三个因素的变化都会改变金纳米棒的长径比和相应的长轴等离子体共振峰位置。pH>~6.0是用H2O2制备金纳米棒的关键。相比于传统的用抗坏血酸作还原剂制备金纳米棒的方法,通过使用H2O2得到的金纳米棒具有良好的形貌和较好的单分散性。此外,我们的方法还有助于认识pH值影响纳米材料形貌的机制。
     (2)基于合成研究的基础,在第三章中,通过再加工制备出了具有高散射信号的适合作分子方向光学探针的金纳米棒。首先,给出了金纳米棒等离子体共振能量吸收和散射理论,并模拟了金纳米棒长径比和环境介质对长轴等离子体共振的影响,证明了长径比为2.2左右的金纳米棒具有最强的光散射信号,适合用于以CCD为检测器的单分子成像研究。在加工过程中,我们先用传统方法制备出了小粒径金纳米棒,再以这些金纳米棒为种子进行二次生长,控制条件得到了所需长径比的金纳米棒。用紫外可见分光光度计研究了再生长过程中的光谱变化,通过透射电镜考察了准确的长度、直径变化。最后,在暗场显微镜下对单个金纳米棒进行光学成像,证明了它们具有较强的散射信号。通过转动光路中加入的偏振片证明了再加工后的金纳米棒散射是偏振性的,可以作为方向探针进行单分子成像研究。
     (3)在第四章中,我们开发了新的光学成像技术来研究金纳米棒和细胞相互作用过程中的跨膜过程。通过理论推导给出不同照明方式下,特别是暗场斜照明方式下得到金纳米棒的三维角度的方法。对比了细胞顶部成像和细胞侧壁成像对研究金棒和细胞相互作用的影响,证明了细胞侧壁成像不仅能够准确得到三维角度,更利于得到金纳米棒和细胞膜的夹角,便于捕捉金纳米棒在整个跨膜过程中的旋转动态机制。最后,通过实时观测了金纳米棒的跨膜机制证明了双通道暗场细胞侧壁成像是获得纳米颗粒跨膜动态动力学良好的技术手段。
     (4)在有了良好的材料和技术基础之上,第五章进一步研究了单个金纳米棒在细胞膜上的平动和转动行为。我们先建立了单个金纳米棒平动和转动研究的理论。重点研究了金纳米棒在膜上迁移过程中平动和转动变化,分析了可能涉及的生物学过程,初步得出了单分子平动和转动的不相关性。最后统计了41个金纳米棒的平动扩散系数和转动扩散系数,并引入相关系数为衡量参数,证实了金纳米棒在细胞膜上的平动和转动是相互独立的。
     (5)通过光学技术手段得到的金纳米棒的角度是相对于晶体的偏振方向和成像平面定义的。第六章中,我们研究了极坐标系中金纳米棒的方向空间分布,通过统计分析发现,金纳米棒有三种旋转模式:部分受限,完全受限和自由转动。这三种模式和金纳米棒的细胞内吞过程是密切相关的。旋转模式、实时角度、轨迹、平动扩散系数、旋转扩散系数等参数一起对金纳米棒的细胞内吞过程作了完美的诠释。我们还发现通过受限模式的变化可以确定内吞完成的准确时刻。
     (6)第七章进王步研究了蛋白包裹的单个金纳米棒在液固界面上的方向动力学。发现这些金纳米棒会有不同的方向动态,而且这些动态是与颗粒本身和界面的相互作用力大小密切相关的。为了研究解吸附过程中的旋转动态的变化,我们先在高盐浓度下将金纳米棒吸附在C18表面,然后再用低浓度的盐溶液进行洗脱。金纳米棒的旋转动态的分布是随着洗脱液盐浓度的降低而发生变化的。实时示踪单颗粒解吸附过程,进一步证明了分子从界面解吸附是先转起来再离开的。
Single molecule techniques are significant for investigating the basic science. They can obtain not only the common properties of the objects of research but also the individual events, which can reveal the unprecedented information that the traditional method can not achieve. As single molecule optical probes, gold nanorods (AuNRs) have several obvious advantages in contrast to traditional fluorescent dyes. They have strong optical signals, high photostability and can be easily synthesized and engineered. More importantly, the absorption and scattering of light by AuNRs are polarized, which make them be suitable to probe orientations. However, there are few studies to investigate the biological and physical events by using AuNRs as orientation probes. There are three crucial reasons that contribute to the result, that is, the lack of well preparing and engineering methods for obtaining AuNRs of specific sizes, the deficiency of suitable techniques to decipher their orientations and the lack of appropriate research systems.
     In this paper, we did several studies to attempt to address the above problems. The main investigations are as follows.
     (1) In chapter2, we synthesized high-quality AuNRs by using H2O2as the reducing agent through seed-mediated methods under alkaline conditions for the first time. The impacts of solution pH value, H2O2/Au3+ratio and the concentration of silver ion on the size and morphology of AuNRs were all investigated by UV-Vis spectroscopy and transmission electron microscope (TEM). It was found the alternations of three factors would lead to the change of aspect ratio of AuNRs and the corresponding longitude localized surface plasmon resonance (LLSPR) peak. pH higher than~6.0is essential for preparing AuNRs. Compared with the AuNRs through traditional method using ascorbic acid as the reducing agent, the AuNRs by H2O2have good morphology and improved monodispersity. In addition, our approach aided to understand the mechanism that how pH variation affect the morphology of nanomaterials.
     (2) Based on AuNRs synthesis, in chapter3, we further engineered AuNRs by post-processing procedures, which have high light scattering signals and are suitable for single molecular optical probes. At the beginning, the theories on light absorption and scattering of AuNRs were presented and the simulated results of aspect ratio and environmental medium on LLSPR were also demonstrated. AuNRs with aspect ratio around2.2have been proved to have strongest scattering efficiency and be suitable for single molecule imaging by using CCD. In the process, AuNRs with small diameter were synthesized first by traditional seed-mediated method and then large AuNRs were obtained through overgrowth process by using them as seeds. By controlling the synthetic conditions, the desired AuNRs were obtained. The alternations of UV-Vis spectra, the length, and the diameter were investigated by spectrophotometer and TEM. At last, single AuNRs scattering images under dark-field microscopy were obtained. By rotating a polarizer in the optical path, the question whether the scattering intensity of AuNRs through overgrowth is polarized was addressed, and the AuNRs are proved to be appropriate to probe orientations in single molecule imaging.
     (3) In chapter4, we developed new techniques to study the transmembrane dynamics of single AuNRs during their endocytosis. Through theoretical calculations, we provided the approach to determine the orientation of AuNRs in three-dimensional space under different illumination schemes, especially dark-filed oblique illumination. The impacts of focus plane placed at cell top and at cell sidewall on studying the transmembrane dynamics were investigated. Cell sidewall imaging mode would improve the obtained angle accuracy, be more proper to get the angle of AuNRs against membrane and be convenient to capture the whole transmembrane process. Finally, the real-time transmembrane processes verified that cell sidewall imaging under dual-channel darkfield microscopy was versatile to study the transmembrane dynamics of single AuNRs.
     (4) With excellent materials and techniques, we further investigated the translational and rotational behaviors of single AuNRs on membrane in chapter5. We presented the theories on translation and rotation of single AuNRs. We mostly focused on the variation of translation and rotation of AuNRs during their translocation on membrane, analyzed the corresponding biological events, and preliminarily revealed the decoupling of translation and rotation. At last, we given the statistical results of translational diffusion coefficients and rotational diffusion coefficients of41AuNRs on membrane and found the translation and rotation of AuNRs on membrane are independent based on the statistical parameter-correlation coefficient.
     (5) The azimuthal and polar angles of AuNRs obtained through optical techniques are defined with respected to the polarization direction of crystal and the imaging plane, respectively. Therefore, in chapter6, we studied the spatial distributions of AuNRs in polar coordinate system. Three rotational modes-partially confined rotation, restricted rotation and freely Brownian rotations, were found, which were closely related to endocytosis process. The rotational modes, combined with azimuthal and polar angle, out of plane angle, trajectories, the translational and rotational diffusion coefficients perfectly disclosed the detailed endocytosis dynamics. It is found that the mode variations can determine the exact time of the end of the endocytosis.
     (6) The orientation dynamics of single protein-coated AuNRs at solid-liquid interface were investigated in chapter7. There are different rotational dynamics at interface, which reflect the interaction affinity between single protein-coated AuNRs and surface. The protein-coated AuNRs were absorbed on C18surface at high concentration salt solution first and then eluted with solution containing low concentration of salt to investigate orientation dynamics during desorption process. The distributions of these dynamics states changed when decreasing the salt concentration. The real-time desorption process of single AuNRs further illustrated that the desorption of molecule from surface must be preceded by rotation.
引文
[1]Lohse S E, Murphy C J. The quest for shape control:a history of gold nanorod synthesis. Chemistry of Materials,2013,25(8):1250-1261
    [2]Chen H, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties. Chemical Society Reviews,2013,42(7):2679-2724
    [3]Vigderman L, Khanal B P, Zubarev E R. Functional gold nanorods:synthesis, self-assembly, and sensing applications. Advanced Materials,2012,24(36): 4811-4841
    [4]Sharma V, Park K, Srinivasarao M. Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering:R:Reports, 2009,65(1-3):1-38
    [5]Huang X H, Neretina S, El-Sayed M A. Gold Nanorods:from synthesis and properties to biological and biomedical applications. Advanced Materials,2009, 21(48):4880-4910
    [6]Chang W S, Ha J W, Slaughter L S, et al. Plasmonic nanorod absorbers as orientation sensors. Proceedings of the National Academy of Sciences of the United States of America,2010,107(7):2781-2786
    [7]Sonnichsen C, Alivisatos A P. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Letters,2005,5(2):301-304
    [8]Sonnichsen C, Franzl T, Wilk T, et al. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters,2002,88(7):077402
    [9]Failla A V, Qian H, Qian H, et al. Orientational imaging of subwavelength au particles with higher order laser modes. Nano Letters,2006,6(7):1374-1378
    [10]Gu Y, Sun W, Wang G, et al. Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. Journal of the American Chemical Society,2011,133(15): 5720-5723
    [11]Li T, Li Q, Xu Y, et al. Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano,2012,6(2):1268-1277
    [12]Xiao L, Qiao Y, He Y, et al. Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Analytical Chemistry,2010,82(12): 5268-5274
    [13]Papavassiliou G C. Optical properties of small inorganic and organic metal particles. Progress in Solid State Chemistry,1979,12(3):185-271
    [14]Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Journal of Physical Chemistry B,1999,103(40):8410-8426
    [15]Link S, El-Sayed M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry,2000,19(3):409-453
    [16]Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.Journal of Physical Chemistry B,1999,103(16): 3073-3077
    [17]Link S, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.Journal of Physical Chemistry B,2005,109(20): 10531-10532
    [18]Brioude A, Jiang X C, Pileni M P. Optical properties of gold nanorods:DDA simulations supported by experiments.Journal of Physical Chemistry B,2005, 109(27):13138-13142
    [19]Lee K S, El-Sayed M A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. Journal of Physical Chemistry B,2005,109(43):20331-20338
    [20]Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. Journal of Physical Chemistry B,2006,110(14):7238-7248
    [21]Qiu L, Larson T A, Smith D K, et al. Single gold nanorod detection using confocal light absorption and scattering spectroscopy. Ieee Journal of Selected Topics in Quantum Electronics,2007,13(6):1730-1738
    [22]Chen H, Kou X, Yang Z, et al. Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir,2008,24(10):5233-5237
    [23]Lee K-S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B,2006,110(39):19220-19225
    [24]Mooradian A. Photoluminescence of metals. Physical Review Letters,1969, (22):185-187
    [25]Mohamed M B, Volkov V, Link S, et al. The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chemical Physics Letters,2000,317(6):517-523
    [26]Eustis S, El-Sayed M. Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods:experimental and simulation study.Journal of Physical Chemistry B,2005,109(34):16350-16356
    [27]Li C Z, Male K B, Hrapovic S, et al. Fluorescence properties of gold nanorods and their application for DNA biosensing. Chemical Communications, 2005(31):3924-3926
    [28]Imura K, Nagahara T, Okamoto H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. Journal of Physical Chemistry B,2005,109(27):13214-13220
    [29]Bouhelier A, Bachelot R, Lerondel G, et al. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Physical Review Letters, 2005,95(26):267405
    [30]Kyoungweon P. Georgia Institute of Technology, Atlanta 2006.
    [31]Van der Zande B M, Pages L, Hikmet R A, et al. Optical properties of aligned rod-shaped gold particles dispersed in poly (vinyl alcohol) films.Journal of Physical Chemistry B,1999,103(28):5761-5767
    [32]Murphy C J, Orendorff C J. Alignment of gold nanorods in polymer composites and on polymer surfaces. Advanced Materials,2005,17(18):2173-2177
    [33]Perez-Juste J, Rodriguez-Gonzalez B, Mulvaney P, et al. Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films. Advanced Functional Materials,2005,15(7):1065-1071
    [34]Link S, Furube A, Mohamed M B, et al. Hot electron relaxation dynamics of gold nanoparticles embedded in MgSO4 powder compared to solution:The effect of the surrounding medium. Journal of Physical Chemistry B,2002, 106(5):945-955
    [35]Link S, Wang Z L, El-Sayed M A. How does a gold nanorod melt? Journal of Physical Chemistry B,2000,104(33):7867-7870
    [36]Mohamed M B, Ahmadi T S, Link S, et al. Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chemical Physics Letters,2001, 343(1-2):55-63
    [37]Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Advanced Materials,2003,15(5):353-389
    [38]Link S, Burda C, Mohamed M B, et al. Laser photothermal melting and fragmentation of gold nanorods:energy and laser pulse-width dependence. The Journal of Physical Chemistry A,1999,103(9):1165-1170
    [39]Link S, Burda C, Nikoobakht B, et al. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. Journal of Physical Chemistry B,2000,104(26):6152-6163
    [40]Link S, El-Sayed M A. Spectroscopic determination of the melting energy of a gold nanorod. Journal of Chemical Physics,2001,114(5):2362-2368
    [41]Link S, Burda C, Nikoobakht B, et al. How long does it take to melt a gold nanorod?:a femtosecond pump-probe absorption spectroscopic study. Chemical Physics Letters,1999,315(1):12-18
    [42]Hulteen J C, Martin C R. A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry,1997,7(7):1075-1087
    [43]Dreaden E C, Alkilany A M, Huang X, et al. The golden age:gold nanoparticles for biomedicine. Chemical Society Reviews,2012,41(7):2740-2779
    [44]Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold:noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews,2006,35(3):209-217
    [45]Jain P K, Huang X, El-Sayed I H, et al. Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of Chemical Research,2008,41(12):1578-1586
    [46]Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods:Electrochemical synthesis and optical properties. Journal of Physical Chemistry B,1997,101(34): 6661-6664
    [47]Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society,2002,124(48):14316-14317
    [48]Busbee B D, Obare S O, Murphy C J. An improved synthesis of high-aspect-ratio gold nanorods. Advanced Materials,2003,15(5):414-416
    [49]Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials,2001,13(18):1389-1393
    [50]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B,2001,105(19): 4065-4067
    [51]Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B, 2005,109(29):13857-13870
    [52]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials, 2003,15(10):1957-1962
    [53]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society,2004,126(28):8648-8649
    [54]Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir,2004,20(15):6414-6420
    [55]Murphy C J, Thompson L B, Alkilany A M, et al. The many faces of gold nanorods. Journal of Physical Chemistry Letters,2010,1(19):2867-2875
    [56]Garg N, Scholl C, Mohanty A, et al. The role of bromide ions in seeding growth of Au nanorods. Langmuir,2010,26(12):10271-10276
    [57]Orendorff C J, Murphy C J. Quantitation of metal content in the silver-assisted growth of gold nanorods. Journal of Physical Chemistry B,2006,110(9): 3990-3994
    [58]Ali M R K, Snyder B, El-Sayed M A. Synthesis and optical properties of small au nanorods using a seedless growth technique. Langmuir,2012,28(25): 9807-9815
    [59]Ye X, Jin L, Caglayan H, et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 2012,6(3):2804-2817
    [60]Vigderman L, Zubarev E R. High-yield synthesis of gold nanorods with longitudinal spr peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials,2013,25(8):1450-1457
    [61]Ye X, Zheng C, Chen J, et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Letters,2013,13(2):765-771
    [62]Jana N R. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small,2005,1(8-9):875-882
    [63]Si S, Leduc C, Delville M-H, et al. Short gold nanorod growth revisited:the critical role of the bromide counterion. Chemphyschem,2012,13(1):193-202
    [64]Jana N R. Nanorod shape separation using surfactant assisted self-assembly. Chemical Communications,2003(15):1950-1951
    [65]Alvarez-Puebla R A, Agarwal A, Manna P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences of the United States of America,2011,108(20): 8157-8161
    [66]Smith D K, Korgel B A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir,2008,24(3):644-649
    [67]Smith D K, Miller N R, Korgel B A. Iodide in CTAB prevents gold nanorod formation. Langmuir,2009,25(16):9518-9524
    [68]Jackson S R, McBride J R, Rosenthal S J, et al. Where's the silver? imaging trace silver coverage on the surface of gold nanorods. Journal of the American Chemical Society,2014,136(14):5261-5263
    [69]Edgar J A, McDonagh A M, Cortie M B. Formation of gold nanorods by a stochastic "popcorn" mechanism. ACS Nano,2012,6(2):1116-1125
    [70]Park K, Drummy L F, Wadams R C, et al. Growth mechanism of gold nanorods. Chemistry of Materials,2013,25(4):555-563
    [71]Alekseeva A V, Bogatyrev V A, Khlebtsov B N, et al. Gold nanorods:synthesis and optical properties. Colloid Journal,2006,68(6):661-678
    [72]Murphy C J, Thompson L B, Chernak D J, et al. Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Current Opinion in Colloid & Interface Science,2011,16(2):128-134
    [73]Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, et al. Gold nanorods: synthesis, characterization and applications. Coordination Chemistry Reviews, 2005,249(17):1870-1901
    [74]Liu M Z, Guyot-Sionnest P. Mechanism of silver(Ⅰ)-assisted growth of gold nanorods and bipyramids. Journal of Physical Chemistry B,2005,109(47): 22192-22200
    [75]Niidome Y, Nakamura Y, Honda K, et al. Characterization of silver ions adsorbed on gold nanorods:surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Chemical Communications,2009(13):1754-1756
    [76]Goris B, Bals S, Van den Broek W, et al. Atomic-scale determination of surface facets in gold nanorods. Nature Materials,2012,11(11):930-935
    [77]Johnson C J, Dujardin E, Davis S A, et al. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. Journal of Materials Chemistry,2002,12(6):1765-1770
    [78]Nikoobakht B, El-Sayed M A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir,2001,17(20): 6368-6374
    [79]Gou L, Murphy C J. Fine-tuning the shape of gold nanorods. Chemistry of Materials,2005,17(14):3668-3672
    [80]Jana N R, Gearheart L, Obare S O, et al. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir,2002,18(3):922-927
    [81]Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P, et al. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. Journal of Physical Chemistry B,2005,109(30):14257-14261
    [82]Chen H, Shao L, Ming T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals. Small,2010,6(20):2272-2280
    [83]Tsung C K, Kou X S, Shi Q H, et al. Selective shortening of single-crystalline gold nanorods by mild oxidation. Journal of the American Chemical Society, 2006,128(16):5352-5353
    [84]Bao Z, Sun Z, Xiao M, et al. Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide. Journal of Materials Chemistry,2011, 21(31):11537-11543
    [85]Kou X, Zhang S, Yang Z, et al. Glutathione-and cysteine-induced transverse overgrowth on gold nanorods. Journal of the American Chemical Society,2007, 129(20):6402-6404
    [86]Leonov A P, Zheng J, Clogston J D, et al. Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano,2008,2(12):2481-2488
    [87]Rostro-Kohanloo B C, Bickford L R, Payne C M, et al. The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology,2009, 20(43):434005
    [88]Gomez-Grana S, Hubert F, Testard F, et al. Surfactant (Bi)layers on gold nanorods. Langmuir,2012,28(2):1453-1459
    [89]Khanal B P, Zubarev E R. Rings of nanorods. Angewandte Chemie-International Edition,2007,46(13):2195-2198
    [90]Khanal B P, Zubarev E R. Polymer-functionalized platinum-on-gold bimetallic nanorods. Angewandte Chemie-International Edition,2009,48(37):6888-6891
    [91]Wijaya A, Hamad-Schifferli K. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir,2008,24(18):9966-9969
    [92]Gole A, Murphy C J. Polyelectrolyte-coated gold nanorods:Synthesis, characterization and immobilization. Chemistry of Materials,2005,17(6): 1325-1330
    [93]Wilson C G, Sisco P N, Gadala-Maria F A, et al. Polyelectrolyte-coated gold nanorods and their interactions with type I Collagen. Biomaterials,2009, 30(29):5639-5648
    [94]Thierry B, Ng J, Krieg T, et al. A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chemical Communications, 2009(13):1724-1726
    [95]Gentili D, Ori G, Franchini M C. Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers. Chemical Communications,2009(39):5874-5876
    [96]Yu C, Nakshatri H, Irudayaraj J. Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Letters,2007,7(8):2300-2306
    [97]Liao H W, Hafner J H. Gold nanorod bioconjugates. Chemistry of Materials, 2005,17(18):4636-4641
    [98]Chanda N, Shukla R, Katti K V, et al. Gastrin releasing protein receptor specific gold nanorods:breast and prostate tumor avid nanovectors for molecular imaging. Nano Letters,2009,9(5):1798-1805
    [99]Huang H-C, Barua S, Kay D B, et al. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano,2009,3(10):2941-2952
    [100]LeMieux M C, Lin Y H, Cuong P D, et al. Microtribological and nanomechanical properties of switchable Y-shaped amphiphilic polymer brushes. Advanced Functional Materials,2005,15(9):1529-1540
    [101]Guo R, Zhang L, Qian H, et al. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir,2010,26(8): 5428-5434
    [102]Peng C-A, Wang C-H. Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation. Cancers,2011, 3(1):227-240
    [103]Ratto F, Matteini P, Rossi F, et al. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine-Nanotechnology Biology and Medicine,2009,5(2):143-151
    [104]Wilson C G, Sisco P N, Goldsmith E C, et al. Glycosaminoglycan-functionalized gold nanorods:interactions with cardiac cells and type I collagen. Journal of Materials Chemistry,2009,19(35):6332-6340
    [105]Alkilany A M, Nagaria P K, Wyatt M D, et al. Cation exchange on the surface of gold nanorods with a polymerizable surfactant:polymerization, stability, and toxicity evaluation. Langmuir,2010,26(12):9328-9333
    [106]Lee S E, Sasaki D Y, Perroud T D, et al. Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. Journal of the American Chemical Society,2009,131(39):14066-14074
    [107]Nakashima H, Furukawa K, Kashimura Y, et al. Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids. Langmuir, 2008,24(11):5654-5658
    [108]Orendorff C J, Alam T M, Sasaki D Y, et al. Phospholipid-gold nanorod composites. ACS Nano,2009,3(4):971-983
    [109]Takahashi H, Niidome Y, Niidome T, et al. Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity. Langmuir,2006,22(1):2-5
    [110]Lu G, Hou L, Zhang T, et al. Anisotropic Plasmonic sensing of individual or coupled gold nanorods. The Journal of Physical Chemistry C,2011,115(46): 22877-22885
    [111]Marinakos S M, Chen S, Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Analytical Chemistry,2007,79(14): 5278-5283
    [112]Nusz G J, Marinakos S M, Curry A C, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Analytical Chemistry,2008, 80(4):984-989
    [113]Nusz G J, Curry A C, Marinakos S M, et al. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano,2009,3(4):795-806
    [114]Truong P L, Cao C, Park S, et al. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. Lab on a Chip,2011,11(15):2591-2597
    [115]Zou R, Guo X, Yang J, et al. Selective etching of gold nanorods by ferric chloride at room temperature. Crystengcomm,2009,11(12):2797-2803
    [116]Huang H, Qu C, Liu X, et al. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chemical Communications,2011,47(24):6897-6899
    [117]Rex M, Hernandez F E, Campiglia A D. Pushing the limits of mercury sensors with gold nanorods. Analytical Chemistry,2006,78(2):445-451
    [118]Jain P K, Huang W, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs:A plasmon ruler equation. Nano Letters,2007,7(7):2080-2088
    [119]Wang Z, Zong S, Yang J, et al. One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity. Biosensors & Bioelectronics,2010,26(1):241-247
    [120]Nikoobakht B, Wang Z L, El-Sayed M A. Self-assembly of gold nanorods. Journal of Physical Chemistry B,2000,104(36):8635-8640
    [121]Jana N R. Shape effect in nanoparticle self-assembly. Angewandte Chemie-International Edition,2004,43(12):1536-1540
    [122]Zhu Y, Qu C, Kuang H, et al. Simple, rapid and sensitive detection of antibiotics based on the side-by-side assembly of gold nanorod probes. Biosensors & Bioelectronics,2011,26(11):4387-4392
    [123]Xiao N, Yu C. Rapid-response and highly sensitive noncross-linking colorimetric nitrite sensor using 4-aminothiophenol modified gold nanorods. Analytical Chemistry,2010,82(9):3659-3663
    [124]Liu J-M, Wang H-F, Yan X-P. A gold nanorod based colorimetric probe for the rapid and selective detection of Cu2+ions. Analyst,2011,136(19):3904-3910
    [125]Durgadas C, Lakshmi V N, Sharma C, et al. Sensing of lead ions using glutathione mediated end to end assembled gold nanorod chains. Sensors and Actuators B:Chemical,2011,156(2):791-797
    [126]Huang H, Liu X, Hu T, et al. Ultra-sensitive detection of cysteine by gold nanorod assembly. Biosensors & Bioelectronics,2010,25(9):2078-2083
    [127]Wang L, Zhu Y, Xu L, et al. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angewandte Chemie-International Edition,2010,49(32):5472-5475
    [128]Liu X, Dai Q, Austin L, et al. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. Journal of the American Chemical Society,2008,130(9):2780-2782
    [129]Darbha G K, Rai U S, Singh A K, et al. Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy. Chemistry-a European Journal,2008,14(13):3896-3903
    [130]Wang J, Zhang P, Li J Y, et al. Adenosine-aptamer recognition-induced assembly of gold nanorods and a highly sensitive plasmon resonance coupling assay of adenosine in the brain of model SD rat. Analyst,2010,135(11): 2826-2831
    [131]Kneipp J, Kneipp H, Kneipp K. SERS-a single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews,2008,37(5):1052-1060
    [132]Kneipp K, Kneipp H, Kneipp J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Accounts of Chemical Research,2006,39(7):443-450
    [133]Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications. Chemical Society Reviews,2008,37(5):912-920
    [134]Huang X, El-Sayed I H, Qian W, et al. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra:A potential cancer diagnostic marker. Nano Letters,2007,7(6):1591-1597
    [135]Liao Q, Mu C, Xu D-S, et al. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering. Langmuir,2009,25(8): 4708-4714
    [136]Doherty M D, Murphy A, McPhillips J, et al. Wavelength dependence of Raman enhancement from gold nanorod arrays:quantitative experiment and modeling of a hot spot dominated system. Journal of Physical Chemistry C,2010, 114(47):19913-19919
    [137]Alvarez-Puebla R A, Zubarev E R, Kotov N A, et al. Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today,2012,7(1):6-9
    [138]Oyelere A K, Chen P C, Huang X, et al. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate chemistry,2007,18(5):1490-1497
    [139]Huang X, Jain P K, El-Sayed I H, et al. Gold nanoparticles:interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine,2007,2(5):681-693
    [140]Huang X H, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society,2006,128(6):2115-2120
    [141]El-Sayed I H, Huang X H, El-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:Applications in oral cancer. Nano Letters,2005,5(5):829-834
    [142]Boppart S A, Oldenburg A L, Xu C Y, et al. Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics,2005,10(4):41208
    [143]Boyer D, Tamarat P, Maali A, et al. Photothermal imaging of nanometer-sized metal particles among scatterers. Science,2002,297(5584):1160-1163
    [144]Cognet L, Tardin C, Boyer D, et al. Single metallic nanoparticle imaging for protein detection in cells. Proceedings of the National Academy of Sciences of the United States of America,2003,100(20):11350-11355
    [145]Zharov V P, Lapotko D O. Photothermal imaging of nanoparticles and cells. Ieee Journal of Selected Topics in Quantum Electronics,2005,11(4):733-751
    [146]Durr N J, Larson T, Smith D K, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Letters,2007,7(4): 941-945
    [147]Wang H F, Huff T B, Zweifel D A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences of the United States of America,2005,102(44): 15752-15756
    [148]Yelin D, Oron D, Thiberge S, et al. Multiphoton plasmon-resonance microscopy. Optics Express,2003,11(12):1385-1391
    [149]Agarwal A, Huang S W, O'Donnell M, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Journal of Applied Physics,2007,102(6):064701-064704
    [150]Chamberland D L, Agarwal A, Kotov N, et al. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. Nanotechnology,2008,19(9):0995101
    [151]Eghtedari M, Oraevsky A, Copland J A, et al. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Letters,2007,7(7):1914-1918
    [152]Kim K, Huang S-W, Ashkenazi S, et al. Photoacoustic imaging of early inflammatory response using gold nanorods. Applied Physics Letters,2007, 90(22):223901
    [153]Li P-C, Wei C-W, Liao C-K, et al. Photoacoustic imaging of multiple targets using gold nanorods. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2007,54(8):1642-1647
    [154]Ding H, Yong K-T, Roy I, et al. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. Journal of Physical Chemistry C,2007,111(34):12552-12557
    [155]Oldenburg A L, Hansen M N, Zweifel D A, et al. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express,2006,14(15):6724-6738
    [156]Chen C C, Lin Y P, Wang C W, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. Journal of the American Chemical Society,2006,128(11):3709-3715
    [157]Horiguchi Y, Niidome T, Yamada S, et al. Expression of plasmid DNA released from DNA conjugates of gold nanorods. Chemistry Letters,2007,36(7): 952-953
    [158]Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chemical Communications,2005(17):2247-2249
    [159]Wei Q, Ji J, Shen J. Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for Smart drug delivery. Macromolecular Rapid Communications,2008,29(8): 645-650
    [160]Huang X H, Jain P K, El-Sayed I H, et al. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochemistry and Photobiology,2006,82(2):412-417
    [161]Dickerson E B, Dreaden E C, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters,2008,269(1):57-66
    [162]Tong L, Zhao Y, Huff T B, et al. Gold nanorods mediate tumor cell death by compromising membrane integrity. Advanced Materials,2007,19(20): 3136-3141
    [163]Cang H, Shan Xu C, Yang H. Progress in single-molecule tracking spectroscopy. Chemical Physics Letters,2008,457(4):285-291
    [164]Kulzer F, Orrit M. Single-molecule optics. Annual Review of Physical Chemistry,2004,55):585-611
    [165]Kukura P, Ewers H, Muller C, et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Methods,2009,6(12): 923-927
    [166]Toprak E, Enderlein J, Syed S, et al. Defocused orientation and position imaging (DOPI) of myosin V. Proceedings of the National Academy of Sciences,2006, 103(17):6495-6499
    [167]Ha J W, Marchuk K, Fang N. Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy. Nano Letters,2012,12(8):4282-4288
    [168]Pierrat S, Hartinger E, Faiss S, et al. Rotational dynamics of laterally frozen nanoparticles specifically attached to biomembranes. Journal of Physical Chemistry C,2009,113(26):11179-11183
    [169]Xiao L H, Qiao Y X, He Y, et al. Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy. Journal of the American Chemical Society,2011,133(27):10638-10645
    [170]Wang G, Sun W, Luo Y, et al. Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy. Journal of the American Chemical Society, 2010,132(46):16417-16422
    [171]Xiao L, Ha J W, Wei L, et al. Determining the full three-dimensional orientation of single anisotropic nanoparticles by differential interference contrast microscopy. Angewandte Chemie-International Edition,2012,51(31): 7734-7738
    [172]Spetzler D, York J, Daniel D, et al. Microsecond time scale rotation measurements of single F-1-ATPase molecules. Biochemistry,2006,45(10): 3117-3124
    [173]Gu Y, Sun W, Wang G, et al. Rotational dynamics of cargos at pauses during axonal transport. Nature communications,2012, (3):1030
    [174]Gu Y, Sun W, Wang G, et al. Revealing rotational modes of functionalized gold nanorods on live cell membranes. Small,2013,9(5):785-792
    [175]Xiao L H, Wei L, Liu C, et al. Unsynchronized translational and rotational diffusion of nanocargo on a living cell membrane. Angewandte Chemie-International Edition,2012,51(17):4181-4184
    [176]Varnavski O P, Mohamed M B, El-Sayed M A, et al. Relative enhancement of ultrafast emission in gold nanorods. Journal of Physical Chemistry B,2003, 107(14):3101-3104
    [177]Imura K, Nagahara T, Okamoto H. Plasmon mode imaging of single gold nanorods. Journal of the American Chemical Society,2004,126(40): 12730-12731
    [178]Zhu Y Y, Kuang H, Xu L G, et al. Gold nanorod assembly based approach to toxin detection by SERS. Journal of Materials Chemistry,2012,22(6): 2387-2391
    [179]Xu L G, Kuang H, Wang L B, et al. Gold nanorod ensembles as artificial molecules for applications in sensors. Journal of Materials Chemistry,2011, 21(42):16759-16782
    [180]Kabashin A V, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials,2009,8(11):867-871
    [181]Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser. Nature,2009,460(7259):1110-1112
    [182]Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature,2009,459(7245):410-413
    [183]Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:Role of the size and nature of the seed. Chemistry of Materials,2004,16(19):3633-3640
    [184]Cheng J, Liu Y, Cheng X, et al. Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Analytical Chemistry,2010,82(20):8744-8749
    [185]Ni W, Kou X, Yang Z, et al. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano,2008, 2(4):677-686
    [186]Basnar B, Weizmann Y, Cheglakov Z, et al. Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks. Advanced Materials,2006, 18(6):713-718
    [187]Zayats M, Baron R, Popov I, et al. Biocatalytic growth of Au nanoparticles: From mechanistic aspects to biosensors design. Nano Letters,2005,5(1):21-25
    [188]Liu X K, Xu H L, Xia H B, et al. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir,2012,28(38):13720-13726
    [189]Li H, Ma X Y, Dong J, et al. Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity. Analytical Chemistry,2009,81(21):8916-8922
    [190]Luo W J, Zhu C F, Su S, et al. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano,2010,4(12):7451-7458
    [191]Wang C G, Wang T T, Ma Z F, et al. pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios. Nanotechnology,2005,16(11): 2555-2560
    [192]Jiang X C, Brioude A, Pileni M P. Gold nanorods:limitations on their synthesis and optical properties. Colloids and Surfaces A,2006,277(1-3):201-206
    [193]Perez-Juste J, Liz-Marzan L M, Carnie S, et al. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Advanced Functional Materials, 2004,14(6):571-579
    [194]Zhu J, Yong K T, Roy I, et al. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology, 2010,21(28):285106
    [195]Tiwari N, Kalele S, Kulkarni S K. Modulation of optical properties of gold nanorods on addition of KOH. Plasmonics,2007,2(4):231-236
    [196]Sau T K, Rogach A L. Nonspherical noble metal nanoparticles:colloid-chemical synthesis and morphology control. Advanced Materials,2010,22(16): 1781-1804
    [197]Gersten J I. The effect of surface roughness on surface enhanced Raman scattering. The Journal of Chemical Physics,2008,72(10):5779-5780
    [198]Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics. Journal of Physics-Condensed Matter,2002,14(18):R597-R624
    [199]Gans R. Uber die form ultramikroskopischer goldteilchen. Annalen der Physik, 1912,342(5):881-900
    [200]Johnson P B, Christy R-W. Optical constants of the noble metals. Physical Review B,1972,6(12):4370
    [201]Davis M E, Chen Z, Shin D M. Nanoparticle therapeutics:an emerging treatment modality for cancer. Nature Reviews Drug Discovery,2008,7(9):771-782
    [202]Riveros A, Dadlani K, Sales E, et al. Gold nanoparticle-membrane interactions: implications in biomedicine. Journal of Biomaterials and Tissue Engineering, 2013,3(1):4-21
    [203]Slowing I, Viveroescoto J, Wu C, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews,2008,60(11):1278-1288
    [204]Wang A Z, Langer R, Farokhzad O C. Nanoparticle delivery of cancer drugs. Annual Review of Medicine,2012,63(1):185-198
    [205]Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science,2006,312(5776): 1027-1030
    [206]Salem A K, Searson P C, Leong K W. Multifunctional nanorods for gene delivery. Nature Materials,2003,2(10):668-671
    [207]Leroueil P R, Hong S, Mecke A, et al. Nanoparticle interaction with biological membranes:Does nanotechnology present a janus face? Accounts of Chemical Research,2007,40(5):335-342
    [208]Doherty G J, McMahon H T. Mechanisms of endocytosis. Annual Review of Biochemistry,2009,78(1):857-902
    [209]Marguet D, Lenne P-F, Rigneault H, et al. Dynamics in the plasma membrane: how to combine fluidity and order. Embo Journal,2006,25(15):3446-3457
    [210]Chen L Q, Xiao S J, Hu P P, et al. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics. Analytical Chemistry,2012,84(7):3099-3110
    [211]Yang Y H, Nam J M. Single nanoparticle tracking-based detection of membrane receptor-ligand interactions. Analytical Chemistry,2009,81(7):2564-2568
    [212]The facts on file dictionary of biology, New York:Checkmark,1999,198
    [213]Rong G X, Wang H Y, Reinhard B M. Insights from a nanoparticle minuet: two-dimensional membrane profiling through silver plasmon ruler tracking. Nano Letters,2010,10(1):230-238
    [214]Dubikovsky A, Sveshnikov K. Decoupling of translational and rotational modes for a quantum soliton. Physics Letters B,1993,317(4):581-589
    [215]Edmond K V, Elsesser M T, Hunter G L, et al. Decoupling of rotational and translational diffusion in supercooled colloidal fluids. Proceedings of the National Academy of Sciences of the United States of America,2012,109(44): 17891-17896
    [216]Cureton D K, Massol R H, Saffarian S, et al. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PIos Pathogens,2009,5(4):e1000394
    [217]Yang K, Ma Y Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology,2010,5(8): 579-583
    [218]Forkey J N, Quinlan M E, Goldman Y E. Protein structural dynamics by single-molecule fluorescence polarization. Progress in Biophysics & Molecular Biology,2000,74(1-2):1-35
    [219]Zhou R, Xiong B, He Y, et al. Slowed diffusion of single nanoparticles in the extracellular microenvironment of living cells revealed by darkfield microscopy. Analytical and Bioanalytical Chemistry,2011,399(1):353-359
    [220]Whitty A. Cooperativity and biological complexity. Nature chemical biology, 2008,4(8):435-439
    [221]Edidin M. Shrinking patches and slippery rafts:scales of domains in the plasma membrane. Trends in cell biology,2001,11(12):492-496
    [222]Fujiwara T, Ritchie K, Murakoshi H, et al. Phospholipids undergo hop diffusion in compartmentalized cell membrane. The Journal of cell biology,2002,157(6): 1071-1082
    [223]Suzuki K, Ritchie K, Kajikawa E, et al. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophysical Journal,2005,88(5):3659-3680
    [224]Gundelfinger E D, Kessels M M, Qualmann B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Reviews Molecular Cell Biology,2003,4(2):127-139
    [225]Hancock J F. Lipid rafts:contentious only from simplistic standpoints. Nature Reviews Molecular Cell Biology,2006,7(6):456-462
    [226]Saxton M J, Jacobson K. Single-particle tracking:applications to membrane dynamics. Annual Review of Biophysics and Biomolecular Structure,1997,26): 373-399
    [227]Deschenes L A, Vanden Bout D A. Molecular motions in polymer films near the glass transition:a single molecule study of rotational dynamics.Journal of Physical Chemistry B,2001,105(48):11978-11985
    [228]Woll D, Braeken E, Deres A, et al. Polymers and single molecule fluorescence spectroscopy, what can we learn? Chemical Society Reviews,2009,38(2): 313-328
    [229]Adhikari S, Selmke M, Cichos F. Temperature dependent single molecule rotational dynamics in PMA. Physical Chemistry Chemical Physics,2011, 13(5):1849-1856
    [230]Hoeller D, Volarevic S, Dikic I. Compartmentalization of growth factor receptor signalling. Current opinion in cell biology,2005,17(2):107-111
    [231]Gruenberg J, Van der Goot F G. Mechanisms of pathogen entry through the endosomal compartments. Nature Reviews Molecular Cell Biology,2006,7(7): 495-504
    [232]Brandenburg B, Zhuang X. Virus trafficking-learning from single-virus tracking. Nature Reviews Microbiology,2007,5(3):197-208
    [233]Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annual Review of Biochemistry,2010,79(1):803-833
    [234]Poland C A, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology,2008,3(7):423-428
    [235]Donaldson K, Murphy F A, Duffin R, et al. Asbestos, carbon nanotubes and the pleural mesothelium:a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol,2010,7(5):5
    [236]Brown D M, Kinloch I A, Bangert U, et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon,2007,45(9):1743-1756
    [237]Sanchez V C, Pietruska J R, Miselis N R, et al. Biopersistence and potential adverse health impacts of fibrous nanomaterials:what have we learned from asbestos? Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2009,1(5):511-529
    [238]Cao J, Galbraith E K, Sun T, et al. Effective surface modification of gold nanorods for localized surface plasmon resonance-based biosensors. Sensors and Actuators B-Chemical,2012,169):360-367
    [239]Nel A E, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials,2009,8(7):543-557
    [240]Niedzwiecki D J, Grazul J, Movileanu L. Single-molecule observation of protein adsorption onto an inorganic surface. Journal of the American Chemical Society,2010,132(31):10816-10822
    [241]Schwierz N, Horinek D, Liese S, et al. On the relationship between peptide adsorption resistance and surface contact angle:a combined experimental and simulation single-molecule study. Journal of the American Chemical Society, 2012,134(48):19628-19638
    [242]Wirth M J, Legg M A. Single-molecule probing of adsorption and diffusion on silica surfaces. Annual Review of Physical Chemistry,2007,489-510
    [243]Yeung E S. Dynamics of single biomolecules in free solution. Annual Review of Physical Chemistry,2004, (55):97-126
    [244]Kastantin M, Walder R, Schwartz D K. Identifying mechanisms of interfacial dynamics using single-molecule tracking. Langmuir,2012,28(34): 12443-12456
    [245]Myers G A, Gacek D A, Peterson E M, et al. Microscopic rates of peptide-phospholipid bilayer interactions from single-molecule residence times. Journal of the American Chemical Society,2012,134(48):19652-19660
    [246]Xu X H N, Yeung E S. Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science,1998,281(5383):1650-1653
    [247]Montgomery M E, Green M A, Wirth M J. Orientational dynamics of a hydrophobic guest in a chromatographic stationary phase:effect of wetting by alcohol. Analytical Chemistry,1992,64(10):1170-1175
    [248]Kang S H, Yeung E S. Dynamics of single-protein molecules at a liquid/solid interface:Implications in capillary electrophoresis and chromatography. Analytical Chemistry,2002,74(24):6334-6339
    [249]Wirth M J, Swinton D J. Single-molecule probing of mixed-mode adsorption at a chromatographic interface. Analytical Chemistry,1998,70(24):5264-5271
    [250]Wirth M J, Burbage J D. Adsorbate reorientation at a water/(octadecylsilyl)silica interface. Analytical Chemistry,1991,63(13):1311-1317
    [251]McCue J T. Guide to protein purification, Second Edition,2009,405-414
    [252]Zhang L, Zhao G F, Sun Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography:a molecular dynamics simulation. Journal of Physical Chemistry B,2009,113(19): 6873-6880
    [253]Kienle S, Pirzer T, Krysiak S, et al. Measuring the interaction between ions, biopolymers and interfaces-one polymer at a time. Faraday Discussions,2013, (160):329-340
    [254]Kim S, Sohn H, Boo J-H, et al. Significantly improved stability of n-octadecyltrichlorosilane self-assembled monolayer by plasma pretreatment on mica. Thin Solid Films,2008,516(6):940-947
    [255]Wang L, Li J, Pan J, et al. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques:understanding the reduced damage in cell membranes. Journal of the American Chemical Society,2013,135(46):17359-17368
    [256]Deitcher R W, O'Connell J P, Fernandez E J. Changes in solvent exposure reveal the kinetics and equilibria of adsorbed protein unfolding in hydrophobic interaction chromatography. Journal of Chromatography A,2010,1217(35): 5571-5583
    [257]Ueberbacher R, Rodler A, Hahn R, et al. Hydrophobic interaction chromatography of proteins:Thermodynamic analysis of conformational changes. Journal of Chromatography A,2010,1217(2):184-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700