用户名: 密码: 验证码:
利用暂态信号的小电流接地故障距离识别技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的不断发展和人民生活水平的日益提高,用户对供电可靠性的要求越来越高。在对电力体制进行市场化改革的国家,供电可靠性是电力监管委员会监管和考核供电企业的关键指标。因此,各供电企业十分重视电力线路故障定位技术的开发与应用,以缩短故障查找与修复时间,提高供电可靠性和用户满意度。
     我国6~66kV中压电网普遍采用中性点非有效接地方式。采用这种运行方式,在发生单相接地故障(小电流接地故障)后,允许带故障运行一段时间,不影响负荷供电,提高了供电可靠性。但对于中性点非有效接地系统,发生单相接地后由于故障电流微弱,故障稳态特征不明显,导致小电流接地故障检测比较困难。近年来,小电流接地故障选线已基本得到了解决,但故障测距还没有很好的解决办法,需要开发研究适用于小电流接地故障的故障定位方法。
     本文研究利用暂态故障信号的小电流接地故障故障测距算法及应用技术。通过分析小电流接地故障的故障特征,利用测量端的暂态电压、电流信号建立小电流接地故障的测距方程,求解测距方程,计算故障距离。
     根据上述思路,本文研究并得出了适用于小电流接地故障的故障测距算法,通过ATP数字仿真及静态模拟试验证明了该方法的正确性和实用性。具体研究内容包括:
     1、总结分析小电流接地故障暂稳态特征,重点分析故障暂态过程,研究接地电流信号中几个主要分量的暂态特征。分析可知,小电流接地故障的稳态故障信号不适用于故障计算,特别是经消弧线圈补偿后,基于稳态故障信号的检测技术完全失效。而故障暂态信号幅值较大,变化明显,且暂态分析时可以忽略消弧线圈影响,更适合用于小电流接地故障故障距离的计算。
     2、分析研究电力线路的传统等值电路,提出适用于小电流接地故障计算的Γ形等值电路模型,并通过分析二端口外特性及阻抗.频率特性验证Γ形等值电路的有效性。与Π形、T形等值电路相比,采用Γ形等值电路,可以减少网络节点,简化故障方程,便于故障距离计算。通过分析对比Π形、T形、Γ形等值电路的二端口外特性,得出Γ形等值电路等效不同长度线路时的适用频率;通过对采用分布参数模型和Γ形等值电路模型的稳态电路进行阻抗-频率特性分析,得出在适用频率范围内Γ形等值电路可以用于电力线路等值的结论。Γ形等值电路的提出为建立小电流接地故障数学模型奠定了基础。
     3、采用卡伦堡尔(Karrenbauer)变换对小电流接地故障进行三相解耦,利用单相接地故障边界条件建立基于Γ形等值电路的小电流接地故障复合模网,列写小电流接地故障测距数学方程。该数学模型即描述母线端电压、电流与故障线路、接地电阻之间关系的接地故障方程。
     4、利用双线性z变换实现小电流接地故障拉普拉斯方程的频域离散化,建立小电流接地故障的时域差分方程。分析小电流接地故障微分方程时发现,由于数值微分误差较大,导致离散化后的差分方程用于测距计算精度较差。为此本文首先将时域故障方程转化为s域的拉普拉斯方程,再通过双线形z变换将s域连续的拉普拉斯方程转换为z域离散的z方程,利用z变换定义最终得到时域的差分方程。由此得到了包含电压、电流变量及故障线路参数(非金属性故障时还包含过渡电阻)的可数值求解的时域小电流接地故障差分方程。转换过程中避免了多值映射、频谱混叠等问题,提高了故障差分方程模型的精度,为下一步故障距离求解奠定了基础。
     5、利用参数识别技术求解小电流接地故障测距超定方程。针对利用采样信号联立方程,直接求解小电流接地故障方程时测距误差较大、结果不稳定的问题,本文采用参数识别中的最小二乘估计法求解由多量采样信号构成的故障超定方程,不需要任何先验知识,适合用于小电流接地故障暂态计算。
     6、简化小电流接地故障辨识方程,将方程中对线路参数的辨识转化为对故障距离的辨识。为克服线路参数辨识方程求解复杂、测距精度差的缺点,利用已知线路分布参数,将故障线路模参数全部转化为故障距离与单位长度线路模参数的乘积,即将线路模参数辨识方程转化为故障距离辨识方程。这一简化减轻了最小二乘算法的拟合负担,提高了辨识精度。
     7、利用基于电磁暂态软件包ATP的数字仿真和基于配电网物理模型的静模试验对所提出的小电流接地故障测距算法进行验证。仿真和试验结果证明了本文提出的小电流接地故障测距算法的正确性、有效性和实用性。
     8、通过对各辨识项分量分析比较以及结果校验,选取精度最高的辨识结果作为最终的故障距离。小电流接地故障距离辨识方程中包含两个故障距离辨识项,对比分析各分量的能量大小及抗干扰度,确定其中精度较高的辨识项作为测距结果。
     本文提出的小电流接地故障测距算法测距精度高,灵敏、可靠且不受中性点运行方式影响,对暂态信号有非常好的适用性,能在半个周波甚至更短的时间窗内完成准确的故障测距,能够满足现场工程要求,且该技术不需要附加任何设备,成本低,工程实现方便。算法的不足之处是高阻接地故障的测距精度较低,需要进一步改进。
     本文提出的小电流接地故障暂态测距算法,可以解决小电流接地故障定位这一长期没有得到解决的难题。该技术的推广应用对于提高电力系统供电可靠性以及推进小电流接地故障测距技术的发展具有十分重要的意义。
Fast development of economy and improvement of living standards lead to requirements to higher power supply reliability. In the countries which the power market reform has been carried out, supply reliability is the important indicator of power company performance supervised by the State Electricity Regulatory Commission. In this situation, the development and application of power line fault location technique is paid more attention to by power utilities, which intend to shorten time of fault searching and repairing, and improve the supply reliability and customer satisfaction.
     In China, most MV distribution networks (6-66kV) employ non-effectively earthed neutrals. In such systems, when a single phase to earth (SPE) fault occurs, the faulted system can be permitted to keep service for 1-2 hours without removing the fault, which reduces the probability of more serious accidents. Unlike effectively earthed systems, the fault current caused by SPE fault in non-effectively earthed systems is very small, and the steady characteristics are inconspicuous. So the fault location issue for SPE fault in non-effectively earthed systems has not being well solved for a long time. The existing techniques have many shortages, such as low sensitivity, inaccurate mathematic model, especially in the aspect of inadequate utilization of transient signals. Therefore new fault location techniques need to be developed in order to meet the requirement of non-effectively earthed systems.
     The algorithm and application technique of fault distance estimation for SPE fault is researched in this paper. With analysis to the fault characteristics of SPE fault, the fault distance equation can be gotten based on the measured transient voltage and current. Then the fault distance can be gotten by solving the equation.
     According to the above key thought, a series of corresponding researches were carried out. At last a new fault location estimation algorithm is proposed, which is suitable to the SPE fault in non-effectively earthed neutral network. The result of ATP simulation and static simulation has proved its accuracy and practicality. The detailed research works include:
     (1)The transient and steady characteristics of SPE fault in non-effectively earthed neutral network are analyzed, and the transient signals are researched in detail. From the analysis, the steady fault signal is not suitable to fault estimation; especially for the compensated system, the methods based on the steady signals are invalid totally. But the amplitude of transient signals is bigger and has an obvious variety, and in the transient analysis, the Peterson coil can be neglected, which is convenience to the fault location estimation of non-effectively earthed neutral network.
     (2)The traditional equivalent circuits of power lines are analyzed and a newΓ-mode equivalent circuit is proposed. The accuracy ofΓ-mode circuit is proved by analyzing its two-port external characteristics and impedance-frequency characteristics. The employing ofΓ-mode equivalent circuit can reduce the net nodes and simplify the fault equation. The analyzing results proved thatΓ-mode equivalent circuit can equal medium length power lines in the selected frequency band. The adoption ofΓ-mode equivalent circuit lays a solid foundation for SPE fault mathematical model.
     (3)The SPE fault can be decomposed to aerial mode component and earth mode component by Karrenbauer transformation. And based onΓ-mode equivalent circuit, the modal network of SPE fault can be built with the boundary condition. Further the fault location estimating equation can be gotten. The equation shows the relationship of variables (voltage, current) at bus end, faulted line parameters and earth resistance.
     (4)The Laplace fault equation is discretized in frequency domain using bilinear transformation, and then the corresponding difference equation in domain can be gotten. If the fault differential equation is transformed to difference equation directly, the estimation accuracy is worse. Therefor the differential equation in s domain is transformed to Laplace equation in first, and then the Laplace equation is transformed to z equation by bilinear transformation. At last the difference equation in time domain is gotten with z transformation definition, which the difference equation is the fault estimation equation including voltage, current, faulted line parameters and earth resistance. During the transformations, frequency alias is avoided and the accuracy of fault difference equation is improved.
     (5)The overdetermined equations of SPE fault are solved by the least square method. If only few samplings is used to solve the fault equation, the calculation error is bigger and the result is instable. In this paper the least square estimation is used to solve the fault overdetermined equations, which is formed by plentiful samplings. The least square estimation needs not any prior knowledge, which is the best approach to solve the fault transient problems.
     (6)Simplify the fault estimation equation by the transforming from faulted line parameters estimation to fault location estimation. To overcome the shortage of complex and low-accuracy of faulted line estimation equation, the faulted line parameters is transformed to the product which multiplying the fault distance and line parameters per unit length using the distributed parameters. So the fault location equation can be gotten. This simplification reduces the calculation of the least square estimation and improves the estimation accuracy.
     (7)The results of ATP simulation and static simulation have proved the accuracy of the proposed fault location estimation algorithm. With building the simulation model and setting simulation parameters, different conditions of SPE fault is simulated. The results proved the accuracy and practicality of this fault location algorithm.
     (8)With comparison and examination to each estimation items of results, the high-accuracy item is chosen as the last distance result. The fault location estimation equation includes two distance items. From the comparison of energy and interference immunity, the high-accuracy item can be gotten as the result.
     The proposed algorithm has the high reliability, sensitivity and applicability to transient signals. And it is free from the Peterson coil and fault position, and can estimate the fault distance with half cycle or more short sampling length. This fault location estimation method is low cost without any additional devices and can be realized easily, which can satisfy the requirement of field engineering.But when the earth resistance is much higher, the estimation accuracy decreased relatively, which should be improved in future.
     The proposed distance estimation technical makes the important progress in fault location field of SPE fault, and its application has obviously significance for the improvement of supply reliability.
引文
[1]李天友,金文龙,徐丙垠.配电技术[M].北京:中国电力出版社,2008.
    [2]IEEE recommended practice for frounding of industrial and commercial power systems[S].IEEE Std 142-1991,1992.
    [3]方向晖.中低压配电网规划与设计基础[M].北京:中国水利水电出版社,2004.
    [4]Working group WG03 report.Fault management electrical distribution systems.CIRED 1999,nice,France.
    [5]The effectiveness of distribution protection working group report.Distribution line protection practices-industry survey results.IEEE Transactions on power delivery,April 1988,3(2):514-524.
    [6]要焕年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社,2000.
    [7]李福寿.中性点非有效接地电网的运行[M].北京:水利电力出版社,1995.
    [8]刘万顺.电力系统故障分析[M].北京:中国电力出版社,1998.
    [9]LEHTONEN M,HAKOLA T.Neutral earthing and power system protection[M].Vaasa,Finland:ABB Transmit Oy Publication,1996.
    [10]Karl Zimmerman and David Costello.Impedance- Based Fault Location Experience.IEEE,2000,211-226.
    [11]孙波,孙同景,薛永端等.基于暂态信息的小电流接地故障区段定位[J].电力系统自动化,2008,32(3):52-55.
    [12]卢继平,黎颖,李健,薛毅,曾青毅.行波法与阻抗法结合的综合单端故障测距新方法.电力系统自动化,2007,31(23):65-69.
    [13]桑在中,潘贞存,李磊,张慧芬.小电流接地系统单相接地故障选线测距和定位的新技术.电网技术,1997,21(10):50-52,55.
    [14]张慧芬,潘贞存,桑在中.基于注入法的小电流接地系统故障定位新方法[J].电力系统自动化,2004,28(3):64-66.
    [15]伊贵业,杨学昌,吴振升.用在线监测器的配电网故障定位法.清华大学学报,2000,40(7):35-38.
    [16]吴杰,王政.基于FTU的小电流接地系统故障定位方法再研究.继电器,2004,32(22):29-34.
    [17]齐郑,刘宝柱,王璐,贺晋宏.广域残流增量选线方法在辐射状谐振接地系统中的应用[J].电力系统自动化,2006,30(3):84-88.
    [18]王政,吴杰.配合FTU的小电流系统单相接地故障定位方法[J].电力自动化设备,2003,23(2):21-26.
    [19]杨汉生,赵斌,姚晴林,陈海云.基于零序功率的小电流选线方法[J].继电器,2002,30(11):30-32.
    [20]薛永端,陈羽,徐丙垠,李京,熊立新.利用暂态特征的新型小电流接地故障监测系统.电力系统 自动化,2004,28(24):83-87.
    [21]马士聪,徐丙垠,高厚磊等.检测暂态零模电流相关性的小电流接地故障定位方法.电力系统自动化,电力系统自动化,2008,32(7):48-52.
    [22]侯自力,彭兰芳.端口故障诊断法原理及算法[J].北京邮电学院学报,1990,13(2):66-72.
    [23]侯自力,彭兰芳.树枝型电力网短路故障的端口比值分支定位法[J].电子科学学刊,1990,12(6):641-645.
    [24]伊贵业,杨学昌,吴振升.配电网传递函数故障定位法的判据分析[J].电力系统自动化,2000,24(19):29-33.
    [25]王新超,桑在中.基于“S注入法”的一种故障定位新方法[J].继电器,2001,29(7):9-11.
    [26]于盛楠,杨以涵,鲍海.基于C型行波法的配电网故障定位的实用研究.继电器,2007,35(10):1-4,12.
    [27]严凤.中性点非有效接地系统单相接地行波定位方法的研究[D].华北电力大学,2003.
    [28]季涛.基于暂态行波的配电线路故障测距研究[D].山东大学,2006.
    [29]ZENG Xiang-jun,LI K.K.,LIU Zheng-yi,YIN Xiang-gen.Fault Location Using Traveling Wave for Power Networks.LAS 2004,IEEE.
    [30]索南加乐,张怿宁,齐军等.基于参数识别的时域法双端故障测距原理.电网技术,2006,30(8):66-70.
    [31]康小宁,索南加乐.基于参数识别的单端电气量频域法故障测距原理.中国电机工程学报,2005,25(2):22-27.
    [32]YUAN Liao.Algorithms for Power System Fault Location and Line Parameter Estimation.39th southeastern symposium on system theory.Page:189-193.
    [33]谢芝东.基于参数识别的小电流接地系统单相接地故障选线与定位技术的研究[D].合肥工业大学,2007.
    [34]MA Shicong;XU Bingyin;GAO Houlei.Fast fault location and restoration of looped MV network.Transactions of Tianjin University,April 2008 page(s):148-152.
    [34]Bretas,A.S.;Moreto,M.;Salim,R.H.;Pires,L.O..A novel high impedance fault location for distribution systems considering distributed generation.Transmission & Distribution Conference and Exposition:Latin America,2006.TDC'06.IEEE/PES,Aug.2006 Page(s):1-6.
    [35]XU Bing-yin,LI Tian-you.Fast fault isolation and restoration of looped MV circuit.19th International Conference on Electricity Distribution[A].Vienna,21-24 May 2007,paper No.0049,section 3.
    [36]Bockarjova,M.;Dolgicers,A.;Sauhats,A..Enhancing Fault Location Performance on Power Transmission Lines.Power Tech,2007 IEEE Lausanne,1-5 July 2007 Page(s):1123-1128.
    [37]Gohokar,V.N.;Gohokar,V.V.Fault location in automated distribution network.Circuits and System,2005.ISCAS 2005.Page(s):3898-3901.
    [38]Thukaram,D.;Shenoy,U.J.;Ashageetha,H..Neural network approach for fault location in unbalanced distribution networks with limited measurements.Power India Conference,2006IEEE.Page(s):8 pp.
    [39]Strang,W.M.;Westfall,R.M.;Darlington,A.N..Distribution line protection practices industry survey results.Power Delivery,IEEE Transactions,Jan.1995 page(s):176-186.
    [40]Martins,L.S.;Martins,J.F.;Alegria,C.M..A network distribution power system fault location based on neural eigenvalue algorithm.Power Tech Conference Proceedings,2003 IEEE Bologna.June 2003 pages(s):6 pp.
    [41]Myeon-Song Choi;Seung-Jae Lee;Duck-Su Lee.A new fault location algorithm using direct circuit analysis for distribution systems.Power Delivery,IEEE Transactions.Jan.2004page(s):35-41.
    [42]Xu Bingyin;Xue Yongduan;Li Jing.Single phase fault detection technique based on transient current and its application in non-solid grounded network.Developments in Power System Protection,2001,Seventh International Conference(IEE).April 2002 page(s):141-144.
    [43]Senger,E.C.;Manassero,G.,Jr.;Goldemberg,C..Automated fault location system for primary distribution networks.Power Delivery,IEEE Transactions.April 2005 page(s):1332-1340.
    [44]齐郑.小电流接地系统单相接地故障选线及定位技术的研究[D].华北电力大学(北京),2005.
    [45]严凤.中性点非有效接地系统单相接地行波定位方法的研究[D].华北电力大学(河北),2004.
    [46]连鸿波.谐振接地电网单相接地故障消弧及选线技术一体化研究[D].华北电力大学(河北),2006.
    [47]张慧芬.配电网单相接地故障检测技术研究[D].山东大学,2006.
    [48]史燕琨.基于供电可靠性的配电网自动化理论与实践研究[D].大连理工大学,2006.
    [49]何秋宇.基于模式识别的输电线路行波法测距新算法研究[D].华北电力大学(北京),2007.
    [50]刘洪军.铁路电力自闭/贯通线路行波故障测距技术[D].山东大学,2006.
    [51]赵晓微.铁路自闭贯通线路行波故障测距的应用研究[D].中国农业大学,2005.
    [52]蔡润溟.小电流接地系统单相接地故障选线和测距方法的研究[D].山东大学,2007.
    [53]白杨.信号注入式小电流接地故障测距的研究及信号源的设计[D].哈尔滨理工大学,2003.
    [54]贺家李,宋从矩。电力系统继电保护原理(第三版)。北京:中国电力出版社,1994。
    [55]葛耀中.新型继电保护和故障测距的原理与技术(第二版)[M].陕西:西安交通大学出版社,2007.
    [56]马长贵.高压电网继电保护原理[M].北京:水利电力出版社,1987.
    [57]朱声石.高压电网继电保护原理与技术(第三版)[M].北京:中国电力出版社,2005.
    [58]贺家李,葛耀中.超高压输电线路故障分析与继电保护[M].北京:科学出版社,1987.
    [59]吴维韩,张芳榴等.电力系统过电压数值计算[M].北京:科学出版社,1989.
    [60]Urano,S.;Yamada,T.;Ooura,Y..Development of the high accuracy Impedance Type Fault Locator using a Mode Transformation.Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES.2005 page(s):1-6.
    [61]Sousa Martins,L.;Martins,J.F.;Fernao Pires,V..The application of neural networks and Clarke-Concordia transformation in fault location on distribution power systems.Transmission and Distribution Conference and Exhibition 2002:Asia Pacific.IEEE/PES.2002page(s):2091-2095.
    [62]薛永端,冯祖仁,徐丙垠.中性点非直接接地电网单相接地故障暂态特征分析.西安交通大学学报,2004,38(2):195-199.
    [63]Rong Lian;Zhong Chen;Lixing Zhou.Research on a New Fault Location Method Based on Frequency Analysis.Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES.2005 Page(s):1-4.
    [64]陈珩.电力系统稳态分析[M].北京:水利电力出版社,1995.
    [65]齐磊,崔翔,卢铁兵.基于递归算法的含频变参数架空线的模量计算模型.电波科学学报,2005,20(2):197-201.
    [66]邱关源.电路[M].北京:高等教育出版社,2000.
    [67]黄伟,聂东,陈英俊.MATLAB环境下频率的响应曲线的绘制方法.应用技术,2001:20-22.
    [68]谢德喜.拉普拉斯变换在工程方程中的应用[J].天津科技大学学报,1990,9(1):103-110.
    [69]陈子栋,楼智美,陈小兰.用拉普拉斯变换法分析电路的暂态过程.浙江师大学报(自然科学版),2000,23(4):375-378.
    [70]陈建新.突变时电路初始值的确定.哈尔滨师范大学自然科学学报,2002,18(5):33-37.
    [71]钱琳琳,李平,李秀丽等.拉式变换初值/终值定理教学思路探讨[J].北京联合大学学报,2007,21(4):81-84.
    [72]张贤达。现代信号处理[M].北京:清华大学出版社,2002.
    [73]胡广书。数字信号处理—理论、算法与实现[M].北京:清华大学出版社,2003.
    [74]张维玺.双线性变换的计算机实现.电子科技大学学报,2001,30(5):480-483.
    [75]丁志中.双线性变换法原理的解释.电气电子教学学报,2004,26(2):53-54.
    [76]季涛.基于暂态行波的配电线路故障测距研究[D].山东大学,2006.
    [77]潘贞存.消弧线圈自动跟踪补偿与接地选线定位技术的研究[D].山东大学,2006.
    [78]全玉生.高压架空输电线路故障测距新算法的研究[D].西安交通大学,1999.
    [79]李伟华.S注入法在铁路自闭/贯通输电线路故障定位中的适应性研究[D].西南交通大学,2006.
    [80]祝纯.电能质量暂态信号检测及谐波源定位方法研究[D].清华大学,2005.
    [81]谢芝东.基于参数识别的小电流接地系统单相接地故障选线与定位技术的研究.合肥工业大学,2007.
    [82]贾旭彩.小电流接地系统单相接地故障的选线与定位[D].广西大学,2003.
    [83]丁磊.小电流接地系统单相接地选线与定位技术的研究[D].山东大学,2005.
    [84]梁军.先进电力故障录波监测系统和精确故障定位研究[D].山东大学,2006.
    [85]徐丙垠.配电自动化远方终端技术[J].电力系统自动化,1999,23(5):41-44.
    [86]薛永端,基于暂态特征信息的配电网单相接地故障检测研究[D].西安交通大学,2003.
    [87]全玉生,李平,张煜等.基于微分方程的单端故障测距新算法.电网技术,2004,28(21):47-50.
    [88]Das,R.;Sachdev,M.S.;Sidhu,T.S..A fault locator for radial subtransmission and distribution lines.Power Engineering Society Summer Meeting,2000.IEEE.July 2000 page(s):443-448.
    [88]Darwish,H.A..A precise fault locator algorithm with a novel realization for MV distribution feeders.Power Engineering Society General Meeting,2006.IEEE.June 2006 page(s):8pp.
    [89]Bo,Z.Q.;Weller,G.;Redfern,M.A..Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals.Generation,Transmission and Distribution,IEE Proceedings.Jan.1999 page(s):73-79.
    [90]Takagi,T.;Yamakoshi,Y..;Yamaura,M..Development of a New Type Fault Locator Using the One-Terminal Voltage and Current Data.IEEE Transactions on Power Apparatus and Systems.Aug.1982 page(s):2892-2898.
    [91]Aggarwal,R.K.;Aslan,Y.;Johns,A.T..New concept in fault location for overhead distribution systems using superimposed components.Generation,Transmission and Distribution,IEE Proceedings.May 1997 Page(s):309-316.
    [92]Johns,A.T.;Lai,L.L.;El-Hami,M.;Daruvala,D.J..New approach to directional fault location for overhead power distribution feeders.Generation,Transmission and Distribution[see also IEE Proceedings-Generation,Transmission and Distribution],IEE Proceedings C.July 1991page(s):351-357.
    [93]Cormane,J.A.;Vargas,H.R.;Ordonez,G..Fault Location in Distribution Systems by Means of a Statistical Model.Transmission & Distribution Conference and Exposition:Latin America,2006.TDC'06.IEEE/PES.Aug.2006 Page(s):1-7.
    [94]Li Xiao-hua;Wang Gang;Xu Peng.A Nonlinear-estimation Algorithm for Single-Terminal Fault Location Based on The Characteristics of Arc.Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES.2005 Page(s):1-5.
    [95]Kawady,T.;Stenzel,J..Investigation of practical problems for digital fault location algorithms based on EMTP simulation.Transmission and Distribution Conference and Exhibition 2002:Asia Pacific.IEEE/PES.2002 page(s):118-123.
    [96]Hanninen,S.;Lehtonen,M.;Hakola,T..Characteristics of earth faults in power systems with a compensated or an unearthed neutral.Electricity Distribution.Part 1:Contributions.CIRED.14th International Conference and Exhibition(IEE Conf.Publ.No.438).1997page(s):16/1-16/5.
    [97]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计.电网技术,2005,29(15):81-84.
    [98]袁宇波,陆于平.傅氏算法在数字保护中的应用新解与讨论.江苏电机工程,2004,23(5):24-26,39.
    [99]徐育军,安文斗,郭海军等.傅氏算法与最小二乘法的关系研究.电网技术,2007,31(1):166-168.
    [100]顾桂定.广义块Broyden方法与超定方程组求解.计算数学,1997,4:375-384.
    [101]杨曙光.超定方程组残量极小化的定向扰动最小二乘法.武汉大学学报,1990,3:17-25.
    [102]李宝家,刘昊阳.超定方程组的一种解法.沈阳工业大学学报,2002,24(1):76-77.
    [103]杨本立.超定方程组最小二乘解行处理法.云南师范大学学报,1997,17(1):1-4.
    [104]王福昌.遗传算法在求解超定方程组中的应用.韶关学院学报·自然科学,2007,28(6):15-17.
    [105]徐宁寿.系统辨识技术及其应用[M].北京:机械工业出版社,1986.
    [106]L.A.Zadeh.From circuitTheory to System Theory,Proc.IRE,Vol.50,1962.
    [107]Clarke,D.W.,Mohtadi,C.Tuffs,P.S.Generalized Predictive Control.Pt.1,The Basic Algorithm,Pt.2,Extensions and Interpretations.Automatica,1987,23(2):137-160.
    [108]邓勇,郭瑞鹏,黄劫等.电网参数辨识与实时拓扑检错系统的开发与应用,福建电力与电工,2007,27(1):15-17.24.
    [109]索南加乐,齐军,陈福锋等.基于R-L模型参数辨识的输电线路准确故障测距算法.中国电机工程学报,2004,24(12):119-125.
    [110]索南加乐,康小宁,宋国兵等.基于参数识别的继电保护原理初探.电力系统及其自动化学报,2007,19(1):14-20,27.
    [111]索南加乐,王向兵,孟祥来等.基于R-L模型的参数识别快速方向元件.西安交通大学学报,2006,40(6):589-693.
    [112]康小宁,索南加乐.基于参数识别的单端电气量频域法故障测距原理.中国电机工程学报,2005,25(2):22-27.
    [113]陈健鑫,余明.基于分布参数的直接供电铁道牵引网故障测距.甘肃科技,2007,23(6):30-33.
    [114]林湘宁,黄小波,翁汉琍等.基于分布参数模型的比相式单相故障单端测距算法.电网技术,2007,31(9):74-79.
    [115]常守中,徐国卿,程伟.基于分布参数模型的复线牵引网故障测距新算法.中国科技信息,2006,21:296-297,299.
    [116]索南加乐,张超,王树刚.基于模型参数识别法的小电流接地故障选线研究.电力系统自动化,2004,28(19):65-70.
    [117]黎颖,卢继平,李健.基于在线计算线路分布参数的故障定位方法.高电压技术,2007,33(11):185-189.
    [118]孙楚仁.有限维线性系统参数辨识问题.工程数学学报,2006,23(6):989-1000.
    [119]许赛男.幅频特性的数学分析.电子工程师,2005,31(12):16-19,32.
    [120]龚庆武,来文青,吴夙.用MATLAB和EMTP对输电线路进行故障定位数字仿真的比较.华北电力技术,2001,10:31-34.
    [121]黄祖洪.Matlab/PSB在电路仿真分析中的应用.湖南师范大学自然科学学报,2005,28(2):30-32.
    [122]李升.MATLAB和ETAP电力系统仿真比较研究.南京工程学院学报(自然科学版),2006,4(2):50-55.
    [123]Dommel H.EMTP theory Book[M].Beijing:Hydraulic and Electric Power Press,1990.
    [124]张少如,李志军,吴永俭等.MATLAB与电力系统仿真.河北工业大学学报,2005,34(6):5-9.
    [125]陆超,唐义良,谢小荣等.仿真软件MATLAB、PSB与PSASP模型及其仿真分析.电力系统自动化,2000:23-27.
    [126]李玉梅,马伟明,张波涛.PSB——基于SIMULINK的一种新型电力系统仿真工具.电工技术杂志,2001,8:5-7.
    [127]郑三立,雷宪章,D.Retzmann等.电力系统计算机及实时数字仿真(上)——电力系统计算机仿真.电力系统自动化,2001:45-49.
    [128]郑三立,雷宪章,D.Retzmann等.电力系统计算机及实时数字仿真(下)——电力系统实时数字仿真,电力系统自动化,2001:40-60.
    [129]王卉,陈楷,彭哲.数字仿真技术在电力系统中的应用及常用的几种数字仿真工具.继电器,2004,32(21):71-75.
    [130]刘兴杰,田建设,丁波等.应用Matlab进行电力系统分析和动态仿真.电力自动化设备,2004,24(3):43-45,49.
    [131]罗建民,何正文.电力系统实时仿真技术研究综述.供用电,2006,23(5):13-16.
    [132]梁军,李欣唐,孙勇智等.动模实验室微机监控系统.电力系统及其自动化学报,1998,10(2):46-52.
    [133]王葵,王新超.PLC在电力系统静模实验室中的应用.实验技术与管理,2001,18(1):39-42.
    [134]张沛云.继电保护的模拟试验.电气应用,2006,25(7):65-67.
    [135]冯小玲,郭袅,谭建成.继电保护仿真系统的现状及其应用.广西电力,2004,6:50-52,56.
    [136]孙盾,李培芳,李玉玲.讲授网络函数与频率特性的探索.电气电子教学学报,2003,25(6):26-27,29.
    [137]冯小玲,郭袅,谭建成.实时数字仿真系统(RTDS)在继电保护上的应用研究.电网技术,2005,9(4):43-47.
    [138]王大鹏,潘贞存.电力系统静态模拟及其计算机仿真系统.山东电力技术,2000,6:46-48.
    [139]李孟秋,王耀南,王辉等.小电流接地系统单相接地故障点探测方法的研究.中国电机工程学报,2001,21(10):6-9,23.
    [140]王新超,潘贞存,高厚磊等.一种计算机监控的电力静模试验系统.电力自动化设备,2001,21(8):41-43.
    [141]肖洪,王慧,范正林等.电力系统静态模拟及其计算机监控实验室的设计与实现.实验技术与管理,2001,18(4):99-102.
    [142]贾立雄,胡小正.2006年全国城市用户供电可靠性分析(一).电力设备,2007,8(11):84-88.
    [143]贾立雄,陈丽娟,胡小正.2006年全国输变电设施和城市用户供电可靠性分析.中国电力,2007,40(5):1-7.
    [144]胡巨,杨明玉,田建设.暂态保护研究中若干问题的探讨.继电器,2005,33(6):15-19.
    [145]薛永端,徐丙垠,冯祖仁.小电流接地故障暂态方向保护原理研究.中国电机工程学报,2003,23(7):51-56.
    [146]许立强.利用暂态信号的小电流接地故障指示新方法[D].山东大学,2006.
    [148]李长安.小电流接地故障谐波选线可靠性研究[D].山东大学,2007.
    [149]常晓颖.基于prony算法的电力系统故障信号快速拟合[D].山东大学,2007.
    [150]熊立新.超高速电力系统暂态数据采集系统[D].山东大学,2006.
    [151]G.C.Goodwin,R.L.Payne.Dynamic System Identification,Academic Press,1977.
    [152]V.C.Klema,A.J.Laub.The singular value Decomposition:Its computation and some applications,IEEE Trans.on A.C.,1980,99(2).
    [153]徐俊荣,王志中.时间序列分析法及其建立机床模型中的应用.上海交通大学学报,1982,第4期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700