用户名: 密码: 验证码:
特高压直流输电线路暂态保护和故障测距问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国东部经济发达地区电力需求量的不断增长,建设特高压直流(UltraHigh Voltage Direct Current,UHVDC)输电工程,实施大规模、远距离的“西电东送”战略,势在必行。UHVDC输电线路电压等级高、输电距离远、往往要穿越大量的山地丘陵以及其它复杂的环境,遭受雷击和发生故障的概率较高。为提高UHVDC输电线路保护动作的可靠性,需要在故障发生后能够快速查找出故障位置,以保证电力系统的安全稳定运行。论文以UHVDC输电线路故障机理、暂态量保护新原理、雷击干扰识别、故障测距等问题为脉络,展开深入研究,旨在为提高UHVDC输电线路保护和故障测距的性能提供技术支持。
     为寻找现有UHVDC输电线路保护存在不能正确动作的原因,本文研究了UHVDC输电线路故障发展的行波过程、控制系统调节的暂态过程、故障恢复过程三个阶段的故障机理。研究表明:线路末端高阻接地故障是行波保护和差动保护拒动的主要原因。过渡电阻的增加,使得故障电气量、电压变化量和变化率均下降,控制系统的响应特性变缓;而故障距离的增加会延迟电气量和控制系统的响应时间,导致行波保护拒动。为躲开交流系统故障,差动保护的延时和控制系统的作用,换流站的阀组保护可能会先于差动保护动作,闭锁故障极使线路停运,导致差动保护失去后备保护的作用。
     为重点解决UHVDC输电线路保护不能正确动作的问题,本文提出了一种基于单端电气量的暂态保护方法,正确地建立了区内区外故障判别、保护启动和故障极性选择三类判据。方法主要利用了直流线路两端的平波电抗器和直流滤波器构成的物理边界对直流线路行波高频信号具有阻滞的特性。对区外故障,暂态电压高频分量经边界元件后大量衰减,于保护安装处测量到的暂态电压高频能量小;对区内故障,保护安装处的暂态电压高频能量较高。据此构造了区内、外故障判据。利用故障时小波变换模极大值随尺度增加而增大的规律构造了启动判据;利用正、负极故障时两极线极波面积比值差异构造了故障选极判据。仿真结果表明:所提保护新方法具有良好的耐受过渡电阻的能力。
     为推进暂态量UHVDC输电线路保护的实用化,本文提出了一种UHVDC输电线路雷击暂态识别方法,充分利用雷击和故障特征的差异,正确构造出雷击干扰识别判据。UHVDC输电线路受雷击干扰时,直流线路双极电压时域波形与轴线电压相关度均较大;雷击故障或短路故障时,故障极直流电压骤降,与轴线电压相关度较小。雷击故障比短路故障含有更多的雷电波高频分量,而中低频分量与短路故障相近,利用5ms时窗的高频能量与中低频能量比值特征可有效识别雷击故障和短路故障。仿真结果表明:所提方法能够正确、快速、可靠的识别雷击干扰和故障类型。
     为准确定位UHVDC输电线路故障位置并及时清除故障,本文提出了一种UHVDC输电线路故障测距的能量谱识别新方法。UHVDC输电线路的物理边界的高频阻滞特性,使故障行波经故障点及线路边界多次反射,使量测端波形呈周期性,而形成直流输电线路的行波固有频率。固有频率与故障距离之间存在数学关系,故障行波暂态能量在主频率附近较集中,其暂态能量包含丰富的故障距离信息。单端线模电压能谱分布随故障位置条件的不同而变化,采用ANN拟合单端线模电压的小波能量谱与故障距离的对应关系实现UHVDC线路故障测距,将不宜提取的固有频率点特征转化为容易提取的频带特征,提高了测距的可靠性。
With the increasing power demand in east China economic developed area, it isnecessary to construct ultra high voltage direct current (UHVDC) transmissionengineering and implement large capacity, long distance and―transmit power from thewest to the east‖strategy. UHVDC transmission line has higher voltage, farther distance,and usually crosses large mountains as well as complex environment, so it has muchprobability to suffer lightning strike and grounding fault. In order to improveprotection action reliability of UHVDC transmission line, it’s important to quicklyfind fault location and to ensure the safty and stable operation of power system. Takingthis issues of UHVDC transmission line fault mechanism, transient protection newprinciple, lightning strike identification and fault location as a cule, this dissertationmade a deep research for providing technology support to enchance the performance ofUHVDC transmission line protection and fault location.
     In order to find the reason that the UHVDC transmission line protection may notact correctly at present. This dissertation discusses the fault mechanism of the travelingwave process, transient process of control system regulation and recovery process ofUHVDC transmission line. The results show that: High resistance grounding fault at theend of the transmission line is the main reason for the traveling wave protection failure.With the increase of transition resistance, the electric parameters, the variation and thevelocity of variation of faulted voltage wave become decrease, and response of thecontrol system also becomes slow. The increase of the fault distance affects the electricparameters and response time of the control system. To avoid AC system failure, delayof the differential protection and the regulation of control system,valve protection mayact earlier than differential protection to block fault polar. Thus the differentialprotection will lost the role of the backup protection.
     In order to solve the problem that UHVDC transmission line can’t act correctly, thisdissertation presents a new method based on one end electrical transient signal andprovides three criterions to correctly identify external or internal fault, relay starting andpolarity selsction. The new mehtod is based on: the physical boundary bombined withsmoothing reactor and DC filter has stop-band characteristic to the high-frequency ofUHVDC traveling wave. When external fault occurred, the energy of high-frequencytransient voltage will be weakened when it travels through boundary and is small at thepoint of relay installation. While internal fault occurred, the energy of high-frequency transient voltage at the point of relay installation is much higher. The identificationcriterion of internal and external fault is based on the differences. The criterion ofstarting is used that wavelet transformation modulus maximum increases with the levelincreasing. Ratio between the positive and negnetive polarity wave area is used to selectfault line. Simulation results show: the new method has good ability to stand highresistance.
     In order to make traveling wave protection and transient protection to practical, thisdissertation proposes a new transient criterion to identify the lightning strikes on theUHVDC transmission line. According to the difference between lightning strikes andgrounding fault, lightning disturbance identification criterion is formed. The newcriterion is based on: when UHVDC transmission line suffer lightning strike whithoutfault, the correlation degree of the voltage traveling-wave and the direct voltage is large.When it is lightning strike with fault or grounding fault, the voltage’s value of faultpolar is cut suddenly in fault point and the correlation degree is small. There are morehigh-frequency components of the lightning strike with fault than the grounding fault,and their low frequency components is approximate equal. According to this, it caneffectively identify the lightning strike with fault and grounding fault via comparing theratio of the high frequency energy and low frequency energy in5ms-time window. Thesimulation results show that the criterion can identify lightning type correctly, quicklyand realiably.
     To be able to locate fault point quickly and clear the fault in time after the fault ofUHVDC power transmission line. This dissertation puts forward a new fault locationmethod of UHVDC transmission line using energy spectrum identification. This methodis based on the following points: The physical boundary of UHVDC system isopen-circuit to the high frequency signal making the the traveling wave reflects betweenfault point and boundary at the end of a transmission line. These results in the wavemeasured at relay being a periodic signal, and thus the nature frequency is formed. Thenature frequency of fault traveling wave is related to the fault distance. Energy spectrumof fault transient signal has high density around the main nature frequency. The faulttransient energy includes much fault distance information. Energy spectrum of one endline mode voltage change with the fault location conditions. So ANN can be used to fitthe relationship between the energy spectrums of line mode voltage to locate fault point.The reliability of fault location is improved by changing the point characteristic ofnature frequency into band characteristic of wavelet energy.
引文
[1]刘振亚,张启平.国家电网发展模式研究[J].中国电机工程学报,2013,33(7):1-10.
    [2]张运洲,李晖.中国特高压电网的发展战略论述(英文)[J].中国电机工程学报,2009,29(22):1-7.
    [3]刘振亚,舒印彪,张文亮,张运洲.直流输电系统电压等级序列研究[J].中国电机工程学报,2008,28(10):1-8.
    [4]张勇军.高压直流输电原理与应用[M].北京:清华大学出版社,2012.
    [5]刘振亚.特高压直流输电技术研究成果专辑[M].北京:中国电力出版社,2011.
    [6]傅观君,王黎明,侯镭,关志成,汪创,赵宇明,谢竹青,郁杰.±800kV特高压直流耐张串应用复合绝缘子的可行性[J].中国电机工程学报,2011,31(22):119-125.
    [7] Sanjari M. J., Alizadeh Mousavi O., Gharehpetian G. B. Assessing the risk ofblackout in the power system including HVDC and FACTS devices.International Transactions on Electrical Energy Systems[J],2013,23(1):109-121.
    [8]张晋华,蒋卫平,印永华,胡涛,王晶芳,陈凌芳,李新年,谢国平,刘云.特高压规划电网安全稳定性研究[J].中国电机工程学报,2008,28(22):64-68.
    [9] Newman DE, Carreras BA, Lynch VE, Dobson I. Exploring Complex SystemsAspects of Blackout Risk and Mitigation[J]. IEEE Transactions on Reliability.2011,60(1):134–143.
    [10] M Aurangzeb, P.A. Crossly, P. Gale. Fault Location Using High FrequencyTravelling Waves Measured at Single Location on a Transmission Line[J]. IEEDevelopments in Power System Protection.2001,479:403-406.
    [11] T W Stringfield, D J Marihart, R F Stevens. Fault location methods for overheadlines[J]. AIEE Trans.76,1957:518-530.
    [12] M. Vitins. Fundamental Concept for High Speed Relay[J]. IEEE Transactionson Power Apparatus and Systems.1981, PAS-100(1):163-173.
    [13] T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based onTravelling Wave Theory PartⅠ: Theory[J]. IEEE PES Summer Meeting,1977.A77-750-3:1-7.
    [14] T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based onTravelling Wave Theory PartⅡ: Sensitivity and Laboratory Test[J]. IEEE PESSummer Meeting,1977. A77-750-3:8-14.
    [15]王全,徐习东.基于行波差动原理的线路保护实用判据[J].电力系统自动化,2012,36(1):86-89,95.
    [16]陈福锋,钱国明,宋国兵.串联电容补偿线路行波差动保护的研究[J].中国电机工程学报,2009,29(28):89-94.
    [17] Segui T., Bertrand P., Guillot M.. Fundamental basis for distance relaying withparametrical estimation[J]. IEEE Transactions on Power Delivery,2000,15(2):659-664.
    [18]董新洲,王世勇,施慎行.极化电流行波方向继电器[J].电力系统自动化,2011,35(21):78-83.
    [19] M Chamia, S Liberman. Ultra High Speed Relay for EHV/UHV TransmissionLines: Development, Design and Application[J]. IEEE Trans. Power ApparatusSystems,1978,97(6):2104-2116.
    [20] M T Lee, J. Esztergalyos. Ultra high speed relay for EHV/UHV transmissionlines-installation fault tests and operational experience[J]. IEEE Trans. PowerApparatus Systems,1978,97(5):1814-1825.
    [21] H. W. Dommel, J. M. Michels, High speed relaying using traveling wavetransient analysis, Proc[J]. IEEE PES Winter Meeting, New York, Jan./Feb1978:1-7.
    [22] M. M. Mansour, G. W. Swift. A multi-microprocessor based traveling waverelay–theory and realization[J]. IEEE Transactions on Power Delivery,1986,1(1):272-279.
    [23]邹贵彬,高厚磊,江世芳,等.新型暂态行波幅值比较式超高速方向保护[J].中国电机工程学报,2009,29(7):84-90.
    [24] Johns, A.T. New ultra-high-speed directional comparison technique for theprotection of EHV transmission lines[J]. IEE Proceedings,1980,127(4):228-239.
    [25] A T Johns, M A Martin, A Barker, et al. A new approach to EHV directioncomparison protection using digital signal processing techniques[J]. IEEE Trans.on Power Delivery,1986,1(4):24-34.
    [26] R K Aggarwal, A T Johns, D S Tripp. The Development and Application ofDirectional Comparison Protection For Series Compensated TransmissionSystems[J]. IEEE Trans. on Power Delivery,1987,2(4):1037-1045.
    [27]董新洲,葛耀中,贺家李.波阻抗方向继电器的基本原理[J].电力系统自动化,2001,25(9):15-18.
    [28] Dong X., Ge Y., He J.. Surge Impedance Relay[J]. Power Delivery, IEEETransactions on,2005,20(2):1247-1256.
    [29]刘兴茂,林圣,何正友,廖凯.基于S变换的新型波阻抗方向继电器[J].中国电机工程学报,2013,33(22):113-119.
    [30] Wei Chen, O. P. Malik, Xianggen Yin, et al. Study of Wavelet-Based Ultra HighSpeed Directional Transmission Line Protection [J]. IEEE Trans on PowerDelivery,2003,18(4):1134-1139.
    [31] Q. H. Wu, J. F. Zhang, D. J. Zhang. Ultra-high-speed directional protection oftransmission lines using mathematical morphology[J]. IEEE Trans on PowerDelivery,2003,18(4):1127-1133.
    [32] Shehab-Eldin E H, McLaren, P G. Travelling wave distance protection-problemareas and solutions[J]. IEEE Transactions on Power Delivery,1988,3(3):894-902.
    [33] Crossley P A, Mclaren P G. Distance Protection Based on Travelling Waves[J].IEEE Transaction on power system,1983,102(9):2971-2983.
    [34] Jafarian P,Sanaye-Pasand M.A traveling-wave-basedprotection techniqueusing wavelet/PCA analysis[J].IEEETransactions on Power Delivery,2010,25(2):588-599.
    [35] Liang Jie, Elangovan S, Devotta J B X. Adaptive traveling-wave protectionalgorithm using two correlation functions[J]. IEEE Transactions on PowerDelivery,1999,14(1):126-131.
    [36] Pathirana V, Dirks E, McLaren P G. Using impedance measurement to improvethe reliability of traveling-wave distance protection[J]. IEEE Power EngineeringSociety General Meeting, Volume3,13-17July2003:1874-1879.
    [37] Christopoulos C, Thomas D W P, Wright A. Scheme, based on travelling-waves,for the protection of major transmission lines. Generation, Transmission andDistribution[J]. IEE Proceedings C,1988,135(1):63-73.
    [38] Dutta P K, Dutta Gupta P B. Microprocessor-based UHS relaying for distanceprotection using advanced generation signal processing[J]. IEEE Transactionson Power Delivery,1992,7(3):1121-1128.
    [39] Ancell G B, Pahalawaththa N C. Maximum likelihood estimation of faultlocation on transmission lines using traveling-waves[J]. IEEE Transactions onPower Delivery.1994,9(2):680-689.
    [40] A. I. Megahed, A. M. Moussa, A. E. Bayoumy. Usage of wavelet transform inthe protection of series-compensated transmission lines[J]. IEEE Transactionson Power Delivery,2006,21(3):1213-1221.
    [41]张帆,潘贞存,马琳琳.基于模量行波传输时间差的线路接地故障测距与保护[J].中国电机工程学报,2009,29(10):53-57.
    [42]段建东,张保会,李鹏,等超高压输电线路新单端暂态量保护元件的实用算法[J].中国电机工程学报,2007,27(7):46-51.
    [43] Zhang Nan, Kezunovic M. Transmission Line Boundary Protection UsingWavelet Transform and Neural Network[J]. IEEE Transactions on PowerDelivery.2007,22(2):859-869.
    [44] Aguilera C, Orduna E, Ratta G. Adaptive non-communication protection basedon traveling waves and impedance relay[J]. IEEE Transactions on PowerDelivery.2006.21(3):1154-1162.
    [45] O. Chaari, M. Meunier, F. Brouaye. Wavelet: A New Tool for the ResonantGrounded Power Distribution Systems Relaying[J]. IEEE Transactions onPower Delivery.1996,11(3):1301-1308.
    [46] H.F. Magnago, A. Abur. Fault Location Using Wavelets[J]. IEEE Transactionson Power Delivery.1998,13(4):1475-1480.
    [47] S. Mallat, W.L. Hwang. Singularity Detection and Processing with Wavelets[J].IEEE Transactions on Information Theory.1992,38(2):617-634.
    [48] Z. Q. Bo, M. A. Redfern, and G. C. Weller. Positional protection of transmissionline using fault generated high frequency transient signals[J]. IEEE Transactionson Power Delivery.2000,15(3):888–894.
    [49] L. Xu, V.G. Agelidis, E. Acha, et al. Development Considerations of DSP-Controlled PWM VSC-based STATCOM[J]. IEE Proceedings: Electric PowerApplications.2001,148(5):449-455.
    [50] P.G. McLaren, R. Kuffel, R. Wierckx, et al. A Real Time Digital Simulator ForTesting Relays[J]. IEEE Transactions on Power Delivery.1992,7(1):207-213.
    [51] Liu Xiaolei, Osman Ahmed H., Malik Om P. Real-time implementation of ahybrid protection scheme for bipolar HVDC line using FPGA[J]. IEEETransactions on Power Delivery,2011,26(1):101-108.
    [52] Xiaolei Liu, Osman A. H., Malik O. P. Hybrid Traveling Wave/BoundaryProtection for Monopolar HVDC Line [J], IEEE Transactions on PowerDelivery,2009,24(2):569-578.
    [53]刘青,王增平,郑振华.小波奇异熵在线路暂态保护和全线相继速动保护中的应用[J].电力系统自动化,2009,33(22):79-83.
    [54]刘青,王增平,郑振华,常彦彦.基于信号复杂度的串补线路单端暂态保护[J].中国电机工程学报,2010,30(13):81-88.
    [55]高淑萍,索南加乐,宋国兵,蔡新雷.利用单端电流的高压直流输电线路全线速动保护[J].中国电机工程学报,2012,32(7):107-113.
    [56]宋国兵,褚旭,高淑萍,康小宁,焦在滨,索南加乐.利用滤波器支路电流的高压直流输电线路全线速动保护[J].中国电机工程学报,2013,33(22):120-126.
    [57]王钢,李志铿,李海锋.±800kV特高压直流线路暂态保护[J].电力系统自动化,2007,31(21):40-43.
    [58] Hajjar Ammar A. A high speed noncommunication protection scheme for powertransmission lines based on wavelet transform[J]. Electric Power SystemsResearch,2013,96:194-200.
    [59] Agrawal P.. An investigation into a method of detecting the fault induced highfrequency voltage signals of EHV transmission lines for protectionapplications[J]. IEEE Transaction on Power Delivery,1991,6(1):119-126.
    [60] Agrawal P.. Performance of the Pramod Johns scheme for UHS protection ofEHV transmission lines under arcing fault conditions[J]. IEEE Transaction onPower Delivery,1991,6(1):127-134.
    [61] Johns A.T., Aggrawal R.K., Bo Z.Q.. Non-unit protection technique for EHVtransmission systems based on faulted graduated noise. Part1: signalmeasurement. Gener, Trans. and Distri.[J]. IEE Proceedings,1994,141(2):133-140.
    [62] Bo Z. Q., Zhang B. H., He J. H.. An integrated boundary protection scheme forpower transmission line systems[C]. Power Engineering Conference,2007.IPEC2007. International,2007:470-475.
    [63] Bo Z.Q. A New Non-Communication Protection Technique for TransmissionLines[J]. IEEE Transactions on Power Delivery,1998,13(4):1073-1078.
    [64]段建东,匡军,周琴,刘一朋.基于改进递归复小波变换的输电线路边界保护元件算法[J].中国电机工程学报,2010,30(19):69-75.
    [65] Jiandong Duan, Kuang Jun, Shanshan Wu. Boundary Protection AlgorithmBased on Phase Information of Improved Recursive Wavelet Transform forEHV Transmission Lines[C]. Power and Energy Engineering Conference,2009.APPEEC2009. Asia-Pacific,2009:1-4.
    [66]段建东,张保会,任晋峰,罗四倍,哈恒旭,周艺.超高压输电线路单端暂态量保护元件的频率特性分析[J].中国电机工程学报,2007,27(1):37-43.
    [67] Song Guobing, Chu Xu, Cai Xinlei. A novel pilot protection principle forVSC-HVDC cable lines based on fault component current[J]. InternationalJournal of Electrical Power and Energy Systems,2013,53(1):426-433.
    [68] Ha Hengxu, Zhang Baohui. The basic theory of boundary protection for EHVtransmission lines[C]. International Conference on Power System Technology.Proceedings,2002. Vol.4:2569-2574.
    [69] Jafarian Peyman, Sanaye-Pasand Majid. High-frequency transients-basedprotection of multiterminal transmission lines using the SVM technique[J].IEEE Transactions on Power Delivery,2013,28(1):188-196.
    [70]张保会,张嵩,尤敏等.高压直流线路单端暂态量保护研究[J].电力系统保护与控制,2010,38(15):18-23.
    [71] Liu Xiaolei, Osman A. H., Malik O. P. Stationary wavelet transform basedHVDC line protection[C].200739th North American Power Symposium,NAPS, September30,2007-October2,2007, Las Cruces, NM, United states,2007:37-42.
    [72] Nan Zhang, Kezunovic M. Transmission Line Boundary Protection UsingWavelet Transform and Neural Network[J]. IEEE Transactions on PowerDelivery,2007,22(2):859-869.
    [73]李爱民,蔡泽祥,李晓华.直流线路行波传播特性的解析[J].中国电机工程学报,2010,30(25):94-100
    [74]夏明超,黄益庄,赵沃泉.利用多端暂态电流的高压输电线路保护新算法[J].中国电机工程学报,2004,24(2):40-43.
    [75] Xiaolei Liu, Osman A. H., Malik O. P. Hardware implementation of a hybridprotection scheme for bipolar HVDC line[C]. International Conference onElectric Power and Energy Conversion Systems,2009. EPECS '09.2009:1-6.
    [76]段建东,张保会.行波启动元件的算法研究[J].中国电机工程学报,2004,24(9):34-40.
    [77] Mahamedi Behnam, Zhu Jian Guo. Fault Classification and Faulted PhaseSelection Based on the Symmetrical Components of Reactive Power forSingle-Circuit Transmission Lines.2013. in press.
    [78] Bo Z Q, Aggarwal R K, Johns A T. A New Approach to Phase Selection UsingFault Generated High Frequency Noise and Neural Networks [J]. IEEE Trans.on Power Delivery,1997,12(1):106-115.
    [79] Dong Xinzhou, Kong Wei, Cui Tao. Fault classification and faulted-phaseselection based on the initial current traveling wave[J]. IEEE Transactions onPower Delivery,2009,24(2):552-559.
    [80] Youssef O.A.S.. New Algorithm to Phase Selection Based on WaveletTransform [J]. IEEE Transactions on Power Delivery,2002,17(4):908-914.
    [81] A. K. Pradhan, A. Routray, S. Pati, et al. Wavelet Fuzzy Combined ApproachFor Fault Classification Of A Series-Compensated Transmission Line [J]. IEEETransactions on Power Delivery,2004,19(4):1612-1618.
    [82]张保会,郝治国等.智能电网继电保护研究的进展(一):故障甄别新原理[J].电力系统自动化设备,2010,30(1):1-6.
    [83]杜林,戴斌,司马文霞等.架空线路雷电过电压识别[J].高电压技术.2010,3(36):590-597.
    [84]束洪春,张广斌,孙士云等.800kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报.2009,7(29):13-19.
    [85]夏明超,黄益庄,王勋.高压输电线路暂态保护的发展现状[J].电网技术.2002.26(11)65-69.
    [86]董杏丽,葛耀中,董新洲.暂态分量保护中雷电干扰问题的对策[J].中国电机工程学报,2002,22(9):74-78.
    [87]李海锋,王钢,赵建仓.输电线路感应雷击暂态特征分析及其识别方法[J].中国电机工程学报,2004,24(3):114-119.
    [88]王钢,里海锋,赵建仓,吴敏.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报,2004,24(4):139-144.
    [89]段建东,张保会,郝志国.超高压线路暂态保护中雷电干扰与短路故障的识别[J].电力系统自动化,2004,28(18):30-35.
    [90]段建东,任晋峰,张保会,罗四倍.超高速保护中雷电干扰识别的暂态法研究[J].中国电机工程学报,2006,26(23):7-13.
    [91] Dipankar Chanda, N.K.Kishore, Avinash K. Sinha. A WaveletMultriresolution-Based Analysis for Location of the Point of Strike of aLightning Overvoltage on a Transmission Line[J]. IEEE Transaction PowerDelivery,2004,4(19):1727-1733.
    [92]司大军,束洪春,陈学允,于继来输电线路雷击的电磁暂态特征分析及其识别方法研究[J].中国电机工程学报,2005,25(7):64-69.
    [93]束洪春,张斌,张广斌,刘可真.±800kV直流输电线路雷击干扰短时窗电压均值识别方法[J].高电压技术,2010,36(9):2180-2186.
    [94]束洪春,张斌,张广斌,刘可真,孙士云.基于可拓融合的±800kV直流输电线路雷击干扰识别方法[J].中国电机工程学报,2011,31(7):102-111.
    [95]束洪春,王永治,程春和.±800kV直流输电线路雷击电磁暂态分析与故障识别[J].中国电机工程学报,2008,28(19):93-100.
    [96]司马文霞,谢博,杨庆等.特高压输电线路雷电过电压的分类识别[J].高电压技术.2010,2(36):306-312.
    [97] Tahan Mohamad, Monsef Hassan, Farhangi Shahrokh. A new converter faultdiscrimination method for a12-pulse high-voltage direct current system basedon wavelet transform and Hidden Markov Models[J]. Simulation,2012,88(6):668-679.
    [98]李爱民,蔡泽祥,任达勇.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化,2009,33(11):24-27.
    [99]李爱民,蔡泽祥,李晓华.高压直流输电线路行波保护影响因素分析及改进[J].电力系统自动化,2010,34(10):76-80.
    [100] Suonan Jiale, Zhang Jiankang, Jiao Zaibin. Distance protection for HVDCtransmission lines considering frequency-dependent parameters[J]. IEEETransactions on Power Delivery,2013,28(2):723-732.
    [101] Zheng Xiao-Dong, Tai Neng-Ling, Thorp James S. A transient harmonic currentprotection scheme for HVDC transmission line[J]. IEEE Transactions on PowerDelivery,2012,27(4):2278-2285.
    [102] Zhang Ying, Tai Nengling, Xu Bin. Fault analysis and traveling-wave protectionscheme for bipolar HVDC lines[J]. IEEE Transactions on Power Delivery,2012,27(3):1583-1591.
    [103]胡宇洋,黄道春.葛南直流输电线路故障及保护动作分析[J].电力系统自动化,2008,32(8):102-107.
    [104]董鑫.高压直流输电线路行波保护的研究[D].吉林:东北电力大学,2008.
    [105]李学鹏.高压直流输电线路行波保护及其故障定位的研究[D].北京:华北电力大学,2006.
    [106]许烽,徐政,傅闯.多端直流输电系统直流侧故障的控制保护策略[J].电力系统自动化,2012,36(6):74-78.
    [107] Deng Fujin, Chen Zhe. Operation and control of a DC-grid offshore wind farmunder DC transmission system faults[J]. IEEE Transactions on Power Delivery,2013,28(3):1356-1363.
    [108]束洪春,刘可真,朱盛强.±800kV特高压直流输电线路单端电气量暂态保护[J].中国电机工程学报,2010,30(31):108-117.
    [109] Suonan Jiale, Gao Shuping, Song Guobing. A novel fault-location method forHVDC transmission lines[J]. IEEE Transactions on Power Delivery,2010,25(2):1203-1209.
    [110]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [111]陈静.高压输电线路故障定位组合解决方案的研究[D].北京:清华大学,2002.
    [112] Adly A.Girgis D,G.Hart,W.Peterson.A new fault location technique for two andthree terminal lines[J]. IEEE Trans.Power Delivery,1992,7(l):98-107.
    [113] D.J.Lawrenee,L.Cabeza,and L.Hochberg.Development of an advancedtransmission line fault location system PartII-algorithm development andsimulation[J]. IEEE Trans.Power Delivery,1992,7(4):1972-1983.
    [114] D.Novosel,D.G.Hart,E.Udren,Garitty.Unsynchronized two-terminal faultlocation estimation[C]. IEEE Winter Meeting, PaPer95WM025-7PWRD,NewYork,1995.
    [115] Liao Yuan, Kang Ning. Fault-location algorithms without utilizing lineparameters based on the distributed parameter line model[J]. IEEE Transactionson Power Delivery,2009,24(2):579-584.
    [116]高淑萍,索南加乐,宋国兵.基于分布参数模型的直流输电线路故障测距方法[J].中国电机工程学报,2010,30(13):75-80.
    [117] Lin Xiangning, Zhao Feng, Wu Gang. Universal wavefront positioningcorrection method on traveling-wave-based fault-location algorithms[J]. IEEETransactions on Power Delivery,2012,27(3):1601-1610.
    [118] Ahmadimanesh Alireza, Shahrtash S. Mohammad. Transient-basedfault-location method for multiterminal lines employing S-transform[J]. IEEETransactions on Power Delivery,2013,28(3):1373-1380.
    [119] Kang Ning, Liao Yuan. Double-Circuit transmission-line fault location utilizingsynchronized current phasors[J]. IEEE Transactions on Power Delivery,2013,28(2):1040-1047.
    [120] Lopes F. V., Fernandes D., Neves W. L. A. A traveling-wave detection methodbased on park's transformation for fault locators[J]. IEEE Transactions on PowerDelivery,2013,28(3):1626-1634.
    [121] Farshad Mohammad, Sadeh Javad. Accurate single-phase fault-location methodfor transmission lines based on K-nearest neighbor algorithm using one-endvoltage[J]. IEEE Transactions on Power Delivery,2012,27(4):2360-2367.
    [122] Liu Xiaolei, Osman Ahmed H., Malik Om P. Real-time implementation of ahybrid protection scheme for bipolar HVDC line using FPGA. IEEETransactions on Power Delivery[J],2011,26(1):101-108.
    [123]朱韬析,彭武.天广直流输电系统线路高阻接地故障研究[J].电力系统保护与控制,2009,37(23):137-140.
    [124]宋国兵,周德生,焦在滨等.一种直流输电线路故障测距新原理[J].电力系统自动化,2007,31(24):57-61.
    [125] O. M. K. Kasun Nanayakkara,Location of DC Line Faults in ConventionalHVDC Systems With Segments of Cables and Overhead Lines Using TerminalMeasurements[J]. IEEE Transaction on power delivery.2012,27(1):279-288.
    [126] O. M. K. Kasun Nanayakkara,Traveling-Wave-Based Line Fault Location inStar-Connected Multiterminal HVDC Systems[J]. IEEE Transaction on powerdelivery.2012,27(4):2286-2294.
    [127]邬林勇,何正友,钱清泉.单端行波故障测距的行波方法[J].中国电机工程学报,2008,28(25):99-104.
    [128]邬林勇,何正友,钱清泉.一种提取行波自然频率的单端故障测距方法[J].中国电机工程学报,2008,28(10):69-75.
    [129]邬林勇.利用故障行波固有频率的单端行波故障测距法[D].成都:西南交通大学,博士学位论文,2008.
    [130] Styvaktakis E,Bollen MHJ,Gu HY.A fault location technique using highfrequency fault clearing transients[J]. IEEE Power EngineeringReview,1999,19(5):58-60.
    [131] M.M.Tawfik,M.M.Moreos.ANN-based techniques for estimating fault locationon transmission lines using prony method[J]. IEEE Transactions on PowerDelivery,2001,16(2):219-224.
    [132]束洪春,田鑫萃等.±800kV直流输电线路故障定位的单端电压自然频率方法[J].中国电机工程学报,2011,31(25):104-111.
    [133] Kai Liao, Zhengyou He,Xiaopeng Li.A Fault Location Method Based OnTraveling Wave Natural Frequency Used On±800kv UHVDC TransmissionLines[J]. IEEE Transactions on Power Delivery,2011,1(11):5652-5655.
    [134]廖凯,何正友等.基于行波固有频率的高压直流输电线路故障定位[J].电力系统自动化,2013,37(3):104-109.
    [135]陈双,何正友,李小鹏.基于行波固有频率的特高压输电线路故障选相[J].电网技术,2011,35(6):15-21.
    [136]束洪春,张敏,张广斌等.±800kV直流输电线路单端行波故障定位的红绿色彩模式检测[J].电工技术学报,2010,25(11),155-163.
    [137]蔡新雷,宋国兵,高淑萍,索南加乐,李广.利用电流固有频率的VSC-HVDC直流输电线路故障定位[J].中国电机工程学报,2011,(28):112-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700