用户名: 密码: 验证码:
杆系结构形态创构方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构形态创构是建筑与结构交叉领域新兴研究方向之一,是从结构分析出发,寻求多种“良好”建筑形状的理论方法,对建筑与结构设计的进一步发展有较深的意义。杆系结构类型众多,在实际工程中应用广泛,杆系结构形态创构方法的研究具有较高的应用价值,有助于建筑形式的多样化。本文以结构优化理论为基础,考虑建筑空间制约条件,以结构刚度最大化为设计目标,提出了兼顾形状、拓扑和截面的杆系结构形态创构方法。方法中考虑了程序通用性,使方法能够用于各种杆系结构的形态创构。本文主要开展以下几个方面工作:
     1.建立了杆系结构的节点调整方法
     从应变能和节点坐标的关系出发,推导了节点移动应变能敏感度表达式,并考虑空间制约条件,得到了受约束节点移动应变能敏感度表达式。详细分析了节点移动应变能敏感度的特性,提出了根据应变能对节点坐标的敏感程度逐步调整节点来实现结构刚度最大化的杆系结构形状创构方法。为了提高进化效率,进一步研究了节点移动方向的修正方法,对杆系结构形状创构方法进行了改进。研究发现在应该能收敛阶段,节点移动敏感度趋于零,此阶段的结构具有对初始缺陷不敏感的特点。
     2.提出了兼顾拓扑和形状的杆系结构拓扑形态创构方法
     为了评价每个单元在整个结构中抵抗荷载的贡献程度,定义了单元增减应变能敏感度,并将其作为衡量单元承载效率高低的指标。利用单元增减应变能敏感度的特性,研究了单元增减的策略,并结合节点调整,提出了兼顾结构拓扑与形状的创构方法。该方法通过直接地消除低效单元和在高效单元附近增加单元,实现了结构的拓扑变化,并通过节点调整修正拓扑变化过程中的节点位置和结构形状。由于单元可增可减,方法的初始结构既可以简单也可复杂,可灵活选择。在结构形态确定后,在方法中还引入了截面优化,使方法可以兼顾形状、拓扑和截面,完善了方法。方法适用广泛,能够用于平面及空间中的各类杆系结构的形态创构。
     3.在杆系结构形态创构方法中考虑了建筑空间制约条件
     为增强本文方法的实用性,采用B样条曲线(曲面)等来表达建筑要求所提出的空间制约条件,并在应变能敏感度的推导过程中给予反应,使方法所产生的结构能够满足建筑要求。此外,还利用初始结构对最终结构的影响,在初始结构确定时以不同的杆件布置手段来体现空间制约条件。由于初始结构是结构演化的起点,同时也为新杆件生成提供基本的可能空间,对建筑空间制约条件的实现起重要作用。还通过对不同应用场合下的空间制约条件的处理,增强了方法的实用性,同时也丰富了结构形态创构方法的内容。
     4.研究方法在平面及空间结构中的应用
     为了探讨方法的适用性,对平面及空间结构中的桁架型结构,树状型结构,桥梁型结构等进行了大量算例应用实践。算例展现了方法广泛的适用性和实用性。针对不同支座条件,不同初始结构条件、不同创构策略以及不同结构类型的杆系结构进行形态创构。考察了进化过程中结构形态变化和力学性能变化,总结了创构策略对结构形态变化的影响和方法的特点。方法所得结构形式具有以轴力传递荷载的几何特征,结构形式多呈现优美的弧状,这有利于建筑造型中美学意图的实现。同时,所得结构形式符合力学概念,可为结构力学教育和结构设计提供参考。
     5.研究并总结了方法所得结构的力学性能
     从大量算例的力学量的变化可知,兼顾拓扑与形状的杆系结构形态创构方法可以使结构向刚度提高、弯矩降低的方向演化,最终结构将以轴力为主要传递荷载方式。方法中的节点调整对结构力学性能的改善贡献较多。对节点调整前后结构的稳定性进行验算,结果表明调整后结构不仅可提高结构刚度,且可提高极限承载力和改善初始节点偏差对结构的影响。虽然以应变能作为目标函数,但可同时改善多项力学性能指标:结构刚度,结构极限承载力,结构力学性能的稳定性等,这些力学性能在演化过程中具有同时改善的趋势。
     文中方法用Fortran语言编程实现,用ANSYS有限元软件考察了方法所得结构的一些力学性能。本文还获得了一套杆系结构形态创构程序。
Structural morphogenesis is a new research direction of the interdiscipline ofarchitecture and structural enginnering. Based on structural analysis, structuralmorphogenesis methods are a series of thoeries and methods to seek a variety ofgood architectural shape. This study can promote the development of thearchitectural and structural design. Framed structures have many types and a widerange of applications in engineering. Therefore, the research on framed structuralmorphogenesis method has important application value and is helpful to diversifythe architectural forms. Based on the structural optimization theories, this structuralmorphogenesis method is put forward for the shape, topology and sizingoptimizition of framed structures under architectural space constraints aiming tomaximize the structural stiffness. The method can be applied to the structuralmorphogenesis of various framed structures. This paper mainly focused out thefollowing tasks:
     1. The nodal adjustment method for framed structures
     The expressions of nodal strain energy sensitivity are derived from therelationship between strain energy and the nodal coordinates. Moreover, theexpressions of strain energy sensitivity of nodes under the spatial constraints weregotten. The shape morphogenesis method of framed structure, which took themaximization of structural stiffness as the design objective, was put forward throughgradual nodal adjustment after the analysis of the properties of nodal strain energysensitivity. In order to increase the efficiency of the method, the method foramending the direction of nodal shift was studied further and the shapemorphogenesis method of framed structure was improved. It was found that thenodal strain energy sensitivity tended to zero in the convergence stage, and then thecorresponding structures were less sensitive to the initial defect.
     2. topology morphogenesis method of framed strucutres combining shapeand topology optimization
     To evalue the contribution degree of each element in the whole structure toresisting loads, the elemental strain energy sensitivity for addition and eliminationwas defined and taken as the efficiency index for bearing loads. The topology andshape morphogenesis method of the framed structures including the nodaladjustment was put forward after the strategy study of elemental addition andelimination and the analysis of the properties of the elemental strain energysensitivity. This method realised the topology change through the direct eliminationof inefficient elements and addition of new elements near the highly efficient elements and the nodal position and structural shape were amended by the nodaladjustment during the topology change. The initial structure may be simple orcomplex because the elements may be added or eliminated in this method. After thestructural shape was fixed, the size optimization was introduced to make thismorphogenesis method integrate the shape, topology and size optimization. Thismethod can be used for the morphogenesis of all kinds of framed strucutres in planeor space.
     3. Architectural space constraints considered in this mehtod
     To enhance the usefulness of this method, the architectural spatial constraintsfrom the architectural requirements were expressed by B-spline curves and surfaces,etc.,and were reflected in the strain energy sensitivity to make the structures derivedform this method meet the architectural requirements. In addtion, the architecturalspatial constraints were embodied by the intial strucutres which were set through thedifferent layout of rods according to the influence of the initial structure on finalstructure. Since the initial structure was the starting point of the structural evlotionand provided the basic posssible allowable space for the generation of new rods, theinitial strucutres had an important role on the realization of the architectural spatialconstraints. This paper perfected the program fuctions of the method in a variety ofspatial constraints for different application situations. This further enhanced thepracticality of the method, and also enriched the theory of structural morphology.
     4. Application in the plane and spatial structures for this method
     In order to discuss the applicability fo the method, a number of applicationexamples were carried out such as trusses, tree-like structures, bridges, etc. in theplane and spatial structures. Numerical examples demonstrated the wideapplicability and practicality of this method. The morphorgenesis of these structureswas about the different support condition, different initial structures, differentmorphorgenesis strategyies and different structural types. The changes of structuralshape and mechanical behaviors in the evolutionary process were investigated tosummarize the properties of the method and the inflence of the morphorgenesisstrategyies on the change of strucutral shape. The strucutral shape derived from themethod had the geometrical characters which transferred loads to supports mainlyby the axis force. These strucutral shapes often appeared beatiful arc shape and thiswas benificial for the realization of artistic intention of architechtural shape.Moreover, the structural forms derived from this method conformed to mechanicalconcepts, which could be provided for the education of structural mechanics andstructural design as reference.
     5. The summary of mechanical properties of the structures by this method
     From the change of mechanical quantities in the numerial examples, thetopology and shape morphogenesis method of framed structures can make the structure evolve in the direction of the decline of strain energy and bending moment,and the finial structure would transfer loads with axis force. The nodal adjustmenthad great contribution to the improvement of structural mechanical behaviors. Bychecking stability of the structures in the evolutionary process, it was found that thenodal adjustment can not only improve the structural stiffness and ultimate load, butalso less influence by the initial nodal defect. This illustrated that the method takingstrain energy as the objective function can increase the structural rigidity and thestructure of ultimate load; Moreover, the structures derived by the method are lesssensitive to the initial defect. These mechanical quantities will be improvedsimaltinously in the optimization process.
     The proposed method was coded in Fortran language, and finite elementcommercial software ANSYS was used in the calculation of some structuralmechinical behaviors. In addtion, this paper got the program of the morphogenesisof framed strucutres.
引文
[1]王心田.建筑结构:概念与设计[M].天津:天津天津大学出版社,2004:2-12.
    [2]崔昌禹,严慧.结构形态创构方法—改进进化论方法及其工程应用[J].土木工程学报,2006,39(10):42-47.
    [3]崔昌禹,严慧.自由曲面结构形态创构方法—高度调整方法的建立与其在工程设计中的应用[J].土木工程学报,2006,39(12):1-6.
    [4]彭一刚.建筑空间组合论[M].北京:中国建筑工业出版社,2008:1-8.
    [5]崔昌禹,王有宝,姜宝石.自由曲面单层网壳结构形态创构方法研究[J].土木工程学报,2013,46(4):57-63.
    [6]崔昌禹,姜宝石,崔国勇.基于敏感度的杆系结构形态创构方法[J].土木工程学报,2013,46(7):1-6.
    [7]增田一真.结构形体与建筑设计(中译本)[M].北京:中国建筑工业出版社.2002:12-20.
    [8][日]斋藤公男著,季小莲徐华译,牛清山校.空间结构的发展与展望—空间结构设计的过去现在未来[M].北京:中国建筑工业出版社,2006年第一版.
    [9] R. Motro, M. Bagneris. Structural morphology and free form design [C].Proceedings of IASS2007symposium, Venice, Italy,2007.
    [10] T. Wester. Structural patterns in nature-Part II [C]. Proceedings of IASS2004symposium, Montpellier, France,2004.
    [11] Heinz Isler. Generating shell shapes by physical experiments [C]. Bulletin ofthe International Association for Shell and Spatial Structures,1993(34):53-63.
    [12] T. Wester. Structural patterns in nature-Part I [C]. Proceedings of IASS2004symposium, Montpellier, France,2004.
    [13] Y. Hangai, K. Kawaguchi. Analysis for shape-finding process of unstable linkstructures [C]. Proceedings of IASS1991symposium.
    [14] Eschenauer H A, Olhoff N. Topology optimization of continuum structures: areview [J]. Applied Mechanics Reviews,2001,54(4):331-389.
    [15]朱灯林,陈俊伟,俞洁,冯春玲.结构拓扑优化设计的研究现状及其应用[J].机械制造与自动化,2005,34(6):7–11.
    [16]隋永康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性[C],第十届全国结构工程学术会议特邀报告.
    [17]郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述[J].机械设计,2007,第24(8):1-5.
    [18]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-75.
    [19]夏天翔,姚卫星.连续体结构拓扑优化方法评述[J].航空工程进展,2011,1(2):1-11.
    [20]尹世平,鹿晓阳,李洪福.桥梁结构优化设计的发展概况[J].山东建筑工程学院学报,2004,19(4):65-76.
    [21] D. Wang, W.H. Zhang, J.S. Jiang. Truss shape optimization with multipledisplacement constraints [J]. Computer methods in applied mechanics andengineering,2002,191(33):3597–3612.
    [22]川口健一.形態解析[日][J].計算工学.2000,5(4):164-168.
    [23] Gr′egoire Allaire, Eric Bonnetier, Gilles Francfort, Francois Jouve.Shapeoptimization by the homogenization method [J]. Numerische Mathematik,1997,76(1):27–68.
    [24] T. E. Bruns1; and D. A. Tortorelli. An element removal and reintroductionstrategy for the topology optimization of structures and compliant mechanisms[J]. International journal for numerical methods in engineering,2003,57(10):1413–1430.
    [25] Yi Liu, Feng Jin, Qing Li. A strength-based multiple cutout optimizations incomposite plates using fixed grid finite element method [J]. CompositeStructures,2006,73(4):403–412.
    [26] Sigmund O. A99line topology optimization code written in Matlab [J].Structural and Multidisciplinary Optimization,2001,21(2):120-127.
    [27] T. Hagishita, M. Ohsaki.Topology optimization of trusses by growing groundstructure method [J]. Structural and Multidisciplinary Optimization,2009,37(4):377–393.
    [28] Ohsaki M, Swan C C. Topology and geometry optimization of trusses andframes [J]. Recent Advances in Optimal Structural Design,2002:97-123.
    [29] Cheng G. Some aspects of truss topology optimization [J]. StructuralOptimization,1995,10(3-4):173-179.
    [30] P. Martínez· P. Martí O. M. Querin.Growth method for size, topology, andgeometry optimization of truss structures [J]. Structural and MultidisciplinaryOptimization,2007,33(1):13-26.
    [31] J.J. McKeown.Growing optimal pin-jointed frames [J]. Structural Optimization,1998,15(2):92-100.
    [32] Bends e M P, Ben-Tal A, Zowe J. Optimization methods for truss geometry andtopology design [J]. Structural optimization,1994,7(3):141-159.
    [33] H.A. Eschenauer, V.V. Kobelev, A. Schumacher, Bubble method for topologyand shape optimization of structures [J], Structural Optimization,1994,8(1):42-51.
    [34]谢亿民,黄晓东,左志豪,唐继武,荣见华.渐进结构优化法(ESO)和双向渐进结构优化法(BESO)的近期发展[J].力学进展,2011,41(4):462-471.
    [35]荣见华,葛森,邓果,邢晓娟,赵志军.基于位移和应力灵敏度的结构拓扑优化设计[J].力学学报,2009,41(4):518-529.
    [36]荣见华,张强,葛森,牟让科.基于设计空间调整的结构拓扑优化方法[J].力学学报,2010,42(2):256-267.
    [37] X. Huang, Y.M. Xie.Topology optimization of nonlinear structures underdisplacement loading [J].Engineering Structures,2008,30(7):2057–2068.
    [38] Tanskanen P. The evolutionary structural optimization method: theoreticalaspects [J]. Computer methods in applied mechanics and engineering,2002,191(47):5485-5498.
    [39] D. BojczukO.optimal topology and configuration design of trusses with stressand buckling constraints [J].Structural Optimization,1999,17(1),25-35.
    [40] Qing Quan Liang, Yi Min Xie and Grant P. Steven.Optimal topology design ofbracing systems for muti-story steel frames [J]. Journal of structuralengineering, ASCE,2000,126(7):823-829.
    [41] H. Kim, O.M. Querin, G.P. Steven and Y.M. Xie. Improving efficiency ofevolutionary structural optimization by implementing fixed grid mesh [J].Structural and Multidisciplinary Optimization,2000,24(6):441-448.
    [42] Y.M. Xie, P. Felicetti and J.W. Tang. Form finding for complex structures usingevolutionary structural optimization method [J]. Design studies,2005,26(1):55-72.
    [43] X. Huang and Y. M. Xie. Evolutionary Topology Optimization of ContinuumStructures---Methods and Applications [M].Wiley-Blackwell,2009.
    [44] X.Y. Yang, Y.M. Xie, G.P. Steven Evolutionary methods for topologyoptimization of continuous structures with design dependent loads [J].Computers and Structures,2005,83(12):956–963.
    [45] Grant Steven, Osvaldo Querin, Mike Xie. Evolutionary structural optimisation(ESO) for combined topology and size optimisation of discrete structures [J].Computer methods in applied mechanics and engineering.2000,188(4):743-754.
    [46] X. Huang,Y.M. Xie. Convergent and mesh-independent solutions for thebi-directional evolutionary structural optimization method [J]. Finite Elementsin Analysis and Design,2007,43(14):1039–1049.
    [47] J.H. Rong, Y.M. Xie, X.Y. Yang. An improved method for evolutionarystructural optimization against buckling [J]. Computers and Structures,2001,79(3):253-263.
    [48] Wei Li, Qing Li, Grant P. Steven, Y.M. Xie. An evolutionary shape optimizationfor elastic contact problems subject to multiple load cases [J]. Computermethods in applied mechanics and engineering.2005,194(30):3394–3415.
    [49] X. Huang&Y. M. Xie. A new look at ESO and BESO optimization methods [J].Structural and Multidisciplinary Optimization,2008,35(1):89–92.
    [50] X. Huang, Y. M. Xie, and M. C. Burry. Advantages of Bi-DirectionalEvolutionary Structural Optimization (BESO) Over Evolutionary StructuralOptimization (ESO)[J]. Advances in Structural Engineering,2007,10(6):727-738.
    [51] Tang W, Tong L, Gu Y. Improved genetic algorithm for design optimization oftruss structures with sizing, shape and topology variables [J]. InternationalJournal for Numerical Methods in Engineering,2005,62(13):1737-1762.
    [52] Kalyanmoy Deb, Surendra Gulati. Design of truss-structures for minimumweight using genetic algorithms [J]. Finite Elements in Analysis and Design,2001,37(5):447-465.
    [53] Mark J. Jakiela, Colin Chapman, James Duda, Adenike Adewuya, KazuhiroSaitou. Continuum structural topology design with genetic algorithms [J].Computer methods in applied mechanics and engineering.2000,186(2):339-356.
    [54] S. Pezeshk, C. V. Camp, D. Chen. Design of nonlinear framed structures usinggenetic optimization [J]. Journal of structural engineering,2000,126(3):382-388.
    [55]陆海燕.基于遗传算法和准则法的高层建筑结构优化设计研究[D].大连理工大学博士学位论文,2009年6月.
    [56] Michael Yu Wang, Xiaoming Wang, Dongming Guo. A level set method forstructural topology optimization [J]. Computer methods in applied mechanicsand engineering.2003,192(1):227–246.
    [57] S.Y. Wang, K.M. Lim, B.C. Khoo, M.Y. Wang. An extended level set methodfor shape and topology optimization [J]. Journal of ComputationalPhysics,2007,221(1):395–421.
    [58] Gr′egoire Allaire, Fr′ed′eric de Gournay, Fran cois Jouve, Anca-Maria Toader.Structural optimization using topological and shape sensitivity via a level setmethod [J]. Control and Cybernetics,2005,34(1):59-80.
    [59] Guan-Chun Luh, Chun-Yi Lin.Optimal design of truss-structures using particleswarm optimization [J]. Computers and Structures,2011,89(23):2221–2232.
    [60]叶红玲.连续体结构静力拓扑优化方法与软件开发[D].北京工业大学博士学位论文,2005.
    [61]隋允康,任旭春,龙连春.刚架结构拓扑优化[J].固体力学学报,2001,22:95-100.
    [62]庄逢甘,郑哲敏主编.自适应桁架结构形状最优控制.新世纪力学研讨会——钱学森技术科学思想的回顾与展望[C].2001年11月12-13日,北京.钱学森技术科学思想与力学,国防工业出版社,2001:387-391.
    [63]隋允康,任旭春,龙连春,叶宝瑞.基于ICM方法的刚架结构拓扑优化[J].计算力学学报,2003,3(20):286-289.
    [64]叶红玲,隋允康.应力约束下连续体结构拓扑优化[J].北京工业大学学报,2004,1(30):11-17.
    [65].隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报,2005,37(2):190-198.
    [66]隋允康,高峰,龙连春,杜家政.基于层次分解方法的桁架结构形状优化[J].计算力学学报,2006,23(1):46-51.
    [67]叶红玲,隋允康.基于ICM方法三维连续体结构拓扑优化[J].固体力学学报,2006,27(4):387-393.
    [68]丁晓红,程莉.基于SKO方法的满应力结构拓扑优化设计[J].中国机械工程,2009,20(15):1765-1769.
    [69] Bendsoe M P. Topology optimization: theory, methods and applications [M].Springer,2003.
    [70] Y.M. Xie and G.P. Steven Evolutionary Structural Optimization [M]. Springer,1997.
    [71]周明,孙树栋著.遗传算法原理与应用[M].国防工业出版社,1999.
    [72] Altair OptiStruct9.0Reference Guide.
    [73]曾神昌,洪清泉, Fatma Kocer. OptiStruct-现代建筑创新设计与优化利器[C],工程三维模型与虚拟现实表现——第二届工程建设计算机应用创新论坛论文集,2009年.
    [74] Mamoru KAWAGUCHI. A few thoughts on how we define structural forms[J].Journal for Architecture of infrastructure and environment,2006.
    [75] Hiroshi OHMORI, Keiichi ISHIKAWA, Satoshi KAJITA. Computationalmorphogenesis for curved surface structures by extended ESO method [C].lASS-APCS2006, BEIJING.
    [76] Hiroshi OHMORI. Computational morphogenesis present state and perspectivefor the future [C].国际建筑科技大会论文集,2009,中国上海.
    [77] H. Kawamura, H. Ohmori and N. Kito. Truss topology optimization by amodified genetic algorithm [J]. Structural and Multidisciplinary Optimization,2002,23(6):467–472.
    [78]钱令希著.工程结构优化.科学出版社,2011.
    [79]吕大刚,王光远.基于遗传算法的抗震结构智能优化设计[J].地震工程与工程振动,1999,19(2):15-20.
    [80]王光远,周正源,霍达.结构设计的两相优化法[J].力学学报,1983,4:376-387.
    [81]王光远.论工程优化[J].计算结构力学极其应用,1994,1(2):199-204.
    [82]王光远.论土建工程的优化[J].沈阳建筑工程学院学报,1993,9(3).
    [83]霍达,王光远,周正源.桁架优化力学准则的失效问题[J].哈尔滨建筑工程学院学报,1984,2:41-53.
    [84]赵艳敏,霍达,滕海文.基于改进的遗传模拟退火算法的钢框架优化设计[J].工业建筑,2006,36:462-465.
    [85]王志忠,霍达.结构优化设计理论现状及展望[J].基建优化,1990,11(4):5-8.
    [86]罗海林,霍达.离散变量桁架结构拓扑优化的遗传禁忌搜索算法[J].河南科学,2005,23(6):909-911.
    [87] Y.X. Gu, G.Z. Zhao, H.W. Zhang, Z. Kang, and R.V. Grandhi. Buckling designoptimization of complex built-up structures with shape and size variables [J].Structural and Multidisciplinary Optimization,2000,19(3):183-191.
    [88]顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,10(3):321-335.
    [89]唐文艳,顾元宪.遗传算法在结构优化中的研究进展[J].力学进展,2002,32(1):25-39.
    [90]王备,隋允康.三维连续体结构形状优化设计[J].应用力学学报,1999,16(2):127-132.
    [91]顾松年,姜节胜,徐斌.桁架优化解存在性的研究[J].西北工业大学学报,2004,22(6),720-725.
    [92]靳玉佳,徐斌,姜节胜.基于区间可能度的区间参数桁架结构多目标拓扑优化[J].机械强度,2011,33(2):229-234.
    [93]荣见华,姜节胜,胡德文,颜东煌,付俊庆.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003,35(5).
    [94]荣见华,姜节胜,徐飞鸿,徐斌.一种基于应力的双方向结构拓扑优化算法[J].计算力学学报,2004,21(3):322-328.
    [95]王栋,李晶.空间桁架结构动力学形状优化设计[J].工程力学,2007,24(4):129-134.
    [96]王栋.位移约束下平面刚架结构形状优化设计[J].首届全国航空航天领域中的力学问题学术研讨会论文集,下册,2009,185-188.
    [97] T. Wester. The first13years of structural morphology group-a personal view[C]. Proceedings of IASS2006symposium, Beijing, China,2006.
    [98] Rub é n Ansola, Javier Canales, Jos é A. T á rrago, John Rasmussen. Anintegrated approach for shape and topology optimization of shell structures [J].Computers and Structures,2002,80(5):449–458.
    [99] Panagiotis A. Makris, Christopher G. Provatidis, Demetrios T. Venetsanos.Structural optimization of thin-walled tubular trusses using a virtual strainenergy density approach [J]. Thin-Walled Structures,2006,44(2):235–246.
    [100]史越川,童乐为.结构仿生在钢结构建筑中的应用现状与展望[J].结构工程师,2007,23(2):5-8.
    [101]Kolodziejczyk M. Verzweigungen mit F den: Einige Aspekte der Formbildung mittels Faden modellen [J]. Verzweigungen, Natürliche Konstruktionen-Leichtbau in Architektur und Natur.1992,4:101-126.
    [102]曾志华,虞伟建. ANSYS结构优化技术在机械设计中的应用[J].现代设计与先进制造技术,2009,38(13):33-37.
    [103]柯常忠,索海波. ANSYS优化技术在结构设计中的应用[J].2005,1:9-11.
    [104]余联庆,梅顺齐,杜利珍,饶成. ANSYS在结构优化设计中的应用[J].中国水运,2007,5(3):76-77.
    [105]魏文儒.基于ANSYS的空间桁架优化研究[D].大连理工大学硕士学位论文,2007年.
    [106]李湘沅.基于ANSYS平台的连续体结构拓扑优化方法研究[D].同济大学硕士学位论文,2007.
    [107]Piegl L, Tiller W著.赵罡,穆国旺,王拉柱译.非均匀有理B样条(第2版)[M].北京:清华大学出版社,2010.
    [108]刘树堂编著.杆系结构有限元分析MATLAB应用[M].中国水利水电出版社,2007年,第一版.
    [109]丁星.王清远编著MATLAB杆系结构分析[M].科学出版社,2008.
    [110]王勖成.有限单元法[M].北京:清华大学出版社,2003:378-438.
    [111]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999:204-230.
    [112]曹正罡.网壳结构弹塑性稳定性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [113]姜宝石.基于改进进化论方法的平面结构形态创构[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [114]李欣.自由曲面结构的形态学研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2011.
    [115]崔国勇,姜宝石,王有宝,崔昌禹.改善力学性能为目标的单层网壳结构修正方法[C].第十四届空间结构学术会议论文集,福州,2012.11.
    [116]崔昌禹,姜宝石,崔国勇.结构形态创构方法的工程应用[J].建筑钢结构进展,2011,13(6):9-18.
    [117] Changyu CUI, Hongyan ZHENG, Baoshi JIANG.The engineeringapplications of free form curved-surface by the height adjusting method [C].the International Association for Shell and Spatial Structures (IASS)Symposium2010, Shanghai
    [118]Changyu CUI, Baoshi JIANG, Hongyan ZHENG. The engineering applicationsof free form structures by the Extended-ESO method [C]. the InternationalAssociation for Shell and Spatial Structures (IASS)Symposium2010, Shanghai
    [119]Zhang, W.M., Li, S.J., Qian, F.. θ-PSO: a new strategy of particle swarmoptimization [J]. Journal of Zhejiang University-SCIENCE A,2008,9(6):786-790.
    [120]Bagneris M, Motro R, Maurin B, Pauli N. Structural Morphology Issues inConceptual Design of Double Curved Systems[J]. International Journal ofSpace Structures,2008,23(2):79-87.
    [121]Motro R, Gerardo Oliva S J. Who is the Designer?[J]. Journal of theInternational Association for Shell and Spatial Structures,2010,51(3):207-216.
    [122]Borgart A. New Challenges for the Structural Morphology Group[J]. Journalof the International Association for Shell and Spatial Structures,2010,51(3):183-189.
    [123]Urbiola X G. The Evolution of Reinforced Concrete Shells in Mexico[J].Journal of the International Association for Shell and Spatial Structures,2010,51(1):5-16.
    [124]Borgart A. New Challenges for the Structural Morphology Group[J]. Journalof the International Association for Shell and Spatial Structures,2010,51(3):183-189.
    [125]Urbiola X G. The Evolution of Reinforced Concrete Shells in Mexico[J].Journal of the International Association for Shell and Spatial Structures,2010,51(1):5-16.
    [126]Kelly K, Garlock M E M, Billington D P. Structural Analysis of the CosmicLaboratory[J]. Journal of the International Association for Shell and SpatialStructures,2010,51(1):17-24.
    [127]Tomas A, Marti P. Optimality of Candela’s Concrete Shells: A Study of HisPosthumous Design[J]. Journal of the International Association for Shell andSpatial Structures,2010,51(1):67-77.
    [128]Oliva J G, Ontiveros M J, Valdez E. The Religious Space in Mexico and FelixCandila’s Hypar Surface[J]. Journal of the International Association for Shelland Spatial Structures,2010,51(1):79-85.
    [129]Moreyra Garlock M E, Billington D P. Félix Candela’s legacy[C]. Proceedingof IASS2009,2009:154-161.
    [130]Abel J, Oliva J G Centenary of the Birth of Flex Candela: Preface[J]. Journalof the International Association for Shell and Spatial Structures,2010,51(1):3-4.
    [131]Pronk A, Dominicus M, Hoope D T. The Production of freeformed ConcreteElements in a Flexible Mould[C]. Proceeding of IASS2010,2010:853-866.
    [132]Ivo V, Pronk A, Mark F. Textile Techniques and Tectonics in Architechtures[C].Proceeding of IASS,2010:867-876.
    [133]Coenders J, Campo M D, Straat R V. Textile Computational Models of theAustrian Pavilion for the Expo2010[C]. Proceeding of IASS,2010:877-888.
    [134]Gonzalez Q I. Cable Roofs. Evolution, Classification and Future Trends[C].Proceeding of IASS2009,2009:264-275.
    [135]Grohmann M, Bollinger K, Weilandt A, WargnerM. Form Finding of the ShellStructures of the Rolex Learing Center in Lausanne[C]. Proceeding of IASS2009,2009:654-665.
    [136]Ohmori H, Ishikawa K, Kajita S. Computational Morphogenesis for CurveSurfaces by Extended ESO Method[C]. Proceedings of IASS2004,2004.
    [137]Ohmori H. Computational Morphogenesis-Its Current State and Possibility forthe Future[J]. International Journal of Space Structures,2010,25(2):75-82.
    [138]Fujiwara J, Nakajima T, Ohsaki M, Takeda F. Computational Morphogenesisof Shells with Free Curved Surface Through Optimazation of Shape, Thicknessand Topology[C]. Proceeding of IASS2010,2010:700-710.
    [139]Fauche E, Adriaenssens S, Prevost J H. Structural Optimization of a BridgeStructure[J]. Journal of the International Association for Shell and SpatialStructures,2010,51(2):153-160.
    [140]Basso P, Del Grosso A E, Pugnale A, Sassone M. ComputationalMorphogenesis in Architecture: Cost Optimization of Free-form Grid Shells [J].Journal of the International Association for Shell and Spatial Structures,2009,50(3):143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700