用户名: 密码: 验证码:
基于小波变换的地铁直流侧远方短路电流分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要讨论了地铁直流侧远方短路故障电流的暂态过程,并利用小波变
    换作为分析工具对远方短路故障电流和机车起动电流进行了鉴别。
     文中首先对国内外的地铁系统进行了简单的介绍,特别讨论了各种短路及
    其保护策略。在各种短路故障中,地铁直流侧远方短路故障由于其故障电流的
    大小和变化率都很难同正常负荷电流鉴别开来,所以至今难以做到百分之百的
    保护。
     讨论远方故障短路电流的难点在于作为电流回路的铁轨。由于铁轨很大的
    磁导率和截面尺寸,致使其阻抗在电磁暂态过程中受到了集肤效应的影响,从
    而使得铁轨的时间常数在暂态过程中并非是一个常数。为了求解考虑集肤效应
    的铁轨阻抗,本文使用了等效圆柱体方法。针对一个具体的地铁系统进行了仿
    真,得到了令人满意的结果。
     在此基础上,论文使用传统的傅立叶分析方法对远方短路电流和机车起动
    电流的仿真值进行了分析,针对其存在的问题引入小波变换作为分析工具对两
    种电流进行进一步的分析。
     在分析了小波变换用于带有噪声干扰的信号奇异性检测原理的基础上,论
    文首次使用了连续墨西哥草帽小波变换和二进离散小波包分别对远方短路故障
    电流和列车起动电流进行了深入讨论并作了比较,在此基础上首次提出了基于
    小波变换的鉴别判据。对计算结果的讨论表明了使用小波变换来鉴别地铁远方
    短路电流和列车起动电流是可靠的。
     论文最后总结了本文的主要工作,并指出了进一步研究的方向。
This dissertation deeply studies the transient models of distant short circuit fault currents for the dc rapid transit railway and presents a detailed analysis of the wavelet transforms to discriminate the remote short circuit current from the train starting current.
    Firstly, the dc railway systems throughout the world are surveyed, the various short circuit fault conditions and protection equipment requirements are discussed. A dc transit system can never be fully protected because the protection cannot always distinguish between distant faults and train load currents for both of the currents have the similar magnitude and the rate of change.
    The difficulty of analyzing the distant fault current lies in the running steel rails as the return conductors. The rails are affected by the skin effect for its large permeability and size. The track time constants are not constant due to the skin effect. For the calculation of the rails impedance, the method of equivalent cylindrical conductor is developed. The simulation results give satisfaction.
    After this, the traditional Fourier transform is applied to the distant current and the train starting current. Then the wavelet transform is introduced for the further analyzing.
    Current singularities based on wavelet transform are analyzed. Two kinds of wavelet transforms are firstly used to analyze the former two currents, one for continuous wavelet transform and the other for dyadic wavelet packet. Then the discrimination criterions based on wavelet transform are firstly constructed. Simulation results show that the wavelet transform is suitable for the discrimination of the distant fault current from the train starting current.
    In the last, the main research works are summarized and the problems required to further study are included.
引文
1. 曹炳坤,21世纪城市交通的主力军--城市轨道交通,地铁科技.2001,(2) .
    2. K.Alexander. Tuned Filters for Traction Rectifier Sets. IEEE Trans on Industry Applications. Vol.21,No.6,1985,pp.1571-1579
    3. L.J.Brunton. Earth-leakage problems and solutions on the Tyne and Wear Metro. IEE Porc. B. Vol. 136,No. 3,1989,pp.152-160
    4. Y.Cai,M.R.Irving,S.H.Case. Modeling and numerical solution of mutibranched DC rail traction power systems. IEE Proc.-Electr. Power Appl. Vol.142,No. 5, 1995,pp.323-328
    5. 艾欣,杨以涵,张维荣,直放式霍尔原理大电流互感器的研制,中国电力,Vol. 34, No. 3, 2001, pp. 33-35
    6. Fiber Optic Sensors Working Group. Optical current transducers for power systems:A review. IEEE Trans. On Power Delivery.Vol. 9,No. 4,1994, pp. 1778-1788
    7. ROHR,A.. Line Fault Detectors for Direct Current Railways. Brown Boveri Rev.1976,(11) ,pp.678-681
    8. FERNANDEZ,J.A. A New Concept for Protecting Lines Against Faults in DC Traction Networks. Brown Boveri Rev.1983,(9/10) ,pp.372-378
    9. D.J.Tylavsky. Track/Trolley System Transients. IEEE Transaction on Industry Applications. Vol.24,No.4,1988,pp.672-681
    10. Kohler,J.L. DC Trolley Fires-A New Solution to an Old Problem. IEEE Transaction on Industry Application. Vol.31, No.4,1995,pp.726-732.
    11. Yaw-Juen Wang. Modeling of Frequency-Dependent Impedance of the Third Rail Used in Traction Power Systems. IEEE Transaction on Power Delivery. Vol.15,No.2, 2000,pp.750-755
    12. MORTON,J.S. Circuit Breaker and Protection Requirements for DC Switchgear Used in Rapid Transit Systems. IEEE Transaction on Industry Applications. Vol.21,No.5,1985, pp.1268-1273
    13. MORTON,J.S. Coil-less cold-cathode arc chutes for hight-speed d.c. circuit breakers for use on traction systems. IEE Proc.B. Vol.127,No.1,1980,pp34-45
    14. BROWN.J.C,ALLAN.J,and MELLITT.B. Calculation of remote short circuit fault currents for DC railways. IEE Proc.B. Vol.139,No.4,1992,pp.289-294
    15. BROWN.J.C,ALLAN.J,and MELLITT.B. Calculation and measurement of rail impedance applicable to remote short circuit fault currents. IEE Proc.B. Vol.139, No.4, 1992,pp.295-320
    16. BROWN.J.C,ALLAN,J,and MELLITT.B. Six-pulse three-phase rectifier bridge models for calculating close-up and remote short circuit transients on DC supplied railways. IEE Proc.B. Vol.138, No.6, 1991,pp.303-310
    17. HILL.R.J,BROWN.J.C. Correspondence-Calculation of remote short circuit fault currents for DC railways. IEE Proc.B. Vol.140,No.6, 1993, pp.417-420
    
    
    18. HILL.R.J.BRILLANTE,S. Electrical material data for railway track transmission line parameter studies. IEE Proc. B. Vol. 146,No. 1, 1999,pp.60~68
    19. HILL.R.J,Carpenter. D.C. Rail Track Distributed Transmission Line Impedance and Admittance: Theoretical Modeling and Experimental Results. IEEE Trans on Vehicular Technology. Vol.42,No.2,1993,pp.225~241
    20. Mellitt. B,Goodman. C.J. Simulation for studying operational and power supply conditions in rapid transit railways. IEE Proceedings,Vol.125, No.4,April 1978,pp. 198~203
    21. HILL.R.J,BRILLANTE.S. Electromagnetic field modeling for transmission line distributed parameters of railway track.IEE Proc.-Electr. Power Appl.Vol. 146,No. 1, 1999,pp. 53~59
    22.赵庆明,张孔辉,电力铁路高压直流牵引电网光纤隔离监控及计算机继电保护系统.哈尔滨师范大学自然科学学报,Vol.12,No.3,1996.pp.30~35
    23.张乃良,刘蕴华.数学物理方程及其应用(二).河海大学出版社,1994
    24. I.Daubechies. The wavelet transform, time-frequency localization and signal Analysis. IEEE Trans. IT-36(5), 1990, pp.961~1005
    25. S.Mallat. A theory of multiresolution signal decomposition: The wavelet transform. IEEE Trans. On Pattern Analysis & Machine Intelligence. Vol. 11,No.7,1989,pp.674~693
    26.任震,黄斐莹. 小波分析及其在电力系统中的应用(一)概论.电力系统自动化.Vol.21,No.1,1997,pp.5~17
    27.石志强,任震.小波分析及其在电力系统中的应用(二)理论基础.电力系统自动化.Vol.21,No.2,1997,pp.13~17
    28.任震,黄斐莹.小波分析及其在电力系统中的应用(三)工程应用技术.电力系统自动化.Vol.21,No.3,1997,pp.9~12
    29.林湘宁,刘沛,小波分析基础理论及其在电力系统中的应用(第1讲 小波变换及其时—频局部化特长).电力系统自动化.Vol.21,No.10,1997,pp.80~84
    30.林湘宁,刘沛.小波分析基础理论及其在电力系统中的应用(第2讲 信号小波分解与回复的快速算法).电力系统自动化.Vol.21,No.10,1997,pp.80~84
    31.任震,黄群古,黄斐莹.小波理论在电力系统微机保护中的应用研究.继电器.Vol.29,No.1,2001,pp.1~4
    32.崔锦泰著,程正兴译.小波分析导论.西安交通大学出版社,1995
    33.杨福生.小波变换的工程分析与应用.科学出版社,1999
    34.姚天任,孙洪.现代数字信号处理.华中理工大学出版社.
    35.秦前清,杨宗凯.实用小波分析.西安电子科技大学出版社.1994
    36.李世雄.小波变换及其应用.高等教育出版社.1997
    37. S.Mallat,et al. Singularity detection and processing with wavelets. IEEE Trans. It—38(2),1992, pp.617~643
    38. S.Mallat,et al. Characterization of signals multiscale edges. IEEE Trans. PAMI—14(7), 1992, pp.710~732
    
    
    39.林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断.机械工程学报.Vol.36,No.12,2000,pp.95~100
    40.董新洲,耿中行,葛耀中等小波变换应用于电力系统故障信号分析初探.中国电机工程学报.Vol.17,No.6,1997,pp.421~424
    41.张兆宁,毛鹏,孙雅明.电力系统故障暂态信号的小波奇异性检测.继电器.Vol.28,No.4,2000,pp.24~27
    42.何正友,钱清泉.基于小波变换的信号奇异性指数计算方法及其应用.电力自动化设备.Vol.20,No.3,2000,pp.12~15
    43.毛鹏,孙雅明,张兆宁,杜红卫.小波包在配电网单相接地故障选线中的应用.电网技术.Vol.24,No.6,2000,pp.9~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700