用户名: 密码: 验证码:
空间网格结构的鲁棒性理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网格结构是空间结构中应用最为广泛的结构形式,具有跨度大、构件多、破坏后果严重的特点,但目前设计时较少考虑结构受到意外干扰时的性能,而近年来人为事故和自然灾害对其破坏性愈加突出,结构倒塌事件时有发生。增强结构的鲁棒性可以降低其对干扰的敏感性,提高结构抵抗不相称破坏的能力。目前,结构鲁棒性缺乏有效的数值表达和可行的设计方法,且研究对象主要为桁架、框架结构,在空间网格结构领域较为少见。因此,对空间网格结构的鲁棒性理论进行系统研究,具有十分重要的理论意义和工程价值。
     本文从结构鲁棒性定量评价指标、典型空间网格结构的鲁棒性、基于鲁棒性的优化设计方法和模型试验等几个层次展开研究。具体内容如下:
     借鉴H∞最优的思想,针对线性结构系统,根据定性描述的结构鲁棒性定义,从结构自身的属性出发,建立了H∞结构鲁棒性定量评价指标。通过单自由度体系和桁架结构的算例,阐释了H∞鲁棒性指标的性质、物理意义,以及影响结构鲁棒性的因素,验证了本文提出的评价指标的合理性和有效性。
     针对非线性结构系统,引入L2性能准则,利用凸集模型表达不确定性干扰,给出考虑弹塑性的结构鲁棒性计算公式,进而分析弹塑性、冗余度以及外部荷载和结构自身的不确定性与鲁棒性的关系。以上两部分研究为基于鲁棒性的结构分析与设计提供了理论基础。
     采用线性H∞结构鲁棒性评价指标,选取常见的扇形三向网格、肋环斜杆型和肋环型单层球面网壳结构,以及单向斜杆正交正放网格和三向网格的单层圆柱面网壳结构,通过参数分析,研究了几何尺寸、网格形式对单层网壳结构鲁棒性的影响。通过逐步概念移除构件,分析了构件的重要性,进而搜索了影响鲁棒性的关键路径。最后针对某双层网壳结构工程实例,讨论了不同的支承形式对鲁棒性的影响。
     对地震作用下不同形式的网架结构进行大规模数值计算,分析了其动力失效模式及特征,发现网架结构各失效模式之间存在模糊性。利用模糊C-均值聚类方法将网架动力失效模式归为三类:失稳型局部失效、强度型整体失效和强度型局部失效,得到了各失效模式的典型数字特征,给出了分析地震作用下网格结构鲁棒性的步骤。
     以H∞结构鲁棒性指标为目标,采用基于多精英选择的遗传算法,从截面层次研究了结构鲁棒性优化设计方法。以平面和三维桁架结构为例,验证了提出的方法,并探索遗传算法中种群个体数的合理取值。针对典型的单层球面和圆柱面网壳结构进行了截面优化,得到了较为合理的截面布置,并通过与承载力和位移指标比较,验证了优化结果。
     采用SIMP模型描述材料的刚度,以结构鲁棒性为优化目标,从拓扑层次研究了结构鲁棒性优化设计方法。将结构鲁棒性设计转化成连续体拓扑优化问题,通过平面应力模型验证了方法的可行性和合理性。以球面壳和双曲面壳为例,得到了网壳结构的鲁棒构型,为网格结构的拓扑优化提供了有效的手段。
     分别按照鲁棒设计和常规设计,制作了两个单层球面网壳结构模型,通过静力和冲击试验,制造不同的干扰场景,分析了不同结构设计方案的鲁棒性,验证了H∞鲁棒性指标的合理性。结果表明,通过连续体拓扑优化进行鲁棒设计,能够有效地提高结构鲁棒性。
     本文系统地研究了空间网格结构的鲁棒性,初步建立了空间网格结构的鲁棒性设计理论和设计原则,为有效防止该类结构的不相称破坏提供理论依据和设计方法。
As the most widely used spatial structure form, spatial latticed structures have the features of large span, multi-components, and serious destruction consequences. But during the design procedure, little consideration is taken on the accidental interference. In recent years, spatial latticed structures increasingly suffer from man-made accidents and natural disasters, and collapse events have occurred sometimes. Enhancing the structural robustness can reduce its susceptibility to interference, and increase the resistance capacity to disproportionate destruction. Now the research of structural robustness is mainly focused on trusses and frame structures, while the study on spatial latticed structures is rare, and effective numerical expression and feasible design method are lack. The research of the robustness of spatial latticed structures is valuable for theory and engineering.
     This paper conducts research from several levels, including quantitative evaluations of structural robustness, the robustness of the typical spatial latticed structures, and optimization design methods based on robustness. The specific contents are as follows:
     Taking basis in robust H∞, control theory and the attributes of structures, a framework for quantitative assessing structural robustness is proposed according to the qualitative statement. Taking a SDOF system and truss structures as examples, properties and physical interpretation of the H∞, structural robustness index were clarified, and factors affecting structural robustness were studied. The results indicate that H∞structural robustness index can effectively and reasonably reflect structural robustness.
     For nonlinear systems, the uncertainties were expressed by convex model, and specific formula for elastic-plastic structural robustness was given, using L2norm as an evaluation of signal. Influence of elastic-plastic, redundancy and the uncertainties of loads and structural attributes were analyzed. The above two parts of research lay foubdation for structure analysis and design based on robustness.
     For the typical spherical latticed shells, including Kiewitt dome, Schwedler dome and ribbed type, and cylindrical latticed shells, including one-way orthogonal grid and three-way grid, influence of geometric parameters and grid configurations on the robustness of single-layer reticular shells were analyzed through parametric analysis. Then the components importance indices were calculated by component removal method. Furthermore the critical path for robustness was obtained. Finally, taking an engineering practice for example, the impact of different forms of supports to robustness was discussed.
     Based on large scale numerical calculations for different forms of spaec grid structures subjected to earthquake, dynamic failure modes and characteristics were analyzed, which showd fuzziness. Using fuzzy C-means method, the failure modes were classified into three categories: instability based progressive collapse, strength based overall collapse and strength based progressive collapse, and the numerical prototypes of failure modes were obtained. Finally the steps to analyze robustness of spatial latticed structures subjected to earthquake are proposed.
     Setting H∞, structural robustness indicators as the target, size level structural robustness optimization was investigated, using the genetic algorithm based on multi-elitist selection. The proposed method was verified by the examples of planar and three-dimensional truss structures, and the reasonable number of individuals in populations of genetic algorithm was explored either. Typical single-layer spherical and cylindrical latticed shell structures were optimization then, and reasonable cross-section arrangements were obtained. The results were verified by the robustness indicators based on bearing capacity and displacement.
     Using the SIMP material model to describe the stiffness of material, topology level structural robustness optimization was investigated. Robustness based design of spatial latticed structures is formulated as a continuum topology optimization problem, where the structural robustness is considered as the optimization objective. The feasibility and rationality of the method were verified by the plane stress model. As an example, robustness configurations of a single-layer spherical and a hyperboloid shell were obtained by robustness based structural design, which could provide an effective method for the topology optimization of spatial latticed structures.
     Two models of single-layer grid structures were designed by conventional and robustness based method respectively. Different interference scenarios were simulated by static and impact experiments, and robustness of the models were analyzed and compared. The results show that robustness based structural design improves structural robustness effectively.
     This paper systematically studied the robustness of spatial latticed structures. The research results can preliminarily provide theoretical basis and design methods to effectively prevent the disproportionate consequences.
引文
[1]Martin R, Delatte N J. Another look at Hartford Civic Center Coliseum collapse[J]. Journal of Performance of Constructed Facilities.2001,15(1):31-36.
    [2]Philipp D. Robustness of large-span timber roof structures — Structural aspects[J]. Engineering Structures. 2011,33(11):3106-3112.
    [3]Munch-Andersen J, Dietsch P. Robustness of large-span timber roof structures — Two examples[J]. Engineering Structures.2011,33(11):3113-3117.
    [4]HUBER P J.1972 Wald lecture -Robust statistics-Review[J]. Annals of Mathematical Statistics,1972, 43(4):1041-1067.
    [5]Pearson C, Delatte N. Ronan Point Apartment Tower Collapse and its Effect on Building Codes[J]. Journal of Performance of Constructed Facilities.2005,19(2):172-177.
    [6]Osteraas J D. Murrah Building Bombing Revisited:A Qualitative Assessment of Blast Damage and Collapse Patterns[J]. Journal of Performance of Constructed Facilities.2006,20(4):330-335.
    [7]Maes M A, Fritzsons K. E, Glowienka S. Risk-based indicators of structural system robustness[C]. Workshop on Robustness of Structures, Watford:JCSS and IABSE,2005:1-10.
    [8]Faber M H. Recent advances in Assessment of Structural Robustness [C]. Workshop on Structural Robustness, Stanford:JCSS,2008.
    [9]Bontempi F, Giuliani L. Nonlinear dynamic analysis for the structural robustness assessment of a complex structural system[C]. Proceedings of the 2008 Structures Congress, Vancouver:ASCE,2008:1-10.
    [10]Biondini F. A measure of lifetime structural robustness[C]. Proceedings of the 2009 Structures Congress. Austin:ASCE,2009:1749-1757.
    [11]ASCE/SEI 7-10. Minimum Design Loads for Buildings and Other Structures [S]. Reston:ASCE,2010.
    [12]Unified Facilities Criteria 4-023-03. Design Of Buildings to Resist Progressive Collapse[S]. Departments of Defense,2010.
    [13]Eurocode 1 EN 1991-1-7. Actions on Structures, Part 1-7:Accidental Actions[S]. Brussels:Committee for Standardization,2006
    [14]王元清,胡宗文,石永久等.门式刚架轻型房屋钢结构雪灾事故分析与反思[J].土木工程学报,2009,42(3):65-70.
    [15]张敏政.从汶川地震看抗震设防和抗震设计[J].土木工程学报,2009,42(5):21-24.
    [16]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(6):1-8.
    [17]蔡建国,王蜂岚,冯健.大跨空间结构抗连续性倒塌概念设计[J].建筑结构学报,2010,31(S1):282-287.
    [18]Tomazevic M, Weiss P. Robustness as a criterion for use of hollow clay masonry units in seismic zones: an attempt to propose the measure[J]. Materials and Structures.2012,45(4):541-559.
    [19]Masoero E, Wittel F K, Herrmann H J, et al. Hierarchical Structures for a Robustness-Oriented Capacity Design[J]. Journal of Engineering Mechanics.2012,138(11):1339-1347.
    [20]N6ldgen M, Fehling E, Riedel W, et al. Vulnerability and Robustness of a Security Skyscraper Subjected to Aircraft Impact[J]. Computer-Aided Civil and Infrastructure Engineering.2012,27(5):358-368.
    [21]Yan D, Chang C C. Vulnerability assessment of single-pylon cable-stayed bridges using plastic limit analysis[J]. Engineering Structures,2010,32(8):2049-2056.
    [22]苏永华,李翔.基于Info-Gap理论的地下结构稳健性分析方法[J].岩土工程学报,2011,33(2):227-233.
    [23]Hampel F R. A General Qualitative Definition of Robustness[J]. The Annals of Mathematical Statistics. 1971,42(6):1887-1896.
    [24]Hansen L P, Sargent T J, Tallarini T D. Robust permanent income and pricing[J]. Review of Economic Studies.1999,66(4):873-907.
    [25]Zhou K, Khargonekar P P. Stability robustness bounds for linear state-space models with structured uncertainty[J]. IEEE Transactions on Automatic Control.1987,32(7):621-623.
    [26]Callaway D S, Newman M, Strogatz S H, et al. Network robustness and fragility:Percolation on random graphs[J]. Physical Review Letters.2000,85(25):5468-5471.
    [27]Allen C R.. Ecosystems and immune systems:Hierarchical response provides resilience against invasions[J]. Conservation Ecology,2001,5(1):15.
    [28]Miller R K, Masri S F, Dehghanyar T J, et al. Active vibration control of large civil structures[J]. Journal of Engineering Mechanics-ASCE.1988,114(9):1542-1570.
    [29]Lee M, Kelly D W, Degenhardt R, et al. A study on the robustness of two stiffened composite fuselage panels[J]. Composite Structures.2010,92(2):223-232.
    [30]Haukaas T. Efficient Computation of Response Sensitivities for Inelastic Structures[J]. Journal of Structural Engineering.2006,132(2):260-266.
    [31]Beer M, Liebscher M. Designing robust structures-A nonlinear simulation based approach[J]. Computers & Structures.2008,86(10):1102-1122.
    [32]Doltsinis I, Kang Z. Optimization and robustness of deformable systems with randomness[M]. Computational Methods in Engineering & Science, Beijing:Tsinghua University Press,2006,35-50.
    [33]Zang C, Friswell M 1, Mottershead J E. A review of robust optimal design and its application in dynamics[J]. Computers & Structures.2005,83(4-5):315-326.
    [34]Agarwal, J., England, J. Recent developments in robustness and relation with risk[J]. Structures & Buildings,2008,161(SB4):183-188.
    [35]Starossek U, Haberland M. Disproportionate Collapse:Terminology and Procedures[J]. Journal of Performance of Constructed Facilities,2010,24(6):519-528.
    [36]Baker J W, Schubert M, Faber M H. On the assessment of robustness[J]. Structural Safety,2008,30(3): 253-267
    [37]吕大刚,宋鹏彦,崔双双,等.结构鲁棒性及其评价指标[J].建筑结构学报.2011,32(11):44-54.
    [38]Committee of European Standardization. EN 1991-1-7:2006, Actions on structures. Part 1-7:general actions—accidental actions[S]. Brussels,2006:11.
    [39]Gross J L, Mcguire W. Progressive collapse resistant design[J]. Journal of Structural Engineering-ASCE. 1983,109(1):1-15.
    [40]Alashker Y, Li H H, El-Tawil S. Approximations in progressive collapse modeling[J]. Journal of Structural Engineering-ASCE.2011,137(9S1):914-924.
    [41]Kwasniewski L. Nonlinear dynamic simulations of progressive collapse for a multistory building[J]. Engineering Structures.2010,32(5):1223-1235.
    [42]王永昌.通过改进节点性能确保火灾下钢框架结构的鲁棒性[J].防灾减灾工程学报.2012,32(1):89-98.
    [43]Starossek U, Haberland M. Approaches to measures of structural robustness[J]. Structure and Infrastructure Engineering,2011,7(7-8):625-631.
    [44]Frangopol D M, Curley J P. Effects of damage and redundancy on structural reliability[J]. Journal of Structural Engineering,1987,113(7):1533-1549.
    [45]高扬,刘西拉.结构鲁棒性评价中的构件重要性系数[J].岩石力学与工程学报,2008,27(12):2575-2584.
    [46]Wisniewski D, Casas J R, Ghosn M. Load capacity evaluation of existing railway bridges based on robustness quantification[J]. Structural Engineering International:Journal of the International Association for Bridge and Structural Engineering (IABSE),2006,16(2):161-166.
    [47]吕大刚,崔双双,李雁军,等.基于备用荷载路径Pushover方法的结构连续倒塌鲁棒性分析[J].建筑结构学报,2010,31(S2):112-118.
    [48]Biondini F, Frangopol D M, Restelli S. On structural robustness, redundancy and static indeterminacy[C]. Proceedings of the 2008 Structures Congress. Vancouver:ASCE,2008:1-10.
    [49]Smith J W. Energy approach to assessing corrosion damaged structures[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings,2003,156(2):121-130.
    [50]张雷明,刘西拉.框架结构能量流网络及其初步应用[J].土木工程学报,2007,40(3):45-49.
    [51]Beeby, A.W., Safety of structures, and a new approach to robustness[J]. Structural Engineer,1999,77(4): 16-21.
    [52]方召欣,李惠强.基于能量观点的结构安全性与鲁棒性[J].建筑结构学报,2007,28(S1):269-273.
    [53]Wu X, Blockley D I, Woodman N J. Vulnerability of structural systems.2. failure scenarios[J]. Civil Engineering Systems,1993,10(4):319-333.
    [54]Lu Z, Yu Y, Woodman N J, et al. A theory of structural vulnerability[J]. Structural Engineer,1999,77(18): 17-24.
    [55]Wu X, Blockley D I, Woodman N J. Vulnerability of structural systems.1. rings and clusters[J]. Civil Engineering Systems,1993,10(4):301-317.
    [56]Agarwal J, Blockley D, Woodman N. Vulnerability of 3-dimensional trusses[J]. Structural safety,2001, 23(3):203-220.
    |57]Pinto J T, Blockley D I, Woodman N J. The risk of vulnerable failure[J]. Structural safety,2002,24(2-4): 107-122.
    [58]Agarwal J, Blockley D, Woodman N. Vulnerability of structural systems[J]. Structural Safety,2003,25(3): 263-286.
    [59]England J, Agarwal J, Blockley D. The vulnerability of structures to unforeseen events[J]. Computers & Structures,2008,86(10):1042-1051.
    [60]朱南海,叶继红.基于结构易损性理论的网壳失效模式分析初探[J].振动与冲击.2011(6):248-255.
    [61]Ye J H, Liu W Z, Pan R. Research on failure scenarios of domes based on form vulnerability[J]. SCIENCE CHINA Technological Sciences,2011,54(11):2834-2853.
    [62]Sundaresan S, Ishii K, Houser D R. Robust optimization procedure with variations on design variables and constraints[J]. Engineering Optimization,1995,24(2):101.
    [63]Bucher C. Robustness analysis in structural optimization[J]. Structure and Infrastructure Engineering, 2009,5(4):287-293.
    [64]Huang B Q, Du X P. Analytical robustness assessment for robust design[J]. Structural and Multidisciplinary Optimization,2007,34(2):123-137.
    [65]Mourelatos Z P, Liang J H. A methodology for trading-off performance and robustness under uncertainty[J]. Journal of Mechanical Design,2006,128(4):856-863.
    [66]Fu G, Frangopol D M. Balancing weight, system reliability and redundancy in a multiobjective optimization framework[J]. Structural Safety,1990,7(2-4):165-175.
    [67]Lind N C. A measure of vulnerability and damage tolerance[J]. Reliability Engineering & System Safety, 1995,48(1):1-6.
    [68]Cizmar D, Kirkegaard P H, Serensen J D, et al. Reliability-based robustness analysis for a Croatian sports hall[J]. Engineering Structures,2011,33(11):3118-3124.
    [69]Husain M, Tsopelas P. Measures of structural redundancy in reinforced concrete buildings,Ⅰ:redundancy indices[J]. Journal of Structural Engineering, ASCE,2004,130(11):1651-1658.
    [70]Tsopelas P, Husain M. Measures of structural redundancy in reinforced concrete buildings. Ⅱ:redundancy response modification factor[J]. Journal of Structural Engineering, ASCE,2004,130(11):1659-1666.
    [71]Ellingwood B.R, Dusenberry D.O. Building design for abnormal loads and progressive collapse[J]. Computer-Aided Civil and Infrastructure Engineering,2005,20(3):194-205.
    [72]Ziha K. Redundancy and robustness of systems of events[J]. Probabilistic Engineering Mechanics,2000, 15(4):347-357.
    [73]Beer M, Liebscher M. Designing robust structures-A nonlinear simulation based approach[J]. Computers and Structures,2008,86(10):1102-1122.
    [74]Kanno Y, Ben-Haim Y. Redundancy and robustness, or when is redundancy redundant?[J]. Journal of Structural Engineering-ASCE.2011, I37(9SI):935-945.
    [75]Au F, Cheng Y S, Tham L G, et al. Robust design of structures using convex models[J]. Computers & Structures,2003,81(28-29):2611-2619.
    [76]Kanno Y, Takewaki I. Robustness analysis of trusses with separable load and structural uncertainties[J]. International Journal of Solids and Structures,2006,43(9):2646-2669.
    [77]Lignon S, Jezequel L. A robust approach for seismic damage assessment[J]. Computers & Structures, 2007,85(1-2):4-14.
    [78]Du X, Sudjianto A, Chen W. An integrated framework for optimization under uncertainty using inverse reliability strategy[J]. Journal of Mechanical Design, Transactions of the ASME,2004,126(4):562-570.
    [79]Park G J, Lee T H, Lee K H, et al. Robust design:an overview[J]. AIAA Journal,2006,44(1):181-191.
    [80]Lagaros N D, Papadrakakis M. Robust seismic design optimization of steel structures[J]. Structural and Multidisciplinary Optimization,2007,33(6):457-469.
    [81]Gerasimidis S, Bisbos C D, Baniotopoulos C C. Vertical geometric irregularity assessment of steel frames on robustness and disproportionate collapse[J]. Journal of Constructional Steel Research,2012,74:76-89.
    [82]Branco J M, Neves L A C. Robustness of timber structures in seismic areas[J]. Engineering Structures, 2011,33(11):3099-3105.
    [83]John Dalsgaard S. Framework for robustness assessment of timber structures[J]. Engineering Structures, 2011,33(11):3087-3092.
    [84]Ghosn M, Moses F, Frangopol D M. Redundancy and robustness of highway bridge superstructures and substructures[J]. Structure and Infrastructure Engineering,2010,6(1-2):257-278.
    [85]Murthasmith E. Alternate path-analysis of space-trusses for progressive collapse[J]. Journal of Structural Engineering-ASCE,1988,114(9):1978-1999.
    [86]Li Y, Lu X, Guan H, et al. An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures[J]. Engineering Structures,2011,33(10):2931-2942.
    [87]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:11-12.
    [88]GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社,2010:16-17.
    [89].JGJ3-2010.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010:28-29.
    [90]叶列平,程光煜,陆新征,等.论结构抗震的鲁棒性[J].建筑结构,2008,38(6):11-15.
    [91]Doyle J C, Glover K, Khargonekar P P, et al. State-space solutions to standard H2 and Hoo control probIems[J]. IEEE Transactions on Automatic Control,1989,34(8):831-847.
    [92]宁响亮,刘红军,谭平,等.基于LMI的结构振动多目标鲁棒H2/Hoo控制[J].振动工程学报,2010,23(2):167-172.
    [93]李少康.现代控制理论基础[M].西安:西北工业大学出版社,2005:49-55.
    [94]Zames G. Feedback and optimal sensitivity-model reference transformations, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on Automatic Control,1981, AC-26(2):301-320.
    [95]Doyle J, Stein G. Multivariable feedback design:Concepts for a classical/modern synthesis[J]. Automatic Control, IEEE Transactions on,1981,26(1):4-16.
    [96]Doyle J C, Glover K, Khargonekar P P, et al. State-space solutions to standard H2 and H∞ control problems[J]. Automatic Control, IEEE Transactions on,1989,34(8):831-847.
    [97]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008:61-63,142-143.
    [98]王德进.H2和H∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001:128-132.
    [99]颜桂云,孙炳楠,陆鸣.MR阻尼器对建筑结构地震反应的半主动H∞控制[J].工程力学,2004,21(2):95-100.
    [100]Pantelides C P, Ganzerli S. Design of trusses under uncertain loads using convex models[J]. Journal of Structural Engineering-ASCE,1998,124(3):318-329.
    [101]Doltsinis I, Kang Z. Robust design of structures using optimization methods [J]. Computer Methods in Applied Mechanics and Engineering,2004,193(23-26):2221-2237.
    [102]Tonon F, Bernardini A, Elishakoff I. Hybrid analysis of uncertainty:probability, fuzziness and anti-optimization[J]. Chaos, Solitons Fract,2001,12:1403-14.
    [103]Kang Z, Luo Y J, Li A. On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters[J]. Structural Safety,2011,33(3):196-205.
    [104]Cacciola P, Muscolino G, Versaci C. Deterministic and stochastic seismic analysis of buildings with uncertain-but-bounded mass distribution[J]. Computers & Structures,2011,89(21-22SI):2028-2036.
    [105]Kang Z, Luo Y J. Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models [J]. Computer Methods in Applied Mechanics and Engineering,2009, 198(41-44):3228-3238.
    [106]邱志平,陈吉云,王晓军.结构鲁棒优化的非概率集合理论凸方法[J].力学学报,2005,37(3):295-300.
    [107]Fang C, lzzuddin B A, Obiala R, et al. Robustness of multi-storey car parks under vehicle fire[J]. Journal of Constructional Steel Research,2012,75:72-84.
    [108]Dinu F, Dubina D. Robustness based design of steel building frames under extreme loads[C]. Proceedings of the 7th international conference on behaviour of steel structures in seismic areas, Santiago, Chile.2012:905-911.
    [109]Formisano A, Mazzolani F M. Robustness assessment approaches for steel framed structures under catastrophic events[C]. Proceedings of the 7th international conference on behaviour of steel structures in seismic areas. Santiago, Chile.2012:1041-1047.
    [110]Comeliau L, Rossi B, Demonceau J F. Robustness of Steel and Composite Buildings Suffering the Dynamic Loss of a Column[J]. Structural Engineering International,2012,22(3):323-329.
    [111]杜文风,高博青,董石麟,等.一种判定杆系结构动力稳定的新方法——应力变化率法[J].浙江大学学报(工学版),2006,40(3):506-510.
    [112]Fan F, Yan J C, Cao Z G. Stability of reticulated shells considering member buckling[J]. Journal of Constructional Steel Research,2012,77:32-42.
    [113]沈世钊,支旭东.球而网壳结构在强震下的失效机理[J].上木工程学报,2005,38(1):11-20.
    [114]杜文风,高博青,董石麟.单层网壳动力失效的形式与特征研究[J].工程力学,2009,26(7):39-46.
    [115]柳承茂,刘西拉.基于刚度的构件重要性评估及其与冗余度的关系[J].上海交通大学学报.2005,39(5):746-750.
    [116]刘占省,陈志华.基于可靠度理论的预应力钢结构关键构件的评判方法[J].空问结构,2011,17(4): 28-32.
    [117]蔡建国,王蜂岚,韩运龙,等.大跨空间结构重要构件评估实用方法[J].湖南大学学报(自然科学版),2011,38(3):7-11.
    [118]卢家森,张其林.基于可靠度的单层网壳稳定设计方法[J].建筑结构学报,2006,27(6):108-113.
    [119]蒋友宝.斜拉双层圆柱面网壳结构可靠度计算及设计方法探讨[D].南京:东南大学,2006:15-16.
    [120]王多智,范峰,支旭东,等.冲击荷载下单层凯威特型球面网壳防护方法及建议[J].振动与冲击,2012,31(8):136-142.
    [121]聂桂波,范峰,支旭东.基于精细化本构的单层柱面网壳强震失效机理研究[J].土木工程学报,2012,45(S1):30-35.
    [122]丁阳,葛金刚,李忠献.空间网格结构连续倒塌分析的瞬时移除构件法[J].天津大学学报,2011,44(6):471-476.
    [123]Sueli A. Mingoti, Joab O. Lima. Comparing SOM neural network with Fuzzy c-means,K-means and traditional hierarchical clustering algorithms[J]. European Journal of Operational Research,2006, (174): 1742-1759.
    [124]王晓可,范峰,支旭东,等.单层柱面网壳在强震下的破坏机理研究[J].土木工程学报,2006,39(11):26-32.
    [125]Frangopol D M. Life-cycle performance, management, and optimisation of structural systems under uncertainty:accomplishments and challenges[J]. Structure and Infrastructure Engineering,2011,7(6): 389-413.
    [126]高小旺,李荷.工程抗震设防标准若干问题的探讨[J].土木工程学报,1997,30(6):52-59.
    [127]高小旺,李荷.不同重要性建筑抗震设防标准的探讨[J].建筑科学,1999,15(2):11-16.
    [128]杜文风,高博青,董石麟.网壳结构寿命周期总费用的计算方法研究[J].土木工程学报,2011,44(6):127-137.
    [129]张成,黄昊明,高博青.环状折线桁架体育场挑篷结构的性能研究[J].浙江大学学报(理学版),2010,37(5):600-604.
    [130]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-76.
    [131]Back T. Selective pressure in evolutionary algorithms:a characterization of selection mechanisms[C]. Proceedings of the First International IEEE Conference on Evolutionary Computation, IEEE,1994: 57-62.
    [132]Soremekun G, Gurdal Z, Haftka R T, et al. Composite laminate design optimization by genetic algorithm with generalized elitist selection[J]. Computers & Structures,2001,79(2):131-143.
    [133]Jakiela M J, Chapman C, Duda J, et al. Continuum structural topology design with genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4):339-356.
    [134]Rozvany G. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization,2001,21(2): 90-108.
    [135]王仁华,赵宪忠,谢步瀛.平面桁架结构拓扑优化方法研究[J].力学季刊,2010,31(2):310-317.
    [136]刘锋,谢灏斌,李丽娟.基于改进群搜索优化算法的桁架结构拓扑优化研究[J].空问结构,2010,16(4):22-28.
    [137]Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2):197-224.
    [138]Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(1-2):227-246.
    [139]Xia Q, Shi T L, Liu S Y, et al. A level set solution to the stress-based structural shape and topology optimization[J]. Computers & Structures,2012,90-91:55-64.
    [140]Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures,1993,49(5):885-896.
    [141]Zuo Z H, Xie Y M, Huang X D. Evolutionary topology optimization of structures with multiple displacement and frequency constraints[J]. Advances in Structural Engineering,2012,15(2):359-372.
    [142]Rozvany G. A critical review of established methods of structural topology optimization[J]. Structural and Multidisciplinary Optimization,2009,37(3):217-237.
    [143]刘加光,陈义保,罗震.连续体结构的模糊多目标拓扑优化设计方法研究[J].系统仿真学报.2007,19(5):1095-1099.
    [144]罗阳军,亢战.连续体结构非概率可靠性拓扑优化[J].力学学报,2007,39(1):125-131.
    [145]罗震.基于变密度法的连续体结构拓扑优化设计技术研究[D].武汉:华中科技大学,2005:10-12.
    [146]Zheng J, Long S Y, Li G Y. Topology optimization of free vibrating continuum structures based on the element free Galerkin method[J]. Structural and Multidisciplinary Optimization,2012,45(1):119-127.
    [147]陈建军,杜雷,崔明涛,等.基于概率的平面连续体结构拓扑优化[J].应用力学学报,2006,23(2):203-207.
    [148]赵龙彪,高亮,陈志敏,等.基于比例微分优化准则的拓扑优化方法[J].中国机械工程,2011,22(3):345-350.
    [149]Mostafavian S A, Davoodi M R, Amiri J V. Ball joint behavior in a double layer grid by dynamic model updating[J]. Journal of Constructional Steel Research,2012,76:28-38.
    [150]Wu H, Gao Bo-qing, Chen Qiang. Load-carrying capacity and practical calculation method for hollow cylinder joints connected with H-shaped beams[J]. Journal of Zhejiang University SCIENCE A,2012, 13(3):174-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700