用户名: 密码: 验证码:
聚氨酯金属屋面板力学性能及其对屋盖结构风振影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前的大跨度屋盖结构普遍采用轻型金属屋面系统,但结构设计时通常忽略屋面板对结构受力性能的影响。本文以常用的聚氨酯夹芯金属屋面板作为研究对象,对此类屋面板的刚度和阻尼性能、解析理论以及有限单元模型开展了研究,并进一步考察了屋面板刚度和阻尼性能对屋盖结构风致振动效应的影响。论文主要包括以下五个方面的工作:
     (1)对屋面板常用聚氨酯夹芯材料的基本力学性能进行了试验测定。发现聚氨酯夹芯的拉伸、压缩性能不同,且不同方向的力学性能也有明显的差异。指出聚氨酯夹芯可以假定为横观各向同性材料,并根据试验数据对其基本力学参数进行了拟合。进一步对聚氨酯夹芯的材料损耗因子进行了测定,给出了损耗因子随温度、频率的变化曲线。
     (2)对聚氨酯夹芯金属屋面板的整体阻尼特性进行了研究。分析了聚氨酯夹芯金属屋面板的模态损耗因子随檩距、夹心层厚度及面板厚度的影响,表明屋面板对于外部高频激励具有较高的阻尼耗能能力,聚氨酯夹芯层的阻尼特性对整个屋面板的阻尼特性起着决定性影响。考察了不同刚度、阻尼的屋面板在脉动风荷载作用下的动力反应,发现在风压传递过程中屋面板的有限刚度及夹芯层阻尼都会显著改变风压的脉动特性。
     (3)将面层压型金属板等代为正交各向异性的平板,进而将聚氨酯夹芯屋面板简化为上下面层厚度不同、且各层材料均为正交各向异性的夹层板。基于Hoff型夹层板理论,推导了屋面板的静力基本方程,并对该静力方程的解析方法进行了讨论。采用复模量法来表征聚氨酯夹芯的粘弹性特性,进一步推导了考虑夹芯层阻尼的屋面板横向振动的动力基本方程。
     (4)基于Hoff型夹层板理论,建立了一种定义在夹芯层中面上的八结点的矩形夹层板单元,每个结点具有5个自由度,3个线位移和2个转角。采用该单元模拟的屋面板在静荷载作用下的变形形式与更精细有限元分析结果相同,变形值基本接近。模态分析求得的基本振型与精细模型相同,自振频率也较接近。表明该夹层板单元能够有效模拟聚氨酯夹芯金属屋面板的静、动力特性。
     (5)通过两个算例考察了屋面板刚度和阻尼性能对屋盖结构风振效应的影响。分析结构表明是否考虑屋面板对结构的风振效应的计算结果存在明显的差异。屋面板刚度都是影响结构风致振动效应的主要因素。夹芯层阻尼会对刚度较大屋盖结构的风振效应产生的影响明显,影响程度还与屋面自身刚度相关。
Currently, the light metal roofing system is widely used in large span roof structures, while the effect of roof panel is ignored in design. Actually, the wind pressure acts on the roof panel first, then passes through the roof panel to the purlins and arrived in the main structure finally. The article studies on the frequently-used polyurethane sandwich metal roof panel, focusing on its effect of finite stiffness and damping on the mechanical properties of roofing system, especially on the wind-induced vibration, the main parts as follow:
     (1) The article investigates the basic mechanical and damping properties of the polyurethane sandwich layer. Studies have found that the tensile and compression performance as well as the mechanical properties of different direction of polyurethane foam are different. So it can't be considered as isotropy material. Parameters of transverse isotropic model are fitted according to the test data. The loss factor curve of polyurethane foam is measured by DMA, during witch, the factor loss-frequency and factor loss-temperature cure are obtained.
     (2) The damping properties of the polyurethane sandwich metal roof panel are investigated here. The model loss factor of the polyurethane sandwich metal roof panel is obtained, which is found to cause high damping energy dissipation on external high-frequency stimulation. Parameter analysis shows that the damping properties of the polyurethane sandwich metal roof panel are decisive to the damping properties of the whole roofing system. The finite stiffness of roof panel and the damping properties of sandwich layer will both change the characteristics of fluctuating wind pressure, by investigating the response of roof panel with different stiffness and damping properties under the action of pulsating wind load of dynamic response.
     (3) The pressed metal layer is equaled to orthogonal anisotropy plate, while polyurethane sandwich metal roof panel is also equaled to orthogonal anisotropy sandwich plate with different thickness of top and bottom layer. Based on the Hoff sandwich plate theory, the static equation of roof panel is obtained, and dicussed the analytic solutions. Complex modulus method is taken to represent the viscoelastic properties of polyurethane sandwich layer. Futher, the dynamic equation of the panel transverse vibration with the damping properties of sandwich layer is derived.
     (4) Based on the Hoff sandwich plate theory, a new kind of sandwich plate element is established, which is established on the middle surface of the sandwich layer as a rectangular element with eight nodes, each of which contains five freedoms:3linear displacements and2angular displacements.The roof panel simulated by this element has the same displacement as what is got in the accurate model, while the natural frequency of vibration is close to the accurate model. So, it is found to be effective enough to simulate the static and dynamic properties.
     (5) Effect of the stiffness and damping of roof panel on the wind vibration of the roof structures is investigated by two examples. The analysis result shows that whether to take the roof panel into account is definitely different on the calculation results of wind vibration.The stiffness of roof panel is the main factor to consider to the wind-induced vibration. The damping of sandwich layer has obvious effect on the roof structure with large stiffness, and how mcuh it causes depands on its stiffness.
引文
[1]董石麟,罗尧治,赵阳等.空间结构分析、设计与施工[M].人民交通出版社,2006.
    [2]M.Kasperski, Design wind loads for low-rise buildings:A critical review of wind load specifications for industrial buildings, Journal of Wind Engineering and Industrial Aerodynamics,1996,61:169-179.
    [3]V.Kolousek, Wing effects on civil engineering structures, ELSEVIER Press,1984.
    [4]孙炳楠,傅国宏,陈鸣等.9417号台风对温州民房破坏的调查[C].第七届全国结构风效应会议论文集,中国空气动力学会,1966,81-129.
    [5]Nakamura O, Tamura Y, Miyashita K, etal. A case study of wind pressure and wind-induced vibration of a large span open-type roof[J]. J. Wind Engr. Ind. Aerodyn.1994,52:237-248.
    [6]丁阳,齐麟,赵奕程.考虑屋面板自振效应和流固耦合效应的大跨度空间结构风振系数[J].建筑结构学报,2008,29(5):101-105.
    [7]GB 5009~2012建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.
    [8]M.Suzuki, S.Sanada, Y.Hayami, et. Prediction of wind induced response of a semi-rigid hanging roof,9ICWE, New Delhi, India,1995,1195-1206.
    [9]周暄毅,顾明.大跨度屋盖表面风压系数的试验研究[J].同济大学学报,2002,30:1423-1428.
    [10]H.Yasui, H.Marukawa, J.Katagiri, et. Study of wind-induced response of long-span structure, Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [11]谢壮宁,倪振华,石碧青.大跨度屋盖结构风荷载特性的风洞试验研究[J].建筑结构学报,2001,22(2):23-28.
    [12]操礼林,褚兰哲,石启印等.典型体育场屋盖风荷载特性的风洞试验研究[J].防灾减灾工程学报.2012(3):339-345
    [13]沈国辉,孙柄楠,楼文娟.复杂体型大跨度屋盖结构的风荷载分布[J],土木工程学报,2005,38(10):39-43
    [14]朱海川,顾明.大型体育场主看台挑篷风荷载特性的风洞试验研究[J].同济大学学报,2001,30(5):643-647
    [15]A.Miyake, TYoshimura, M.Makino. Aerodynamic instability of suspended roof models[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,41:1471-1482.
    [16]陆锋.大跨度平屋面结构的风振响应和风振系数研究[D],浙江大学博士论文,2001.
    [17]M.Yoshida, K. Kondo, M.Suzuki. Fluctuating wind pressure measured with tubing system [J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,41:987-998.
    [18]张相庭.结构风工程理论规范实践[M].中国建筑工业出版社,2006.
    [19]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(2):41-52.
    [20]刘锡良,周颖.风荷载的几种模拟方法以[J].工业建筑,2005,35:81-84.
    [21]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构.2003,9(4):27-32.
    [22]王玲玲.大涡模拟理论及其应用综述小涡[J].河海大学学报(自然科学版),2004,32(3):261-265.
    [23]卢春玲,李秋胜,黄生洪等.大跨度复杂屋盖结构风荷载的大涡模拟[J].土木工程学报,2011,44(1):1-10.
    [24]陈勇.体育场风压风流场数值模拟及模态分析法研究大悬挑屋盖风振动力响应[D].同济大学硕士论文,2002.
    [25]顾明,黄鹏,杨伟等.上海铁路南站平均风荷载的风洞试验和数值模拟[J].建筑结构学报,2004,5:59-65.
    [26]汪丛军,黄本才.越南国家体育场屋盖平均风压及风环境影响的数值模拟[J].空间结构,2004,6:43-49.
    [27]周仁.大跨屋盖结构风荷载的数值模拟与风致响应分析[D].同济大学硕士论文,2006.
    [28]Sun Xiaoying. Numerical simulation of flows around long-span flat roof[J].Journal of Harbin Institute of Technology.2005,12(4):370-375.
    [29]Ucmatsu Y, Isyumov N. Wind pressures acting on low-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,82:1-25.
    [30]楼文娟,李本悦,陆锋.大跨度屋面风压分布拟合公式及风荷载取值[J].同济大学学报,2002,30(5):588-593.
    [31]李元齐.大跨度网壳结构抗风理论研究及几个实际工程问题的分析[D].浙江大学博士后,2000.
    [32]O.Nakamura, Y.Tamura, K.Miyashita, et. A case study of wind pressure and wind-induced vibration of a large span open-type roof[J].Journal of wind Engineering and Industrial Aerodynamics,1994, 52:237-248.
    [33]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报.1998,15(2):217-223.
    [34]何艳丽,董石麟,龚景海.空间网格结构频域风振响应分析模态补偿法[J].工程力学,2002,19:1-6.
    [35]黄开明,倪振华,谢壮宁.里兹向量直接叠加法在圆拱顶屋盖风致响应分析中的应用[J].第十 届全国结构风工程学术会议论文集,2003:321-326.
    [36]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[D].浙江大学博士论文,2005
    [37]International Standard ISO4354. Wind action on structures,2004.
    [38]G Davenport, How can we simplify and generalize wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,54:657-669.
    [39]M.Kasperski, H.J.Niemann. The LR.C.(load-response-correlation)-method a general method of estimating unfavorable wind load distributions for linear and non-linear structural behavior[J]. J.Wind Eng.lnd.Aerodyn.1992,41-44:1753-1763.
    [40]杨庆山,陈波,武岳.基于Ritz-POD的大跨屋盖结构风振响应分析和风效应静力等效方法[J].建筑结构学报,2011,32(12):127-136.
    [41]项海帆.结构风工程的现状与展望[J].振动工程学报,1997,10(3):258-263.
    [42]周岱,舒新玲,周笠人.大跨空间结构风振响应及其计算与试验方法[J].振动与冲击,2002,21(4):7-12.
    [43]C.Verwlebe, H.Ruscheweyh. Recent research results concerning the exciting mechamsms of rain-wind-mduced wbratmns[J]. Journal of Wind Engineering and Industrial Aerodynarmcs,1998, 74-76:1005-1013.
    [44]AasJakobsen.K, Stremmen.E.K. Time domain buffeting response calculations of slender structures[J]. Journal of Wind Engineering and Indnstnal Aerodynanucs,2001.89:341-364.
    [45]B.J.Vickery, M.Majowiecki. Wind induced response of a cable supported roof[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:1447-1458.
    [46]Y.L.Xu, D.K.San, J.M.Ko, et. Buffeting Analysis of Long Span Bridges:a New Algorithm[J]. Computers & Structures,1998,68:303-313.
    [47]H.Yaani, H.Mamkawa,J.Katagiri, et. Study of wind-induced response of long-span structure[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:277-288.
    [48]Nakayama M., Sasaki Y. Masuda k, Ogawa T., An efficient method for selection of vibration modes contributory to wind response on dome-like roofs[J].Wind Eng. Ind. Aerodyn.1998,73:31-43.
    [49]M.L.Levitan, K.C.Mehta, W.P.Vann, et. Field measurements of pressures on the Texas Teen building[J]. Journal of wind Engineering and Industrial Aerodynamics,1991,38:227-234.
    [50]Marighetti J., Wittwer A.,et al. Fluctuating and mean pressure measurements on a stadium covering in wind tunnel[J].Wind Engineering and Industrial Aerodynamics,2000,84:321-328.
    [51]舒新玲.大跨度单层网壳结构风载风振研究[D].上海交通大学硕士论文.2003.
    [52]方江生.复杂大跨度屋盖结构的风荷载特性及抗风设计研究[D].同济大学博士论文,2007.
    [53]刘毛方.大跨度屋盖结构脉动风特性及风振响应计算方法的研究[D].浙江大学硕士论文,2006.
    [54]中华人民共和国国家标准.建筑用金属面绝热夹芯板(GB/T23932-2009)[S].北京:中国标准出版社.2010.
    [55]戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1986.
    [56]Ungar E E, Jr. Edward M. Kerwin. Loss factors of viscoelastic systems in terms of energy concepts[J]. The Journal of the Acoustical Society of America.1962,34(7):954-957.
    [57]Johnson, C.D. and Kienholz, D.A., Finite element prediction of damping in Structures with constrained viscoelastic layers[J]. AIAA Journal,1963,20(9):1284-1290.
    [58]M H Tsai, K C Chang. A study on modal strain energy method for viscoelastically damped structures[J]. Journal of the Chinese Institute of Engineers.2001,24(3):311-320.
    [59]Rikards Rolands. Finite element analysis of vibration and damping of laminated composites[J]. Composite Structure.1993,24:193-204.
    [60]Conor D. Johnson. Finite element prediction of damping in beams with constrained viscoelastic layer[J]. The Shock and Vibration Bulletin.1987:35(1).
    [61]Ross D,Ungar E,Kerwin Jr. Damping of Flexural Vibrations by Means of Viscoelastic Laminae[A]. Section 3 of Structural Damping.NewYork:ASME,1959.
    [62]Rao V S, Sankar B V, Sun C T. Constrained layer damping of initially stressed composite Beams using finite elements[J]. Compos.Mater,1992,26:1752-1766.
    [63]Ravi S S A, Kundra T K, Nakra B C. Response rcanalysis of damped beams using Eigen parameter perturbation[J]. Sound and Vibration,1995,179:399-412.
    [64]Yi Sung, Ahmad M Fouad, Hilton H. Dynamic responses of plates with Viscoelastic free layer damping treatment[J]. Vib.Acoust.Tans.ASME,1996,118:362-367.
    [65]Marcelin C,Trompctte Ph,Smati A.Optimal Constrained Layer Damping with Partial Coverage[J]. Finite Elements in Analysis and Design,1992,12(3-4):273-280.
    [66]罗忠,朱锡,梅志远.夹芯复合材料结构阻尼特性研究[J].振动与冲击,2008,27(11):134-136.
    [67]沈顺根,冷文浩.粘弹性线性复合结构动力特性分析[J].中国造船,1996,2:44-52.
    [68]任志刚,楼梦麟,田志敏.复合夹层梁动力响应的谱有限元解[J].同济大学学报(自然科学版).2004,32(10):1382-1385.
    [69]Kerwin. Dmaping of Flexural Waves by a Constrained Viscoelastic Layer[J].The Journal of the Acoustical society of America,1959,31(7):952-962.
    [70]陈前.复合结构振动分析的数值方法[J].计算结构力学及其应用,1990,3(7):27-35.
    [71]邓年春,邹振祝,桂华军等.约束阻尼板的有限元动力分析[J].振动工程学报,2003,16(4):490-492.
    [72]Carne T. Constrained Layer Damping Examined by Finite Element Analysis[R]. Austin,Texas:Society of Engineering Scienee,1975.
    [73]张海燕.复合夹层板结构动力特性研究[D].武汉理工大学硕士学位论文.2005.
    [74]王慧彩.约束阻尼夹层板动态特性研究[D].大连理工大学硕士学位论文.2003.
    [75]闻荻江.中空玻璃微珠/玻璃纤维增强聚氨酯泡沫塑料的微观结构与性能分析[D].苏州大学,2006.
    [76]Li K, Gao X L, Roy A K. Micromechanics model for three dimensional open-cell foams using a tetrakaidecahedral unit cell and Castiglione's second theorem[J]. Composites Science and Technology, 2003,63:1769-1781.
    [77]Shen H, Nutt S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites A: Applied Science and Manufacturing,2003,34(9):899-906.
    [78]Karthikeyan C, Sankaran S. Elastic behavior of plain and fibre reinforced syntactic foams under compression[J]. M aterials Letters,2004,58:995-999.
    [79]A lonso M V, Auad M L, Nu tt S. Modeling the compressive properties of glass fiber reinforced epoxy foam using the analysis of variance approach[J]. Composites Science and Technology,2006,66(13): 2126-2134.
    [80]Wouterson E M, Boey F Y, Hu X, etal. Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam[J]. Polymer,2007,48:3183-3191.
    [81]卢子兴,邹波,李忠明等.玻璃纤维束增强聚氨酯泡沫的拉压力学性能[J].北京航空航天大学学报.2009,35(1):36-39.
    [82]艾红梅,白雪娇.新型夹芯式保温屋面板的研究[J].新型建筑材料.2010,37(11):41-43,47.
    [83]秦培成,查晓雄,于航.聚氨酯硬质泡沫材料本构研究及其在夹芯板中的应用[J].工业建筑.2008, 38(4):77-81.
    [84]中华人民共和国国家标准.硬质泡沫塑料拉伸性能试验方法(GB/T9614-88)[S.n].1988.
    [85]中华人民共和国国家标准.硬质泡沫塑料压缩试验方法(GB/T8813-88)[S].北京:轻工业出版,1978.
    [86]范钦珊.材料力学[M].北京:高等教育出版社,2000.
    [87]丁皓江.横观各向同性弹性力学[M].杭州:浙江大学出版社,1997.
    [88]张晓霞,周柏卓.正交各向异性材料弹性本构关系分析[J].航空发动机.1997(1):20-25.
    [89]中华人民共和国国家标准.阻尼材料阻尼性能测试方法(GB/T 18258-2000)[S].北京:中国标准出版社.2000.
    [90]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002
    [91]陈晔,刘允航等.聚氨酯/苯并恶嗪互穿聚合物网络的阻尼性能[J].上海交通大学学报.2002,36(10):1506-1508.
    [92]王威,蒋笃孝,张卫.改性聚硅氧烷/聚氨酯弹性体的阻尼性能研究[J].聚氨酯工业.2011,26(3):30-33.
    [93]王新敏ANSYS工程结构数值分析[M].人民交通出版社.2007.
    [94]朱镜清,朱敏.复阻尼多自由度系统动力分析的模态叠加法[J].地震工程与工程振动.2004,24(1):55-58.
    [95]Ray Clough, Joseph Penzien. Dynamics of structures [M].3rd ed. USA:Computers & Structures, Inc, 1995.
    [96]中科院北京力学研究所,固体力学室板壳组.夹层板壳的弯曲稳定和振动[M].北京:科学出版社,1977
    [97]薛大为.具有不等厚表板的夹层板问题[J].固体力学学报.1981(1):65-71.
    [98]金伏生.不等厚表板夹层板问题[J].兵工学报,1990(1):94-96.
    [99]蒋国宾,李祖强. Hoff理论下正交各向异性夹层板的基本方程[J].重庆交通学院学报.1989(4):37-43.
    [100]石勇,朱锡,李海涛,等.考虑表层抗弯刚度影响的夹层板静力学等效分析[J].海军工程大学学报.2006(6):106-110.
    [101]Batra RC, Aimmance S. Vibration of thick isotropic plates with higher shear and normal dcformable plate theories[J]. Composite Structures,2005(83):934-55.
    [102]Rao MK, Desai YM. Analytical solutions for vibrations of laminated and sandwich plates using mixed theory[J]. Composite Structures 2004(63):361-73.
    [103]Tongan Wan. Vladimir Sokolinsky, Shankar Rajaram, et. Consistent higher-order free vibration analysis of composite sandwich plates[J]. Composite Structures,2008(82):609-621.
    [104]Rikards R, Chate A, Barkanov E. Finite element analysis of damping the vibrations of laminated composites[J]. Computers & Structures,1993,47(6):1005-1015.
    [105]Moreira RAS, Rodrigues JD, Ferreira AJM. A generalized layerwise finite element for multi-layer damping treatments. Computational Mechanics,2006,37:426-44.
    [106]Zhou HB, Li GY. Free vibration analysis of sandwich plates with laminated faces using spline finite point method[J]. Composite Structures,1996(2):257-63.
    [107]Yuan. W.X, Dawe.D.J. Free vibration and stability analysis of stiffened sandwich plates[J]. Competers & Strctures,2004,63:123-137.
    [108]Mace M. Damping of beam vibrations by means of a thin constrained viscoelastic layer:evaluation of a new theory[J]. Sound. Vib.1994,172:577-591.
    [109]Alavandi Bhimaraddi, Athhol j, Carr, et. Finite element analysis of laminated shells of revolution with laminated stiffeners[J]. Computers & Strctures,1989,33(1):295-305.
    [110]Biswal. K.C, Ghosh. A.K. Finite element analysis for stiffened laminated plates using higher order shear deformation theory[J]. Competers & Strctures,1994,53(1):161-171.
    [111]Edward A, Sadek, Samer A, et. A finite element model for the analysis of stiffened laminated plates[J]. Competers & Strctures,2000,75:369-383.
    [112]Gale, Levyr. The geometric stiffness of triangular composite-materials shell element[J]. Computers & Structures,2005,83(28-30):2318-2333.
    [113]Hansc, Tabieia, Parkwt. Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element[J]. Composite Structures,2008,82(3):465-474.
    [114]吴晖.含压电致动器的四结点矩形复合材料夹层板单元[J].工程力学.2004(4):156-161.
    [115]唐立民,关玉璞,陈万吉.复合材料四结点四边形多层退化壳单元[J].复合材料学报.1994(3):56-62.
    [116]徐兴,吴强,凌道盛等.16-20结点三维退化层合板壳单元[J].浙江大学学报(工学版).2000(1): 23-26.
    [117]郑世杰,佘锦炎.几何非线性复合材料层合固体壳单元[J].复合材料学报.2003(3):7-12.
    [118]李大永,罗应兵,彭颖红等.实体壳单元及其在动力显式有限元方法中的应用[J].上海交通大学学报.2006(10):1663-1666.
    [119]张波,沈火明.基于Matlab的壳体有限元分析[J].重庆理工大学学报:自然科学.2010(12):77-81.
    [120]Nicholas Zabaras. Tasneem Pervez. Viscos damping approximation of laminated anisotropic composite plates using the finite element method[J]. Computer methods in applied mechanics and engineering, 1990(81):291-316.
    [121]李跃军,程银水.夹层板弯曲问题的Hoff理论的解析解[J].工程力学.1998(1):115-127.
    [122]胡海昌,各向同性夹层板反对称小挠度的若干问题[J].力学学报,1963,6(1):53-60.
    [123]Bijlarrd, P.P. Analysis of the elastic and plastic stability of sandwich plates by the method of split rigidities [J]. JAS,18(5,12),1951; 19(7),1952.
    [124]刘燕,李跃军.中厚矩形夹层板稳定问题的一般解[J].工程力学增刊,2000,329-332.
    [125]周学军,张之峰.压型钢板等效为正交各向异性板的有限元分析[J].钢结构.2010(8):35-37.
    [126]Erdal Atrek and Arthur H.Nilson. Nonlinear analysis of cold-formed steel shear diaphragms[J] Journal of structure division of ASCE,1980,106(3):693-710.
    [127]完海鹰,王梅,曾获.考虑蒙皮效应的高层结构有限元分析[J].合肥工业大学学报(自然科学版).2001,24(2):184-188.
    [128]Victor L. Berdichevsky. An asymptotic theory of sandwich plates[J]. International Journal of Engineering Science,2010(48):383-404.
    [129]张亚辉,林家浩.结构动力学基础[M].大连理工大学出版社,2007.
    [130]熊伟,刘耀宗,邱静等.材料阻尼模型综述[J].功能材料,2005,10(36):1497-1500.
    [131]王勖成.有限单元法[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700