用户名: 密码: 验证码:
桑树叶形变异株的mRNA差异表达分析(cDNA-AFLP)及差异片段克隆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑树是多年生叶用木本植物,桑叶是蚕丝业的物质基础,桑叶的大小形状与经济产量密切相关,对桑树叶片的生长发育和形态建成机理进行研究,具有特别重要的意义。为探讨桑树叶片发育的分子机制,以桑树叶形变异株“凤尾一之濑”和野生型“新一之濑”的顶芽和叶片为试材,进行了组织学和分子机理的研究。桑树变异株系凤尾一之濑是由新一之濑冬芽经60Coγ射线诱变处理后,形成的叶片形态变异株系,叶片细长,横向皱缩。本研究利用组织切片技术观察了桑树变异株系的叶片组织形态的变化。采用cDNA-AFLP(cDNA扩增片段长度多态性)技术进行叶片形态变异株系和野生型的mRNA差异表达分析。得到了如下几条主要结论:
     1.桑树品种新一之濑和其变异株系凤尾一之濑在叶片指数上存在显著差异,新一之濑为1.17,凤尾一之濑为3.05。两者的幼叶厚度基本没有差异,但凤尾一之濑的成熟叶比新一之濑稍厚。两者在叶片组织结构,细胞层数和表皮结构等方面沿叶片的纵横轴没有明显的差异。
     2.应用Trizol,可以获得高质量的桑树RNA样品,可应用于cDNA反转录、Northern杂交等。应用PolyATtract(?) mRNA Isolation Systems (Promega)提取桑树顶芽总RNA,利用SMARTTM cDNA library construction kit (Clontech)中的LD-PCR方法合成cDNA,以及利用聚丙烯酰胺凝胶电泳和银染法,都得到良好的实验结果,这些技术可以满足桑树cDNA-AFLP的要求。
     3.利用AseⅠ和TaqⅠ对cDNA进行双酶切后,连接寡聚核苷酸接头,利用有两个选择性碱基的引物进行PCR扩增,结果显示,在所用材料相同的情况下,不同的引物组合有不同的电泳图谱,同一引物组合可以得到相同的条带。而且在克隆得到的DNA片段序列中含有特定的接头和选择性碱基序列(选择性引物序列),表明cDNA-AFLP方法具有较高的可靠性和重复性。
     4.本研究共选用8个TaqⅠ和8个AseⅠ引物,共64对引物组合进行选择性扩增,每个引物组合扩增的条带数可达50条以上,条带清晰,共扩增得到大约3200个条带,在新一之濑和凤尾一之濑之间,大约有30个条带只在其中一个品种的扩增图谱中出现,呈现明显的差异表达,这些条带代表了在叶片形态突变体与野生型之间差异表达的基因。
     5. cDNA-AFLP电泳图谱表明,在桑树叶形突变体和野生型之间,大部分条带是相同的,反映了大部分生理过程是相同的。少数条带存在差异,反映了造成二者之间性状差异的遗传改变。结果表明用cDNA-AFLP对桑树叶形变异株系进行差异显示分析的实用性。
     6.对聚丙烯酰胺凝胶电泳后得到的差异条带进行了克隆和测序分析,在所得到的15个基因片段中,有2个与已知基因有同源性,一个为脯氨酰4-羟化酶a亚基基因,该片段来自新一之濑。另一个是羟甲基转移酶基因,该基因片段来自凤尾一之濑。其他片段与已知的功能基因尚没有发现同源性。用5个克隆片段作为探针用于Northern杂交,没有发现明显的差异,说明这些突变的基因位点可能是点突变。
     7.本研究建立了一套应用于桑树变异株系表达差异显示的技术体系,从现有的资料看,本研究的内容,在桑树研究中应属首次报道。从得到的结果看,该方法费用少,有较强的可行性。
     8.从桑树现有的大量诱变株系入手,可以得到一些特殊基因序列。本研究为利用我国丰富的桑树种质资源,分离有特殊应用前景的目的基因应用于桑树分子育种领域,开创了新的研究途径和方法。
     9.本研究利用桑树叶片形态变异株和野生型进行mRNA表达差异显示分析,所得到的基因片段可能与桑树的叶形发育有某些相关性。对所得到的基因片段可以进一步克隆全长,研究基因功能。本研究为进一步研究叶片性状变化和发育分化的分子机理研究奠定了基础。
The diversity of leaf morphological characteristics shows a wide adaptive feature in the environment. This distinct characteristic of leaves is not only important for plant production, but also aids the plants classification, such as that of in mulberry (Morus spp.). However, the expression and regulation of leaf morphological characteristics remains unclear. In the present study, the mulberry leaf shape mutant (Fengwei-Ichinose), and its wild type (Shin-Ichinose), were used to evaluate the regularity of leaf mutations and to identify the differentially expressed genes that respond for the changes of leaf shape. Fengwei-Ichinose was induced byγray of Co60 from'Shin-Ichinose' Histological observation was performed to analysize the leaf morphological characters, and the cDNA-AFLP was consducted to fish out the differentially expressed genes. The results are summarized as follows:
     1. The leaf index was distinctly different between the mutant and its wild type. That of Fengwei-Ichinose was 3.05, while that of the wild type "Shin-Ichinose" was 1.17, The leaves of Fengwei-Ichinose were much narrower and with transversal crimples, and thicker at leaf fully expanded stage when compared to those of the wild type. The constructure of leaf tissue, cell layers and epidermis, however, had no differences along the leaf length and leaf width direction between the mutant and its wild type.
     2. Total RNA was extracted from buds of mulberry using Trizol method with minor modifications. mRNA was isolated by PolyATtract(?) mRNA Isolation Systems (Promage). The cDNA was synthesized by SMART cDNA library construction kit (CLONTECH.). cDNA-AFLP was performed by polyacrylamide gel electrophoresis and silver staining. The results indicated that the quality of the RNA obtained by Trizol was very high. These set of techniques were applicable in mulberry.
     3. cDNA was digested by AseⅠand TaqⅠ, ligated by two annealed anchors, and then, amplified by primers complementary to the anchors with two selective bases at 3' end. The result of electrophoresis showed different primer combinations produced different banding pattern, while same banding patterns could be repeatedly obtained by a same primer combination Sequence of the specific between the mutant and its wild type showed the cloned fragments had the primer sequence and the two selective bases. These suggested cDNA-AFLP was of high reliability and repeatability.
     4. Totally 64 of combinations of eight AseⅠand eight TaqⅠprimers were used. More than 50 bands were detected from each primers combination, and approximately 3200 expression bands were obtained in sum. Of which,30 bands only appeared in the mutant or the wild type, were suggested may corresponsable to the leaf morphogenesis.
     5. Most of the bands between the mutant and its wild type were identicall, which demonstrated there was similarity between them. A few bands only appeared in one of the two materials, mutant or its wild type. This result suggested cDNA-AFLP is practiceal for gene different expression display.
     6. Fifteen of the different expressed gene fragments were cloned and sequenced. Two of them showed homological with known gene after BLAST on NCBI GeneBank. One fragment, obtained from Shin-Ichinose showed similarity to the UniGene of putative prolyl 4-hydroxylase, alpha subunit in Arabidopsis. Another fragment obtained from Fengwei-Ichinose showed homologous with hydroxymethyltransferase in Arabidopsis. The other 13 fragments did not show any homology with any known genes in GeneBank, suggesting they might be are new gene fragments responsible to mulberry leaf development, relating to the change of the leaf morphology in mulberry.
     7. It was the first time for cDNA-AFLP to be used to analyze mulberry. In the present study, the cDNA-AFLP technique system was established for screening the differentially expressional genes between mutants and their original type.
     Summarilly, From the above results we can conclud that the work of analyzing the mulberry mutants using cDNA-AFLP technique has developed a new strategy in the study of leaf development mechanism and cloning new genes in woody plant, which have been rarely reported up to now. The study established a solid basic for analysing molecular mechanism of leaf morphology development.
引文
1. AzpirozLeehan R, Feldmann KA. (1997). T-DNA insertion mutagenesis in Arabidopsis:Going back and forth. Trends In Genetics.13 (4):152-156 APR
    2. Bachem CW, van der Hoeven RS, de Bruijn SM, et al. (1996). Visualization of di.erential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development. Plant Journal 9:745-753.
    3. Barton, M.K., and Poethig, R.S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana:an analysis of development in the wild type and in the shoot meristemsless mutant. Development 119,823-831.
    4. Breyne P, Zabeau M. (2001). Genome-wide expression analysis of plant cell cycle modulated genes. Current Opinion in Plant Biology.43:136-142
    5. Bruce A, Alexander J, Juian L, Martin R, Keith R, Reter W. (2002) Molecular biology of the cell. (fourth edition) Garland Publish. p.1242-1257
    6. Burk, D.H., Liu, B., Zhong, R., Morrison, W.H., and Ye, Z.-H. (2001) Katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13,807-827.
    7. Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000). Asymmetric leaves 1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408,967-971.
    8. Byrne, M.E., Timmermans, M. T., Kidner, C., and Martienssen, R. (2001). Development of leaf shape. Curr. Opin. Plant Biol.4,38-43.
    9. Chapin FS. (1991) Integrated responses of plant to stresss. BIOscience,41:29-36
    10. Chen JJ, Wu R, Yang PC, et al. (1998) Profiling expression pattens and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics,51:313-324.
    11. Chetverin AB, Kramer FR. (1994). Oligonucleotide arrays:new concepts and possibilities. Biotechnology (N.Y.) 12:1093-1099.
    12. Cho, H.-T., and Cosgrove, D. (2000). Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A.97,9783-9788.
    13. Desprez T, Amselem J, Caboche M, HoE fte H. (1998). Di.erential gene expression in Arabidopsis monitored using cDNA arrays. Plant Journal 14:643-652.
    14. Diatchenko L, Lan YC, Campbell AP, et al. (1996) Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025-6030
    15. Donnelly, P.M., Bonetta, D., Tsukaya, H., Dengler, R., and Dengler, N.G. (1999). Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev. Biol. 215,407-419.
    16. Durrant WE, Rowland O, Piedras P, et al. (2000). cDNA-AFLP reveals a striking overlap in rice-specific resistance and wound response gene expression profiles. Plant Cell,,12:963-977
    17. Eshed, Y., Baum, S. F., and Bowman, J. L. (1999). Distinct mechanisms promote polarity establishment in carpels ofArabidopsis. Cell 99,199-209.
    18. Felix, G., Altmann, T., Uwer, U., Jessop, A., Willmitzer, L., and Morris, P.-C. (1996). Characterization of wald meister, a novel developmental mutant in Arabidopsis thaliana. J. Exp. Bot.47,1007-1017.
    19. Fischer A, Saedler H, Theissen G. (1995). Restriction fragment length polymorphism-coupled domain-directed di.erential display:a highly e(?) cient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. U.S.A. 92:5331-5335.
    20. Fletcher, J.C., Brand, U., Running, M.P., Simon, R. and Meyerowitz, E.M.(1999). Signaling of cell fate decisions by C L A VATA3 in Arabidopsis shoot meristems. Science 283:1911-1914.
    21. Folkers U, Kirik V, Schobinger U, et al. (2002) The Cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton. The EMBO Journal.21(6):1280-1288
    22. Furutani, I., Watanabe, Y., Prieto, R., Masukawa, M., Suzuki, K., Naoi, K., Thitamadee, S., Shikanai, T., and Hashimoto, T. (2000).The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Development 127,4443-4453.
    23. Glazier AM, Nadeau JH, Aitman TJ. (2002).Finding gene that underlie complex traits. Science.298:2345-2349
    24. Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., Coupland, G. (1997). A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature.386,44-51.
    25. Habu Y, Fukada-Tanaka S, Hisatomi Y, Iida S. (1997). Ampli.ed restriction fragment length polymorphism-based mRNA finger-printing using a single restriction enzyme that recognizes a 4-bpsequence. Biochemical and Biophysical Research Communications 234:516-521.
    26. Hanson, J., Johannesson, H., and Engstrom, P. (2001). Sugardependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZip gene ATHB13. Plant Mol. Biol.45,247-262.
    27. Hieta R, Myllyharju J (2002). Cloning and characterization of a low-molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana effective hydroxylation of proline-rich collagen-like and HIFa-like peptides. J Biol Chem,2002 Apr 25
    28. Hu, Y., Bao, F., and Li, J. (2000). P romotive effect of brassinosteoids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J.24, 693-701.
    29. Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H. (1996). DNA binding properties of two Arabidopsis MADS domain proteins:binding consensus and dimer formation. Plant Cell 8:81-94.
    30. Hubank M, Schatz DG (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl. Acids Res.22:5640-5648
    31. Ito, T., Kim, G.-T., and Shinozaki, K. (2000). Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J.22,257-264.
    32. Ivashuta S, Imai R, Uchiyama K, Gau M. (1999). The coupling of differential display and AFLP approaches for nonradioactive mRNA fingerprinting. Molecular Biotechnology 12:137-141.
    33. Jackson, D., Veit, B., and Hake, S. (1994). Expression of maize KNOTTED1-related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120,405-413.
    34. Jones JT, Harrower BE. (1998). A comparison of the e.ciency of differential display and cDNA-AFLPs as tools for the isolation of differentially expressed parasite genes. Fundamental and Applied Nematology 21:81-88.
    35. Kaplan, D.R., and Hagemann, W. (1991). The relationship of cell and organism in vascular plants. BioScience 41,693-703.
    36. Kawamoto S, Ohnishi T, Kita H, Chisaka O, Okubo K. (1999).Expression pro.ling by iAFLP:A PCR-based method for genome-wide gene expression profiling. Genome Research 9:1305-1312.
    37. Kehoe DM, Villand P, Somerville S. (1999). DNA microarrays for studies of higher plants and other hotosynthetic organisms. Trends in Plant Science 4:38-41
    38. Kenzelmann M, Muhlemann K. (1999). Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) by adding a heating step to the original protocol. Nucleic Acids Research 27:917-918.
    39. Kerstetter, R., Vollbrecht, E., Lowe B., et al. (1994) Sequence analysis and expression patterns divide the maize knottedl-like homeobox genes into two classes. The Plant Cell,6,1877-1887
    40. Kerstetter, R.A., Bollman, K., Taylor, A., Bomblies, K., and Poethig, S. (2001). KAN ADI regulates organ polarity in Arabidopsis. Nature 411,706-709.
    41. Kim, G.T., Shoda K, Tsuge T., et al. (2002). The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. The EMBO Journal.21(6):1267-1279
    42. Kim, G.-T., Tsukaya, H., and Uchimiya, H. (1998a). The ROTUND1FOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev.12, 2181-2191.
    43. Kim, G.-T., Tsukaya, H., and Uchimiya, H. (1998b). The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta 206,175-183.
    44. Kim, G.-T., Tsukaya, H., Saito, Y., and Uchimiya, H. (1999). Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.96,9433-9437.
    45. Lake, J.A., Quick, W.P., Beerling, D.J., and Woodward, F.I. (2001). Signals from mature to new leaves. Nature 411,154.
    46. Liang P, Pardee AB. (1992). Di.erential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967-971.
    47. Lightner, J., James, D.W. Jr., Dooner, H.K., and Browse, J. (1994). Altered body morphology is caused by increased levels in a mutant of Arabidopsis. Plant J.6, 401-412.
    48. Lisitsyn Nikolai, Lisitayn Natalya, Wigler M (1993).Cloning the differences between two complex genomes. Science.,259:948-951
    49. Malhotra K, Foltz L, Mahoney WC, Schueler PA. (1998). Interaction and effect of annealing temperature on primers used in differential display RT-PCR. Nucleic Acids Research 26:854-856.
    50. Martin KJ, Pardee AB. (2000). Identifying expressed genes. Proc. Natl. Acad. Sci. U.S.A..97:3789-3791.
    51. Matsumura H, Nirasawa S, Terauchi R. (1999). Technical Advance:Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant Journal 20:719-726.
    52. McConnell, J.R., and Barton, M.K. (1998). Leaf polarity and meristem formation in Arabidopsis. Development 125,2935-2942.
    53. McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA determining radial patterning in shoots. Nature 411,709-713.
    54. Meinke, D.W. (1992). A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258,1647-1650.
    55. Mizukami, Y., and Fischer, R.L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. U.S.A.97,942-947.
    56. Nagatani, A., Reed, J.W., and Chory, J. (1993). Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol.102, 269-277.
    57. Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C., Estelle, M., and Reed, J.W. (2000). AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol.123,563-573.
    58. Nuccio ML, Thomas TL. (1999). ATS1 and ATS3:two novel embryo-specific genes in Arabidopsis thaliana. Plant Molecular Biology 39:1153-1163.
    59. Ori, N., Eshed, Y., Chuck, G., Bowman, J.L., and Hake, S. (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523-5532.
    60. Rupp, H.-M., Frank, M., Werner, T., Strnad, M., and Schmuling, T. (1999). Increased steady state mRNA levels of the STM and K N AT 1 homeobox genes in cytokinin overpro ducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J.18,557-563.
    61. Sablowski RW, Meyerowitz EM. (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93-103.
    62. Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular cloning:a laboratory manual. Cold Spring Harbor:Cold Spring Harbor Laboratory Press
    63. Schena M, Shalon D, Davis RW, Brown PO. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.
    64. Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C., and Machida, Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128,1771-1783.
    65. Serikawa, K. A., Martinez-Laborda, A., and Zambryski, P. (1996). Three knottedl-like homeobox genes in Arabidopsis. Plant Mol. Biol.32,673-683.
    66. Serikawa, K. A., Martinez-Laborda, A., Kim, H.-S., and Zambryski, P. (1997). Localization of expression of KNAT3, a class 2 knotted1-like gene. Plant J.11, 853-861.
    67. Serikawa, K.A. and Zambryski, P.C. (1997). Domain exchanges between KNAT3 and KNAT1 suggest specificity of the knl-like homeodomains requires sequences outside of the third helix and N-terminal arm of the homeodomain. Plant J.11, 863-869.
    68. Shevell., D.E., Leu, W.-M., Gillmor, C.S., Xia, G., Feldmann, K.A., and Chua, N.-H. (1994). EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77, 1051-1062.
    69. Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N., and Bowman, J.L. (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126,4117-4128
    70. Sinha, N. (1999) Leaf development in angiosperms. Annu. Rev.Plant Physiol. Plant Mol. Biol.50,4117-4128.
    71. Sompayrac L, Jane S. Bum TC. Tenen DG, Danna KJ. (1995). Overcoming limitations of the mRNA differential display technique Nucl. Acids Res.23: 4738-4739
    72. Southern E, Mir K, Shchepinov M. (1999). Molecular interactions on microarrays. Nature Genetics Supplement 21:5-9
    73. Stein OD, Thies WG, Hofmann M. (1997). A high throughput screening for rarely transcribed differentially expressed genes. Nucl. Acids. Res.25:2598-2602
    74. Sun, T.-P. (2000).Gibberellin signal transduction. Curr. Opin. Plant Biol.3, 374-380.
    75. Timpte, C.C., Wilson, A.K., and Estelle, M. (1992). Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188,271-278.
    76. Tsiantis, M., Schneeberger, R., Golz, J.F., Freeling, M., and Langdale, J.A. (1999).The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284,154-156.
    77. Tsuge, T., Tsukaya, H., and Uchimiya, H. (1996). Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122,1589-1600.
    78. Tsukaya H (2002a). Leaf development. In Arabidopsis Book, Edited by Somerville,CR and Meyerowitz EM. American Society of Plant Biologists.
    79. Tsukaya H (2002b). The leaf index:heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion. Plant Cell Physiol.43(4):372-378.
    80. Tsukaya, H. (1995a). Developmental genetics of leaf morphogenesis in dicotyledonous plants. J. Plant Res.108,407-416.
    81. Tsukaya, H. (1998). Genetic evidence for polarities that regulate leaf morphogenesis. J. Plant Res.111,113-119.
    82. Tsukaya, H. (2000). The role of meristematic activities in the formation of leaf blades. J. Plant Res.113,119-126.
    83. Tsukaya, H. (2001). Interpretation of mutants in leaf morphology:genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between Cell and Organismal theory. Int. Rev. Cytol. (in press)
    84. Tsukaya, H., and Uchimiya, H. (1997). Genetic analyses of developmental control of serrated margin of leaf blades in Arabidopsis-Combination of mutational analysis of leaf morphogenesis with characterization of a specific marker gene, which expresses in hydathodes and stipules in Arabidopsis. Mol. Gen. Genet.256, 231-238.
    85. Tsukaya,H., Inaba-Higano, K., and Komeda, Y. (1995).Phenotypiccharacterization and molecular mapping of acaulis2 mutant with flower stalks of much reduced length in Arabidopsis thaliana. Plant Cell Physiol.36,239-246.
    86. Tsukaya, H., Naito, S., Redei, G.P., and Komeda, Y. (1993). A new class of mutations in Arabidopsis thaliana, acaulisl, affecting the development of both inflorescences and leaves. Development 118,751-764.
    87. Tsukaya, H., Shoda, K., Kim, G.-T., and Uchimiya, H. (2000). Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta 210,536-542.
    88. Tsukaya, H., Tsuge, T., and Uchimiya, H. (1994). The cotyledon:a superior system for studies of leaf development. Planta 195,309-312.
    89. Ullah, H., Chen, J.-G., Young, J.C., Im, K.-H., Susman, M.R., and Jones, A.M. (2001). Modulation of cell proloferation by heterotrimeric G protein in Arabidopsis. Science 292,2066-2069.
    90. Van Lijsebettens, M., Vanderhaeghen, R., De Block, M., Bauw, G., Villarroel, R., and Van Montagu, M. (1994). An S18 ribosomal protein gene copy at the Arabidopsis PFL locus a ffects plant development by its specific expression in meristems. EMBO J.13,3378-3388.
    91. Van Volkenburgh, E. (1999). Leaf expansion-an integrating plant behavior. Plant Cell Environ.22,1463-1473.
    92. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. (1995). Serial analysis of gene expression. Science 270:484-487.
    93. Vos P, Hogers R, Bleeker M, et al. (1995). AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407-4414.
    94. Waites, R., and Hudson, A. (1995). phantastica:a gene required for dorsoventrality of leaves in Antirrhinummajus. Development.121,2143-2154.
    95. Waites, R., Selvadurai, H.R.N., Oliver, I.R., and Hudson, A. (1998). The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93,779-789.
    96. Walden R.(2002). T-DNA tagging in a genomics era. Critical Reviews In Plant Sciences.21 (3):143-165
    97. Wan JS, Sharp SJ, Pokier OM. er al (1996). Cloning differentially expressed mRNAs. Nature Biotechnology 14:1685-1691.
    98. Wang, H., Zhou, Y., Gilmer, S., Whitwill, S., and Fowke, L.C. (2000). Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J.24,613-623.
    99. Wang, X-Q., Ullah, H., Jones, A.M., and Assmann, S.M. (2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292,2070-2072.
    100.West, M.A.L., Yee, K.M., Danao, J., Zimmerman, J.L., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (1994). LEAFY COTYLEDONIis an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6,1731-1745.
    101.Williams, R.W. (1998). Plant homeobox genes:many functions stem from a common motif. Bioessays 20,280-282.
    102.Yershov G, Barsky V, Belgovskiy A.et al. (1996). DNA analysis and diagnostics on oligonucleotide micro-chips. Proc. Natl. Acad. Sci. U.S.A.93:4913-4918.
    103.Zhong, R., and Ye, Z.-H. (1999). IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11,2139-2152.
    104.小山郎夫.3倍性桑品種の稔性.日蚕雜.1997,66(3):200-206
    105.中国蚕学会栽桑技术委员会三十年来我国桑树栽培技术的进步与成就.湖北蚕业.1993,(1)25-28
    106.尹佟明,黄敏仁,王明麻,等.利用RAPD标记和单株树大配子体构建马尾松的分子标记连锁图谱.植物学报.1997,39(7):607-612
    107.尹佟明,黄敏仁,朱立煌.利用显性分子标记和F1群体进行林木遗传连锁图谱的构建.生物工程进展.1996,16(4):12-16
    108.毛龙,胡含,朱立煌,等.应用RAPD分析1个抗条锈病的小麦-黑麦易位系.科 学通报.1994,39(22):2088-2090
    109.王冰冰,孙宝启.RAPD技术进展及其在小麦遗传育种中的应用.农业生物技术学报.1997,5(3):227-233
    110.王跃进,Lamikanra O,卢江,等葡萄无核基因的RAPD遗传标记(英文)西北农业大学学报.1996,24(5):1-10
    111.冯丽春,杨光伟,余茂德,等.利用RAPD对桑属植物种间亲缘关系的研究.中国农业科学.1997,30(1):52-56
    112.冯丽春,杨光伟,余茂德等.桑树栽培种的随机扩增DNA的多态性(RAPD)研究.蚕业科学.1996,22(3):135-139
    113.白胜,柯益富,余茂德,等.桑属植物形态分类数值分类研究.蚕业科学.1998,24(2):63-66
    114.印莉萍,刘祥林.分子细胞生物学实验技术,北京:首都师范大学出版社,2000,p62-73
    115.向仲怀,张孝勇,余茂德,等.采用随机扩增多态性DNA技术(RAPD)在桑属植物系统学研究的应用初报.蚕业科学.1995,21(4):203-208
    116.孙日彦,梁明芝,宋慧贞,等.秋水仙碱处理成龄桑诱导四倍体的研究.蚕业科学.1997,23(1)55-56
    117.扬俊霞,郭宝林.桑树数量性状的概率分级研究.蚕业科学.1998,24(2):122-124
    118.朱其洪,贾旭,王京兆,等.用RAPD方法获得与小麦BYDV抗性基因连锁的分子标记.科学通报.1995,40(19):1799-1801
    119.何大彦,冯文和.桑属几个种及品种细胞色素氧化酶同工酶的研究.蚕业科学.1998,14(1):1-5
    120.何大彦,周明珠,何伟.云贵川地区桑属植物细胞遗传学的研究Ⅰ桑种及品种的染色体倍数性观察.蚕业科学.1989,15(1):7-12
    121.余茂德,韩厚春,刘地英.不同倍数体桑树叶片气孔的观察.蚕业科学.1989,15(4):238-241
    122.余茂德.二十一世纪我国桑树学科的发展与研究.中国蚕丝学会桑树优质高产栽培学术讨论会论文集1999.10中国蚕丝学会.
    123.吴敏生,王守才,戴景瑞,等.指纹图谱技术在品种鉴定和纯度分析上的应用.农业生物技术学报.1998,6(1):51-56
    124.张有做,楼程富,周金妹,等.不同倍性桑品种基因组DNA多态性比较.浙江农业大学学报.1998,24(1):79-81
    125.张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种的应用.生物技术通报.1998(5):15-22
    126.李存礼,余茂德,柯益富,等.三倍体桑品种嘉陵16号选育的研究.中国农业科学.1994,27(6):61-66
    127.李松涛,张忠廷,王斌,等.用新的分子标记方法(RAPD)分析小麦抗白粉病基因Pm4a的近等位基因系.遗传学报.1995,22(2):103-108
    128.李春丽,郑康乐.杂交稻中共显性RAPD标记及产量性状基因的检测.科学通报.1999,15(1):61-65
    129.李常保,宋建成RAPD标记与作物改良.生物技术通报.1998(6):20-29
    130.李德葆等.基因工程操作技术.上海科学技术出版社.1996p61.
    131.杨今后,杨新华,骆承军.桑树多倍体及其育种研究进展.蚕业科学.1992,18(3):195-201
    132.杨今后,杨新华,戴荷芳.桑辐射育种的研究.蚕业科学.1987,13(4):195-200
    133.杨今后,杨新华.桑树人工三倍体育种的研究,蚕业科学.1989,15(2):65-70
    134.杨新华,杨今后.淀粉凝胶电泳法对桑过氧化物同工酶研究.蚕业科学.1988,14(4):194-197
    135.汪小全,邹喻苹,张大明,等.RAPD应用于遗传多样性和系统学研究中的问题.植物学报.1996,38(12):954-962
    136.苏超,苏利红,焦锋,等.桑树性配子二倍化人工促进技术研究.西北农业学报.1998,7(1):82-84
    137.邹继军,董伟,杨庆凯,等.大豆对灰斑病7号小种抗性的遗传分析及抗病基因的RAPD标记.科学通报.1998,43(21):2301-2307
    138.陆军,钱惠荣,壮杰云,等.利用RAPD技术检测水稻的基因组变化.科学通报.1993,38(23):2181-2182
    139.陆军,钱惠荣,壮杰云,等.应用RAPD标记快速鉴定水稻的抗稻瘟病基因.科学通报1994,39(22)2103-2105
    140.陈建莉,Wang R R C,薛秀庄,等.用Langdon二体代换系统建立小麦染色体RAPD标记.遗传学报.1996,23(1):32-39.
    141.陈道明,黄敏仁,孙晓霞,等.桑树主要品种的同工酶研究初报.蚕业科学.1980,6(2):129-131
    142.林寿康.桑树品种的研究概况.蚕桑通报,1992,23(2):3-6
    143.金勇丰,张耀洲,陈大明,等.桃早熟芽变品种”大观一号”的RAPD分析及其特异片段的克隆.果树科学.1998,15(2):103-106
    144.柯益富.桑树栽培及育种学.北京:中国农业出版社.1997
    145.胡志昂,恽锐,钟敏,等.检测植物DNA扩增多态性方法的比较和改进.植物学报.1997,39(2):144-148
    146.荆玉祥主编.植物分子生物学——成就与前景.北京:科学出版社1995,299-303
    147.赵铁桥.系统生物学的概念和方法.北京:科学出版社1995
    148.夏英武主编.作物诱变育种.北京:科学出版社.1997
    149.浙江农业大学主编.遗传学.北京:农业出版社.1986
    150.谈建中,楼程富,等大豆球蛋白基因表达载体的构建及对桑树的遗传转化蚕业科学.199924(1)5-10
    151.郭展雄,肖更生,苏大道.广东桑树多倍体及其育种研究的进展.蚕业科学.1994,20(2):67-71
    152.盖树鹏,孟祥栋.利用RAPD技术进行植物性状标记及辅助选择.生物技术通报.1999(6):33-38
    153.黄荣福,沈颂东,卢学峰.青藏高原东北部植物染色体数目和多倍性研究.西北植物学报.1998,16(9):310-318
    154.储瑞银,孙晓霞.桑属植物细胞遗传学研究Ⅱ.四个桑品种的核型分析.蚕业科学.1987,13(3):129-132
    155.储瑞银,孙晓霞.桑属植物细胞遗传学研究Ⅰ.部分桑品种倍数性.蚕业科学.1986,12(4):199-202
    156.葛学军,Thom.,JD燕麦草多倍体复合体的等位酶多样性研究.热带亚热带植物学报.1996,4(4):79-85
    157.韩明斋,王淑侠,朱光义,等.陕西桑属植物染色体的倍数性.陕西蚕业.1994,15(2):17-20
    158.韩明斋,王淑侠,陈旗,等.提高无性系桑品种四倍体诱导率的探讨.蚕业科学.1994,19(1):55-57
    159.韩贻仁,分子细胞生物学,北京:科学出版社,2001,634-640
    160.楼程富,张有做,周金妹.桑树有性杂交后代与双亲基因组DNA的RAPD分析初报.农业生物技术学报.1997,5(4):397-403
    161.楼程富,张有做RAPD技术及其在桑树上的应用.蚕桑通报.1995,26(3):9-10
    162.楼程富.桑树基因工程研究概况.蚕桑通报.1994,25(3):20-21
    163.管志文,张清杰,庄楚雄.农杆菌携带柞蚕抗菌肽基因转入桑树的研究.蚕业科学.1994,20(1):1-6
    164.管泽强,沈毓渭,蒋琳,等.一个CMS水稻育性回复突变体的RAPD分析.遗传学报.1997,24(6):501-506
    165.管贵史,等RAPD技术にょるクヮの品种评价.日本蚕丝学会第65回讲演要旨.1995,8
    166.蔡旭.植物遗传育种学.北京:科学出版社1988,611-627
    167.潘一乐,杨今后,郭展雄.桑树遗传和育种技术的研究桑树诱变及多倍体育种技术与应用研究.浙江农业科学院蚕桑研究所.1998.10
    168.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报.1999(4):19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700