用户名: 密码: 验证码:
大跨屋盖结构风效应不确定性及抗风设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于可靠度的抗风设计是结构风工程理论发展的重要方向,而从概率的角度处理结构抗风设计中的各种不确定因素,对结构风荷载和风振响应进行不确定性分析则是构建结构抗风可靠度理论的前提和基础。大跨屋盖结构的抗风问题具有多荷载形态、多响应振型和多等效目标的特点,这种复杂性导致了各种不确定因素对于大跨屋盖结构抗风问题的影响更为显著。因此,以大跨屋盖结构作为研究对象,从理论、实验等多方面开展深入细致的风效应不确定性研究,进而提出基于概率的抗风设计方法,不仅对丰富和发展现有抗风设计理论具有重要价值,对于进一步推动我国大跨屋盖结构的应用与发展亦具有重要的现实意义。本文主要进行了如下几方面的工作
     1、构建结构风效应不确定性研究的理论框架
     以Davenport"风荷载链”概念为基础,构建了结构风效应不确定性研究的理论框架:确定以概率相关系数检验法和极大似然估计法对结构风效应各阶统计量的概率分布拟合优度进行定量评价,建立最优概率分布模型;以参数灵敏度分析方法定量评估各种不确定因素对结构风振响应不确定性的贡献率,获得不确定性在风荷载与风振响应间的传递规律;采用基于极值理论的估计方法计算具有确定保证率的极值风荷载和风振响应。
     2、大跨屋盖风荷载的不确定性分析
     对具有典型形式的大跨屋盖刚性模型进行了超过1000次的独立采样风洞试验,获得大量脉动风压样本。通过对风荷载各阶统计量(均值、标准差、偏度、峰度)进行不确定性分析,建立了相应的概率描述模型,研究发现正态分布和对数正态分布是脉动风压前3阶统计量的最优分布,广义极值分布是峰度系数的最优分布。基于极值理论建立了极值风压的概率模型,探讨了极值风压概率分布与特征湍流的关系;对传统峰值因子法的荷载保证率进行了评估,发现峰值因子法无法给出具有一致保证率的极值风压分布,且较大程度的低估了最不利负压,误差率在20%-30%之间。
     3、空间结构风振响应的不确定性分析
     以多次独立采样风洞试验获得的大量脉动风荷载样本为激励,应用全局灵敏度分析方法-Sobol'方差分解法对空间结构极值风振响应进行了参数灵敏度分析,定量评估了各种不确定因素对结构风振响应不确定性的贡献率,研究发现:①结构风振响应的不确定性主要受风荷载不确定性控制;②结构风振响应的参数灵敏度与共振响应在总响应中的比重有关,共振响应越大,结构对风荷载越敏感。建立了结构动力极值响应的概率分布模型,探讨了极值风响应的概率分布特征,并与峰值因子法进行了对比,发现峰值因子法无法给出具有一致保证率的极值风振响应。
     4、提出具有确定保证率的围护结构设计风荷载分析方法
     为获得具有确定保证率的围护结构设计风荷载,提出了针对较小容量样本的高效概率分析方法-改进“独立风暴法”,其基本思路是设定某一荷载阂值,将连续超出该阂值的时段记为一个独立脉冲,将每个独立脉冲的最大值作为一个极值样本进行概率分析。由于样本抽取时保证了各脉冲极值的独立性,且各独立脉冲的形成机制具有较好的一致性,因此应用这一方法可对较小容量样本获得较为精确的概率模型。
     5、提出具有确定保证率的主体结构设计风荷载分析方法
     针对大跨屋盖结构多振型参振、等效目标众多的特点,提出了具有确定保证率的主体结构设计风荷载确定方法-一致等效静风荷载分析方法,其基本思想是:分别建立多目标等效方程组和约束方程组,前者的目的是获得与各等效目标吻合程度最好的解,后者的目的是限制某些奇异荷载作用模式的出现,从而解决了大跨屋盖结构等效静风荷载研究中突出存在的多目标等效问题,使主体结构设计风荷载在整体上具有一致的保证率
Reliability based wind-resistant design is an important development directionin the research of wind engineering field. The probabilistic assessment of windloads and load effects on structures, which considers various uncertainties, isessential for a reliability-based risk-consistent structural design to strong winds.Wind-resistant design of large-span structures is characterized as: complex time andspatial distribution of fluctuating wind; multi-mode vibration of wind-inducedresponse; multiple equivalent objectives to calculate equivalent static wind load(ESWL), which makes the effect of uncertainties more significant. Therefore, it hasimportant theoretical value in wind-resistant design and practical significance in thedevelopment of large-span space structures to carry out thorough research onuncertainty of wind response of large-span space structures by both theoretical andexperimental methods. The main contents in this paper are shown as following:
     1. The research framework of wind effect uncertainty analysis
     Based on the concept of wind load chains proposed by Davenport, the researchframework of wind effect uncertainty analysis is established. Probability plotcorrelation coefficient (PPCC) method and maximum likelihood estimation methodare adopted to identify the appropriate marginal probability distribution of thestatistics of wind effect. Then global sensitivity analysis is performed in order todiscuss the mechanism of uncertainty propagation. The extreme wind load andresponse under a certain guaranteed ratio are calculated by estimation method basedon extreme value theory.
     2. Uncertainty analysis of wind load of large-span roof
     More than one thousand independent runs of wind tunnel experiments arecarried out in order to obtain a large amount of independent samples. Uncertaintyanalysis is performed with regard to statistics of wind load such as mean value, rootmean square, skewness and kurtosis. Based on these work, corresponding probabilitymodel is established. Then the probability model of extreme wind pressure isproposed based on extreme value theory and the relationship between probabilitydistribution of extreme wind pressure and signature turbulence is discussed. Then theresults from traditional peak factor method are examined. It is found that it isinfeasible for peak factor method to provide distribution of extreme load pressure with consistent guaranteed ratio and the most unfavourable negative pressure isunderestimated, with an error rate of20%~30%.
     3. Uncertainty analysis of wind-induced response of space structures
     Based on the repeated wind tunnel tests, global parametric sensitivity analysis isperformed in order to quantify the strength and relevance of the inputs in determiningthe variation in wind-induced response. The propagation law of uncertainty betweenwind load and wind-induced response is discussed. It is found that1) the uncertaintyof wind-induced response is mainly controlled by wind load uncertainty;2) theparameter sensitivity of wind-induced response is related to the ratio of resonantresponse to the total response. The sensitivity value is larger with the increase of theratio. Further, the parameters of generalized extreme value distribution of the largestdynamic response on typical wind-sensitive structures are established. The proposedprobability model is compared with peak factor method. It is found that peak factormethod could not provide distribution of extreme wind-induced response withconsistent guaranteed ratio.
     4. Determination of design wind load for cladding under a certainguaranteed ratio
     In order to determine design wind load for cladding under a certain guaranteedratio, a procedure for statistical estimation of extreme wind pressures and wind-induced response is proposed by improving Cook's "method of independent storms".Autocorrelation analysis is carried out to eliminating any shorter period maximawhich are due to other mechanisms. The new approach usually estimates the extremepressure/response more accurately than the peak factor method. Furthermore, ananalytical solution to the quantiles of pressure/response could be obtained.
     5. Determination of design wind load for main structure under a certainguaranteed ratio
     In order to determine design wind load for main structure under a certainguaranteed ratio, a new approach to determine the universal ESWL that reproduce thelargest load effects of large-span roof structures simultaneously is proposed. First, amulti-target equivalent equation is constructed to make the ESWL reproduce thelargest load effects of structure at the same time. Then a constraint equation relatedto the direction of wind load is constructed in order to reduce the dimension ofESWL vector and to exclude some unrealistic and curious distributions.
引文
[1]Davenport A. G. Past, present and future of wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90:1371-1380.
    [2]沈世钊.大跨空间结构的发展—回顾与展望[J].土木工程学报,1998,31(3):5-14.
    [3]Bradshaw R., Campbell D., et al. Special structures:past, present and future [J]. Journal of Structural Engineering,2002,128(6):691-709.
    [4]Ginger J.D. Fluctuating wind loads across gable-end buildings with planar and curved roofs[J]. Wind and Structures,2004,7(6):359-372.
    [5]Barnard R. H. Wind loads on cantilevered roof structures [J]. Journal of Wind Engineering and Industrial Aerodynamics,1981,8:21-30.
    [6]Xie J., Irwin P. A. Determination of wind loads on large roofs and equivalent gust factors[S]. International Symposium on Wind and Structures for The21st Century,1999, Cheju, Korea.
    [7]Barnard R. H. Predicting dynamic wind loading on cantilevered canopy roof structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,85:47-57.
    [8]顾明,朱川海.大型体育场主看台挑逢的风压有其干扰影响[J].建筑结构学报,2002,23:20-26.
    [9]Marukawa H., Uematsu Y., Tamura Y., Nakamura O., Ueda H. Design wind load on flat long-span roofs[S]. Seoul:Proc.4th East Asia-Pacific Conf. on Structural Engineering and Construction,1993,3:1619-1624.
    [10]Uematsu Y, Yamada M., Sasaki A. Wind-Induced dynamic response and resultant load estimation for a flat long-span roof[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,65:155-166.
    [11]楼文娟,李本悦,陆峰.大跨度屋面风压分布拟和公式及风荷载取值[J].同济大学学报,2002,30(5):587-593.
    [12]孙晓颖,武岳,沈世钊.大跨屋盖风压分布的数值模拟及拟合方法研究[J].哈尔滨工业大学学报,2006,38(4):553-557.
    [13]孙瑛,武岳,林志兴,沈世钊.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报,2007,40(4):1-5.
    [14]孙瑛,武岳,林志兴,沈世钊.大跨度平屋盖表面的风压脉冲特性研究[J].工程力学,2007,24(4):92-96.
    [15]Kawamura S, Kiuchi T, Mochizuki T. Characterist ics of wind pressure actiong on spatial large dome[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,42(1-3):1511-1512.
    [16]Letchford C. W, Sarkar P. P. Mean and fluctuating wind loads on rough and smooth parabolic domes[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,88(1):101-117.
    [17]Blessmann J. Aerodynamic studies for the Brazilian wind code[C]. Baton Rouge:The10th Americas conference on Wind Engineering,2005.
    [18]李元齐,田村幸雄,沈祖炎.球面壳体表面风压分布特性风洞实验研究[J].建筑结构学报,2005,26(5):104-111.
    [19]Kasperski M. Specification of the design wind load based on wind tunnel experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(4):527-541.
    [20]Kasperski M. Specification of the design wind load-a critical review of code concepts [J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(7-8):335-357.
    [21]Holmes J D, Cochran L S. Probability distributions of extreme pressure coefficients [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(7):893-901.
    [22]Simiu E, Heckert N A. Extreme wind distribution tail:a peaks over threshold approach[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,122(5):539-547.
    [23]Cook N J. Towards better estimation of extreme winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1982,9(3):295-323.
    [24]Harris R I. Gumbel re-visited-a new look at extreme value statistics applied to wind speeds[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59(1):1-22.
    [25]Harris R I. Improvements to the'method of independent storms'[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,80(1):1-30.
    [26]An Y, Pandey M D. The r largest order statistics model for extreme wind speed estimation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(3):165-182.
    [27]赵明伟,顾明.基于r个最大次序统计量模型的极值风压估算[J].力学学报,2010,42(6):1074-1082.
    [28]全涌,顾明,陈斌,田村幸雄.非高斯风压的极值计算方法[J].力学学报,2010,42(3):560-566.
    [29]Davenport A. G. The application of statistical concepts to the wind loading of structures[C]. London:Proceedings of the Institution of Civil Engineers,1961,19:449-472.
    [30]Holmes J. D. Wind action on glass and Brown's integral[J]. Engineering Structures,1985,7(4):226-230.
    [31]Gioffre M., Gusella V. Non-gaussian wind pressure on prismatic buildings. I: stochastic field[J]. Journal of Structural Engineering,2001,127(9):981-989.
    [32]Kareem A, Zhao J. Analysis of non-Gaussian surge response of tension leg platforms under wind loads[J]. Journal of Offshore Mechanics and Arctic Engineering,1994,116(3):137-144.
    [33]Sadek F, Simiu E. Peak non-gaussian wind effects for database assisted low rise building design[J]. Journal of Engineering Mechanics, ASCE,2002,128(5):530-539.
    [34]Wilson E. L., Yuan M. W. Dynamic analysis by direct superposition of Ritz vectors[J]. EESD,1982,10:813-821.
    [35]赵臣.大跨悬索屋盖结构风激动力性能[D].哈尔滨建筑工程学院博士学位论文,1991.
    [36]杨庆山.悬索体系随机风振响应分析及抗风设计[D].哈尔滨建筑工程学院博士学位论文,1995.
    [37]向阳.薄膜结构的初始形态设计、风振响应分析即风洞实验研究[D].哈尔滨建筑工程学院博士学位论文,1998.
    [38]杨庆山,沈世钊.悬索体系风振系数的计算[J].哈尔滨建筑大学学报, 1995,28(6):33-40.
    [39]李方慧,倪振华,沈世钊.单层球面网壳结构的风振响应分析[J].土木工程学报,2006,39(12):7-11.
    [40]Wilson E. L., Yuan M. W., Dickens J. M. Dynamic analysis by direct superposition of Ritz vectors[J]. Earthquake Engineering and Structural Dynamics.,1982,10(6):813-821.
    [41]Nakayama M., Sasaki Y., Masuda K., Ogawa T. An efficient method for selection of vibration modes contributory to wind response on dome-like roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,73:31-43.
    [42]黄明开,倪振华,谢壮宁.大跨圆拱屋盖结构的风振响应分析[J].振动工程学报,2004,17(3):275-279.
    [43]陈波,武岳,沈世钊.鞍形索网等效静力风荷载研究[J].土木工程学报,2006,39(6):1-5.
    [44]江棹荣,倪振华,谢壮宁.POD在大跨屋盖风振响应计算中的应用[J].土木工程学报,2007,40(6):1-6.
    [45]孙逊,倪振华,谢壮宁.以Lanczos向量直接叠加法确定圆拱顶屋盖风振响应[J].力学季刊,2006,27(4):606-614.
    [46]星谷胜.随机振动分析[M].地震出版社,1977.
    [47]顾明,黄鹏,周晅毅等.北京首都机场3号航站楼风荷载和响应研究[J].土木工程学报,2005,38(1):40-44.
    [48]张建胜,武岳,沈世钊.单层网壳结构风振响应的模态耦合效应分析.振动与冲击,2006,25(6):39-42.
    [49]田玉基,杨庆山.国家体育场大跨度屋盖结构风振系数研究[J].建筑结构学报,2007,28(2):26-31.
    [50]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217-223.
    [51]Davenport A. G. Gust loading factor [J]. Struct. Div. ASCE,1967,93(ST3):11-34.
    [52]Davenport A. G. How can we simplify and generalize wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,46-47:409-417.
    [53]Hisada T, Nakagiri S. Role of the stochastic finite element method in structural safety and reliability[C]. Kobe, Japan:Proc.4th, Int.Conf. on Structural Safety and Reliability,1985.
    [54]Shinozuka M, Jan C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration,1972,25:111-128.
    [55]李杰,陈建兵.随机结构动力反应的概率密度演化方法[J].力学学报,2003,35(4):437-442.
    [56]李杰,陈建兵.随机结构非线性动力响应概率密度演化分析[J].力学学报,2003,35(6):716-722.
    [57]Kareem A. Effect of parametric uncertainties on wind excited structural response[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,30:233-241.
    [58]Bashor R., Kareem A. Probabilistic assessment of occupant comfort in tall buildings[C]. Austin, America:Proceedings of the2009Structures Congress,2009.
    [59]Kasperski M. Specification of the design wind load-a critical review of code concepts[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(7-8):335-357.
    [60]张琳琳,李杰.风荷载作用下输电塔结构的动力可靠度分析[J].福州大学学报(增刊),2005,45(145):17-27.
    [61]Lin-lin Zhang, Jie Li, Yongbo Pengb. Dynamic response and reliability analysis of tall buildings subject to wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:25-40.
    [62]Solari G. Alongwind response estimation:closed form solution[J]. Journal of the Structural Division.1982,108(STl):225-244.
    [63]Uematsu Y., Yamada M., Sasaki A., et al. Design wind loads for structural frames of flat long-span roofs:gust loading factor for the beams supporting roofs [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,66:35-50.
    [64]Uematsu Y., Watanabe K., Sasaki A., et al. Wind-induced dynamic response and resultant load estimation of a circular flat roof[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:251-261.
    [65]Kasperski M, Niemann H. J. The LRC (load-response correlation) method:a general method of estimating unfavorable wind load distributions for linear and nonlinear structural behavior[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,43(3):1753-1763.
    [66]Holmes J D. Effective static load distributions in wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(2):91-109.
    [67]Kasumura A, Tamura Y., Nakamura O. Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large span cantilevered roof[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(9-11):1145-1165.
    [68]X. H. Hu. Wind loading effects and equivalent static wind loading on low-rise buildings [D]. Doctoral dissertation of Texas Tech University,2006.
    [69]张建胜,武岳,沈世钊.单层网壳结构的风振响应与抗风设计[J].武汉理工大学学报,2006,28(7):63-66.
    [70]陈新礼.薄膜结构的风振响应分析及抗风设计的研究[D].哈尔滨建筑大学工学硕士学位论文,1999.
    [71]陈波,武岳,沈世钊.张拉式膜结构抗风设计[J].工程力学,2006,23(7):65-71.
    [72]陆峰.大跨度平屋面结构的风振响应和风振系数研究[D].浙江大学博士学位论文,2001.
    [73]沈国辉.大跨度屋盖结构的抗风研究—屋盖结构的表面风压、风振响应和等效风荷载研究[D].浙江大学博士论文,2004.
    [74]周晅毅.大跨度屋盖结构风荷载及风振响应研究[D].同济大学工学博士论文,2004.
    [75]陈波.大跨屋盖结构等效静风荷载精细化理论研究[D].哈尔滨工业大学博士学位论文,2006.
    [76]梁枢果,吴海洋,郭必武,周向阳.大跨度屋盖结构等效静力风荷载数值计算方法[J].华中科技大学学报(自然科学版),2008,36(4):110-114.
    [77]陈波,杨庆山,武岳.大跨空间结构的多目标等效静风荷载分析方法[J].土木工程学报,2010,43(3):62-67.
    [78]Murotsu Y. Reliability analysis of frame structure through automatic generation of failure modes[J]. Reliability Theory and its Application in Structural and Soil Mechanics, Martinus Nijhoff Publishers,1983:525-540.
    [79]Timothy H. J. Response surface method for time-variant reliability analysis [J]. Journal of Structural Engineering,1996,122(2)
    [80]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [81]罗乃东,赵国藩.高层、高耸结构抗风动力可靠度[J].大连理工大学学报,2002,42(2):208-212.
    [82]董安正,赵国藩.高层建筑结构舒适度可靠性分析[J].大连理工大学学报,2002,42(4):472-476.
    [83]Filliben J. J. The probability plot correlation coefficient test for normality[J]. Technometrics,1975,17(1):111-117.
    [84]Joiner B. L., Rosenblatt J. R. Some properties of the range in samples from Tukey's symmetric Lambda distribution[J]. J. Am. Statist. Ass,1971,66:394-399.
    [85]克拉默著,魏宗舒等译.统计学数学方法[M].上海:上海科学技术出版社,1966.
    [86]段忠东,周道成.极值概率分布参数估计方法的比较研究[J].哈尔滨工业大学学报,2004,36(12):1605-1609.
    [87]Hosking J. R. M., Wallis J. R., Wood E. F. Estimation of the generalized extreme value distribution by the method of probability weighted moments[J]. Technometrics,1985,27(3):251-261.
    [88]Fisher R. A. On the mathematical foundations of theoretical statistics. Contributions to Mathematical Statistics[M]. New York:John Wiley&Sons,1950.
    [89]Saltelli A., Chan K., Scott M. Sensitivity analysis, probability and statistics series[M]. New York:John Wiley&Sons,2000.
    [90]Manache G., Melching C. S. Identification of reliable regression-and correlation-based sensitivity measures for importance ranking of water-quality model parameters [J]. Environmental Modelling and Software,2008,23(5):549-562.
    [91]Sanayei M., Imbaro G. R. Structural model updating using experimental static measurements [J]. Journal of Structural Engineering, ASCE,1997,123(6):792-798.
    [92]徐崇刚,胡远满,常禹等.生态模型的灵敏度分析[J].应用生态学报,2004,15(6):1056-1062.
    [93]Y. C. Lu, Mohanty S. Sensitivity analysis of a complex, proposed geologic waste disposal system using the fourier amplitude sensitivity test method[J]. Reliability Engineering and System Safety,2001,72(3):275-291.
    [94]Sobol I. M. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates[J]. Mathematics and Computers in Simulation,2001,55(1-3):271-280.
    [95]Helton J. C., Davis F. J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering and System Safty,2003,81(1):23-69.
    [96]Helton J. C., Davis F. J., Johnson J. D. A comparison of uncertainty and sensitivity analysis results obtained with random and latin hypercube sampling[J]. Reliability Engineering and System Safty,2005,89(3):305-330.
    [97]Dyrbye C., Hansen S.O. Wind loads on structures[M]. John Wiley&Sons, INC,1996.
    [98]Simiu E., Scanlan R. H. Wind effects on structures—an introduction to wind engineering[M]. John Wiley&Sons, INC,1995.
    [99]Kareem A., Zhao J. Analysis of non-gaussian surge response of tension leg platforms under wind loads[J]. J. offshore Mech. and Arctic Eng, ASME,1194(116):137-144.
    [100]Kwon K., Kareem A. Peak factor for non-guassian process revisited[C]. The Seventh Asia-Pacific Conference on Wind Engineering,2009.
    [101]Sadek F., Simiu E. Peak non-gaussian wind effects for database assisted low rise building design[J]. Journal of Engineering Mechanics, ASCE,2002,128(5):530-539.
    [102]Fisher R. A, Tippett L. H. C. Limiting forms of the frequency distributions of the largest of smallest member of a sample[J]. Proc.Camb.Phil.Soc,1928,24:180-190.
    [103]孙瑛.大跨屋盖结构风荷载特性研究[D].哈尔滨工业大学博士学位论文,2006.
    [104]中华人民共和国国家标准:《建筑结构荷载规范》(GB50009-2001).北京:中国计划出版社,2002.
    [105]Q.S. Li, Calderone I., Melbourne W.H. Probabilistic characteristics of pressure fluctuations in separated and reattaching flows for various free-stream turbulence. Journal of Wind Engineering and Industrial Aerodynamics,1999,82:125-145.
    [106]Richards P. J., Hoxey R. P. Quasi-steady theory and point pressures on a cubic building. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:1173-1190.
    [107]赵雷,陈虬.随机有限元动力分析方法的研究进展[J].力学进展,1999,29(1):9-18.
    [108]李贤兴.强震作用下钢筋混凝土多层结构的空间随机响应分析及其损伤评估[D].西南交通大学博士学位论文,1991.
    [109]中华人民共和国国家标准:《建筑结构可靠度设计统一标准》(GB50068-2001).北京:中国计划出版社,2002.
    [110]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [111]Kareem A. Reliability of Wind-Sensitive Structures [J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,33:495-514.
    [112]中华人民共和国行业标准:《网壳结构技术规程》(JGJ61-2003).北京:中国建筑工业出版社,2003.
    [113]赵国藩等.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [114]Helton J. C., Johnson J. D., Sallaberry C. J., et al. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering and System Safty,2006,91(10-11):1175-1209.
    [115]张建胜.基于风敏感度的大跨屋盖结构抗风设计理论研究[D].哈尔滨工业大学博士学位论文,2009.
    [116]An Y, Pandey M. D. A comparison ofmethod of extremewind speed estimation[J]. Journal ofW ind Engineering and IndustrialAerodynamics,2005,93(7):535-545.
    [117]俞正光,李永乐,詹汉生.线性代数与解析几何[M].北京:清华大学出版社,1998.
    [118]Shibata A. Sozen M. A. Substitute structure method for seismic design inR/C[J]. Journal of the Structural Division197610211-18.
    [119]Chen X. Huang G. Estimation of probabilistic extreme wind load effects:combination of aerodynamic and wind climate data[J]. Journal of EngineeringMechanics20101366747-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700