用户名: 密码: 验证码:
基于碳纳米管及离子液体增敏效应的电化学生物传感器:研制、表征与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器采用电极作为换能元件,具有便携、成本低、灵敏度高、稳定性良好等优点,被分析化学工作者寄予厚望。电化学生物传感器由生物材料作为敏感元件,以电势、电导(电阻)或电流为特征检测信号,具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。以纳米结构材料为媒介体,通过对生物分子或电极进行修饰,设计新颖的、功能化的纳米仿生界面进行生物界面与电极之间的信息转换的研究已遍布整个生物电化学研究领域并值得人们进一步付出更多的努力。
     碳纳米管(CNTs)具有比表面积大、电荷传递能力强、吸附性好、生物相容性好和催化能力强等优良特性。室温离子液体(RTILs)不但可用作溶剂,又可作为支持电解质,具有电化学窗口宽、能促进电子传递、高离子导电性和良好的生物相容性等特点。特别是,RTILs与CNTs的结合有利于它们电分析化学优异特性的进一步发挥,为新型电化学传感器和电化学生物传感器的制备展现了美好前景。
     本论文所作研究工作的重要目的是高灵敏度、高实用性电化学传感器和电化学生物传感器的制备与应用。其中提高常用电极的电分析化学性能是实验的基础目标。为此,CNTs被用作修饰电极的材料或者被用来制备阵列电极。结合RTILs的电分析化学特性,论文还构建了一种可用于超痕量检测的三明治模式。在以上基础上,对多种重要分子进行了电化学研究与检测。
     全文包括十个章节。
     第一章为文献综述,对研究背景和选题依据进行综述。
     第二章至第六章的主要内容为脱氧核糖核酸(DNA)在高敏电极上的电化学研究。DNA是生物体内遗传信息的携带者、基因表达的物质基础,在生物的生长、发育和繁殖过程中起着十分重要的作用。对DNA的研究是生命科学研究中的一个极其重要的方面。就DNA检测与分析而言,电化学方法拥有许多方面的优势,比如高灵敏度、低检测限、快反应速度、低费用、微样品需求量等。基于高度灵敏的修饰电极或CNTs阵列电极,DNA及相关分子的伏安行为得到了研究。在此基础上,实验通过两种途径对源于转基因生物的特殊序列DNA片段进行了检测。
     第二章:预处理过的多壁碳纳米管(MWNTs)修饰玻碳电极的制备(涂膜法)与表征和脱氧鸟苷三磷酸(dGTP)在修饰电极上的电化学行为及检测。在修饰电极上dGTP的氧化峰电位较之在裸玻碳电极上负移0.108 V;峰电流较之在裸玻碳电极上具有显著地增加。电子转移系数α为0.50。电极反应标准速率常数k's为0.16 s-1。
     第三章:构建聚合酶链式反应(PCR)与电化学伏安技术相结合的检测模式用于特殊序列基因研究。以铁氰化钾和亚甲基蓝(MB)为电化学探针,表征结果表明羧基化短单壁碳纳米管(S-SWNTs)修饰玻碳电极具有非常优良的电分析化学性能。以之为换能器微分脉冲伏安(DPV)检测PCR反应前后混合液中游离dGTP的浓度变化,据结果得到PCR扩增反应是否成功的信息,从而推测出模板DNA中目标基因的存在与否,建立一种低费用、快捷的转基因生物鉴定模式并应用于转基因生物实际样品,所得结果与用凝胶电泳法测定所得结果一致。
     第四章:S-SWNTs与疏水性室温离子液体(RTIL)——1-丁基-3-甲基咪唑六氟磷酸盐( BMIMPF6 )研成胶,修饰在玻碳电极上制备修饰电极S-SWNT&RTIL/GCE。以铁氰化钾、抗坏血酸(AA)和MB为电化学探针表征结果表明,该修饰电极具有优异的电催化性能和富集效应。单链DNA(ssDNA)在其上具有灵敏的伏安响应,于0.532 V和0.808 V处分别出现鸟嘌呤碱基和腺嘌呤碱基的氧化峰。鸟嘌呤碱基和腺嘌呤碱基在S-SWNT&RTIL/GCE上的电极反应标准速率常数k's分别为1.84×10~(-2) s~(-1)和3.69×10~(-2) s~(-1)。
     第五章:把S-SWNTs与BMIMPF6混合起来制备一种新型糊电极(S-SWNT/IL PE)。与以石蜡为粘合剂制备的S-SWNT糊电极(S-SWNT/oil PE)相比,该新型电极对多种电化学探针都具有更好的电催化活性和富集效应。ssDNA在其上具有非常灵敏的催化氧化伏安响应。利用鸟嘌呤碱基的DPV信号,寡核苷酸的浓度检测限可达9.9 pmol/L。该电极可以准确指示出一定浓度范围内寡核苷酸中鸟嘌呤碱基或腺嘌呤碱基的个数。
     第六章:在活化剂1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)存在下,以乙二胺为链接剂,羧基化的S-SWNTs被垂直组装在玻碳电极表面,构建成阵列修饰电极(SWNTE)。基于ssDNA与SWNTs的特殊相互作用机理,探针ssDNA被非共价固定在SWNTE上。鸟嘌呤碱基和腺嘌呤碱基都具有灵敏的微分脉冲伏安响应。与互补ssDNA杂交后所形成的dsDNA在负电位等因素的帮助下离开SWNTE,造成鸟嘌呤碱基和腺嘌呤碱基的氧化峰电流降低。据此检测特殊序列基因片段。通过超声洗涤,该免指示剂杂交传感器表面可以很方便地更新,可快捷、灵活地运用于不同靶基因的检测。
     第七章到第十章内容为高灵敏度CNTs修饰电极及三明治检测法在其它一些与环境和生命相关的重要分子的研究中的应用。
     第七章:以具有宽电化学窗口的疏水性RTIL—BMIMPF6为膜材料,将待检测的目标物质封在S-SWCNT/GCE的表面,实验建立了一种三明治结构的电化学伏安检测模式。该模式具有高的灵敏度、精密度和稳定性,对于样品量较少的痕量检测尤其具有现实意义。将之应用于AA和多巴胺(DA)的检测,检测限分别可低达400 fmol和80 fmol,且可以用于在大量AA存在的情况下选择性测定DA。
     第八章:研究了鸟嘌呤在S-SWNT/GCE上发生的电催化氧化特性,根据其氧化电位对支持电解质溶液的pH值具有灵敏的响应,制备了以鸟嘌呤为指示剂的固体电位型pH传感器。该传感器制备简单、使用方便,在优化各种影响因子后,于pH 2.0 - 12.0范围内具有宽的线性响应。酸碱滴定终点具有较明显的突跃。
     第九章:运用三明治模式把富勒烯C60和富勒烯C60纳米管(FNTs)分别封在S-SWCNT/GCE的表面,考察了常温下该结构在B-R缓冲溶液中的伏安行为,并对富勒烯C60和FNTs的电极过程从机理上进行了推测。此外,基于DNA和FNTs的相互作用,实验制备了在水溶液中分散性较好的FNTs,将之修饰在GCE表面,进一步研究了FNTs的电极过程机理。该修饰电极在碱性支持电解质中还原后能够明显增大DA和AA的氧化峰电位间距,使两峰能够完全分开,从而可以在共存时进行选择性检测。
     第十章:研究了AA在MWNT/GCE上的电催化氧化行为。在pH 4.0的B-R缓冲溶液中首次得到AA两个分离良好的氧化峰。根据AA分子与表面羧基化的MWNTs相结合后的电子传递性质对AA的两个氧化峰进行了初步解释。应用MWNT/GCE对AA以微分脉冲伏安法测定得到了很低的检测限。
Electrochemical sensors are centered great expectations for their obvious advantages, such as portability, low-cost, sensitivity and stability. Among them, electrochemical biosensors, which employ electrode as transducer and biomaterials as sensing organ, are ideal devices for directly and selectively getting information from a complex system by monitoring the signal of potential, conductance or current. It is an attractive strategy to develop novel biosensors via the modification of electrode and biomolecules. Especially, the nanostructure materials can be exploited to increase the conversion of information between the target substance and electrode in the investigation of bioelectrochemistry and related fields. So far there are still great opportunities for us to carry on further research.
     Carbon nanotubes (CNTs) exhibit many extraordinarily attractive physical and chemical properties, such as the large surface area, the good ability to promote electro-transfer reactions, remarkable catalysis towards biomolecules, good biocompatibility, accumulating many kinds of molecules and etc. Room temperature ionic liquids (RTILs) can be used as electrolyte as well as solvent. They also have attracted considerable attention due to their unique physical and chemical properties, such as high thermal and chemical stability, high conductivity, the ability to dissolve a wide range of organic and inorganic molecules, wide electrochemical potential window, ability to facilitate direct electron-transfer reactions, good biocompatibility and etc. Since the introduction, CNTs and RTILs have received enormous attention in the fields of electrochemistry and analytical electrochemistry. Moreover, it’s attractive that the combined application of them has more promising prospects in many fields of electroanalytical chemistry, for example, the fabrication of electrochemical sensors and electrochemical biosensors.
     The goal of the research work is the achievement of sensitive and practical electrochemical sensors and electrochemical biosensors. To fulfill it, CNTs are used to modify electrodes or to be assembled as array electrode to increase the electroanalytical properties of common electrode. Based on the preparation of the sensitive transducer, a sandwich-type mode, which is competent for trace amount detection, is established by employing RTILs as membrane material.
     The paper consists of ten chapters in all.
     The first chapter is the introduction of the subject. The background of the research is reviewed and the direction of my work is stated.
     DNA is the carriers of hereditary information and the basic substance of gene expression, and plays key roles in the growth, development and breeding of lives. So, it’s an important aspect to discover the information about DNA molecule. Electrochemical protocols exhibit many advantages in the assay of DNA, such as high sensitivity, low detection limit, low cost, fast response, and so on. From Chapter Two to Chapter Six, the contents are focused on the investigation of DNA and related molecules at the sensitive modified electrode. Combining polymerase chain reaction (PCR) technology or using label-free hybridization biosensor, we established two modes to detect sequence-specific DNA related to genetically modified organisms (GMOs) successfully with voltammetric methods.
     In Chapter Two, the treated multi-walled carbon nanotubes (MWNTs) are coated onto the glassy carbon electrode (GCE) to fabricate a modified electrode (MWNT/GCE). At the MWNT/GCE the electrochemical behaviors of 2′-dexyguanosine 5′-triphosphate trisodiums salt (dGTP), which is one of the four reactants in PCR, are investigated. In 0.2 mol/L B-R buffer solution the oxidative peak potential (Epa) of dGTP at the MWNT/GCE shifted 0.108 V negatively in contrast to that at the GCE. And the oxidative peak current (ipa) increased dramatically in contrast to that at the GCE. The electron-transfer coefficientαand the heterogeneous electron transfer rate constant k's are 0.50 and 0.16 s-1, respectively.
     Chapter Three centers the establishment and application of a fast and cost-effective protocol for detecting sequence-specific DNA by combining PCR and electrochemical technologies. Characterizing with cyclic voltammetry by using potassium ferricyanide and methylene blue (MB) as probes, we find that the short single-walled carbon nanotubes (S-SWNTs) modified glassy carbon electrode (S-SWNT/GCE) has attractive electroanalytical properties. A dramatic enhancement of the ipa and a visible decrease of overpotential towards dGTP can be realized at it. The ipa of the free dGTP decreases remarkably after a successful PCR amplification owing to the participation of the free dGTP as one of reactive substances for the PCR products, namely dsDNA. Based upon this response change of the free dGTP before and after incorporation in PCR, the target gene in the DNA template is present or not can be deduced. Thus, the GMOs sample, which provides template DNA, can be detected easily. And the result is in good accordance with that obtained with gel electrophoresis.
     In Chapter Four, a gel-like paste is made by mixing 1:1(w/w) S-SWNTs and a kind of RTIL of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6). The composite film is modified onto the GCE to prepare the S-SWNT&RTIL/GCE. The modified electrode shows attractive electrocatalytic ability and can enhance the current response of electro-active molecules by employing potassium ferricyanide, AA and MB as probes. ssDNA has a sensitive voltammetric response at the S-SWNT&RTIL/GCE and the Epas of guanine base and adenine base are 0.532 V and 0.808 V, respectively. The heterogeneous electron transfer rate constants k's for the two bases are 1.84×10~(-2) s~(-1) and 3.69×10~(-2) s~(-1), respectively.
     The content of Chapter Five consists of the preparation, characterization and application of a novel kind of paste electrode (S-SWNT&RTIL PE), which is fabricated with S-SWNTs mixed RTIL of BMIMPF6. Its electrochemical behavior is investigated by voltammetry and electrochemical impedance spectroscopy (EIS) in comparison with the paste electrode using mineral oil as a binder. Results highlight the advantages of it: not only higher conductivity, but also lower potential separation (?Ep), higher peak current (ip) and better reversibility towards a number of molecules. Based on the current response of guanine bases, the S-SWNT&RTIL PE can be used to detect ssDNA sensitively with a detection limit of 9.9 pmol/L. And the number of guanine bases and adenine bases contents in per mol oligonucleotides can be monitored according to the current response within a rather wide range.
     In Chapter Six, carboxylic group-functionalized S-SWNTs are assembled vertically on the GCE using ethylenediamine as linking agent to fabricate an aligned electrode (SWNTE) in the presence of EDC and NHS. ssDNA wrap around the SWNTs to form ssDNA-wrapped-SWNTE structures based on the interaction between ssDNA and SWNT. Sensitive differential pulse voltammetric (DPV) responses are obtained at the ssDNA-wrapped-SWNTE owing to the electrooxidation of guanine bases and adenine bases. dsDNA is formed when ssDNA on the ssDNA-wrapped-SWNTE is hybridized with complementary ssDNA (cDNA). The dsDNA is removed from the SWNTs through preconditioning and rinsing processes. Consequentially, the DPV current response of guanine bases decreased. Based on this mechanism, a label-free and readily reusable electrochemical DNA hybridization biosensor is designed by directly monitoring the current change of guanine bases. The used SWNTE can be renewed easily via ultrasonically rinsing. Thus, the biosensor can be switched to detect different target DNAs easily.
     From Chapter Seven to Chapter Ten, the contents consist of the establishment of sandwich mode for trace amount detection and the application of the sensitive electrode in some other important molecules.
     In consideration with the advantages of SWNTs and RTIL in detecting target molecules (TMs), a novel strategy of sandwich-type electrode is established with TMs confined by RTIL between the S-SWNT/GCE and RTIL membrane. This strategy shows high sensitivity, good precision and good stability. It is of especial importance towards trace amount detection. It can be used for electrochemical detection of AA and dopamine (DA) with the detection limits of 400 fmol and 80 fmol, respectively. The selective detection of DA in the presence of high amount of AA can be performed, too.
     In Chapter Eight, the electrochemical properties of guanine at the S-SWCNT/GCE are studied. The Epa of guanine responds sensitively to the pH of buffer solution. Based on this, the S-SWCNT/GCE/guanine system is used to prepare a novel potentiometric pH sensor. The sensor shows linear response to pH values in the range of 2.0 - 12.0 with a slope of 0.0497 V/pH. And there is a remarkable potential jump on the potentiometric titration curve.
     In B-R buffer solution, the voltammetric responses of fullerene C60 and fullerene C60 nanotubes (FNTs) are investigated with sandwich mode at room temperature. The mechanism of the electrode processes are presumed for the first time. Moreover, with the aid of DNA, FNTs are dispersed into aqueous solution, followed by being immobilized onto the GCE surface. And the mechanism of the electrode process of FNTs is characterized further. After undergoing a reductive reaction in NaOH solution, the modified electrode can be used to selectively detect DA in the coexistence of AA owing to the perfect separation of their electrooxidative peaks.
     In the last Chapter, the catalytic electrooxidation of AA at the MWNT/GCE is investigated. AA has two well-separated oxiditive peaks in B-R buffer solution of pH 4.0 and the reaction mechanism is illustrated according to the molecular structure of AA and the carboxylic acid group-functionalized MWNTs. A rather low detection limit of AA is obtained with DPV measurement using MWNT/GCE as working electrode.
引文
[1] Usher M. J., Keating D.A. Sensors and Transducers, 2nd Edn, Macmillan, London, 1996.
    [2]布莱恩R.埃金斯著.化学与生物传感器.化学工业出版社,2006.
    [3] http://zhidao.baidu.com/question/23120837.html
    [4] Turner A.P.F., Karube L., Wilson G.S. Biosensors: Fundamentals and applications. Oxford Science publications. 1987.
    [5]张立德,牟季美.纳米材料和纳米结构,科学出版社, 2001.
    [6] Ball P., Garwin, L. Science at the atomic scale, Nature, 1992, 355: 761-766.
    [7] Cavicchi R.E., Silsbee R.H. Dynamics of tunneling to and from small metal particles. Phys. Rev. B, 1988, 37: 706-719.
    [8]刘吉平,廖莉玲.无机纳米材料,科学出版社,2003,pp19.
    [9]廖静敏,李光,马念章.碳纳米管在生物传感器中的应用,传感技术学报, 2004, 3:467-471.
    [10] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [11] Mivamoto Y. Mechanically stretched carbon nanotubes: Induction of chiral current. Phys. Rev. Lett., 1996, 54: R11149-R11152.
    [12]黄德超,黄德欢.碳纳米管材料及应用.物理学发展, 2004,24: 274-288.
    [13] Zhou C., Kong, J., Yenilmez E., Dai H. Modulated chemical doping of individual carbon nanotubes. Science, 2000, 290: 1552-1555.
    [14]李永常.碳纳米管研究近况,天津化工, 2005, 19: 6-10.
    [15]李霞,马希骋,李士同,等.碳纳米管研究的最新进展.材料导报, 2003, 17: 13-18.
    [16] Dai H., Wong E.W., Lieber C.M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science, 1996, 272: 523-626.
    [17] Kavan L., Dunsch L. Electrochemistry of carbon nanotubes. Topics Appl. Physics, 2008, 111: 567–603.
    [18]聂海瑜.碳纳米管的应用研究进展.化学工业与工程技术, 2004, 25: 34-38.
    [19] Zhao Q., Gan Z. H., Zhuang Q. K. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 2002, 14: 1609-1613.
    [20] Sherigara B.S., Kutuer W., Souza F.D. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis, 2003, 15: 753-772.
    [21] He P., Xu Y., Fang Y. Applications of carbon nanotubes in electrochemical DNA biosensors. Microchim. Acta, 2006, 152: 175-186.
    [22] Henning T.H., Salama F. Carbon in the Universe. Science, 1998, 282: 2204-2210.
    [23] White C.T. Helical and rotational symmetries of nanoscale graphitic tubules. Phys. Rev. B, 1993, 47: 5485-5488.
    [24]吴康兵,姚绍军,胡胜水.碳纳米管膜电极的制备及其分析应用.分析科学学报,2004, 20: 537-541.
    [25] Pan Z.W., Xie S.S., Chang B.H. et al. Very Long Carbon Nanotubes.Nature. Nature, 1998, 394 (13): 631-632.
    [26]王野,梁吉,吴建军.宏观超长定向碳纳米管阵列的制备.功能材料, 2005, 36:908-910.
    [27]成会明.纳米碳管制备、结构、特性及应用.北京:化学工业出版社, 2002:27.
    [28] Musameh M., Wang J., Merkoci A., et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun., 2002, 4: 743-746.
    [29]方禹之,何品刚. 2005年第九届中国电分析化学学术会议专题报告。
    [30] Uchihashi T., Choi N., Tanigawa M., et al. Carbon-nanotube tip for highly-reproducible imaging of deoxyribonucleic acid helical turns by nanocontact atomic force microscopy. Jpn. J. Appl. Phys, 2000, 39 (8B): L887-L889.
    [31] Pumera M., Sánchez S., Ichinose I., et al. Electrochemical Nanobiosensors (Review). Sens. Actu. B, 2007, 123: 1195-1205.
    [32] Hu C.G., Wang W. L., Liao K.J., et al. Systematic investigation on the properties of carbon nanotube electrodes with different chemical treatments. J. Phys. Chem. Solids, 2004, 65: 1731-1736.
    [33]李博,廉永强,施祖进.单层碳纳米管的化学修饰.高等学校化学学报, 2000, 21: 1633-1635.
    [34] Campbell J. K., Li, S., Crooks R.M. Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc., 1999, 121: 3779-3780.
    [35] Liu Z., Shen Z., Zhu T., et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir, 2000, 16: 3569-3573.
    [36] Gooding J.J., Wibowo R., Liu J., et al. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc., 2003, 125:9006-9007.
    [37] Bao J., Tie C., Xu Z., et al. A Facile method for creation of an array of met al filled carbon nanotubes, Adv. Mater. 2002, 14: 1483-1486.
    [38] Che G., Lakshmi B.B., Fisher E.R., et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393, 346-349.
    [39] He P., Dai L. Aligned carbon nanotube–DNA electrochemical sensors. Chem. Comm., 2004, 348-349.
    [40] YangY., Huang S., He H., et al. Patterned growth of well-aligned carbon nanotubes: a photolithographic approach. J. Am. Chem. Soc. 1999, 121: 10832-10833.
    [41] Journet C., Maser W.K., Bernier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 1997, 388: 756-758.
    [42] Zhang Y., Shi Z., Gu Z., et al. Structure modification of single-wall carbon nanotubes. Carbon, 2000, 38: 2055-2059.
    [43]朱林,何晓英,董军,等.多壁碳纳米管修饰电极对核黄索的电催化研究.化学研究与应用, 2005, 17 (5):667-669.
    [44] Chen J., Hamon M.A., Hu H., et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95-98.
    [45] Ago H., Kagler T., Cacialli F., et al. Work functions and surface functional groups of multiwall carbon nanotubes J. Phys. Chem. B, 1999, 103: 8116-8121.
    [46]王玉春,李将渊,刘赵荣.多壁碳纳米管修饰电极对抗坏血酸的电催化作用.内江师范学院学报, 2004, 20 (2):57-60.
    [47]王正元,贾志杰,张增民,等.用红外光谱研究硝酸处理对多壁碳纳米管表面羧基的影响.炭素技术, 1999, 5: 14-16.
    [48] Wang Z., Liu J., Liang Q., et al. Carbon nanotubes-modified electrodes for simultaneous determination of dopamine and ascorbic acid. Analyst, 2002, 127: 653-658.
    [49]赵广超,吴芳辉,魏先之.多壁纳米碳管修饰电极的制备及表征.安徽师范大学学报, 2002, 25 (1): 31-34.
    [50] Wu K.B., Hu S.S. Deposition of a thin film of carbon nanotubes onto a glassy carbon electrode by electropolymerization, Carbons, 2004, 42 (15): 3237-3242.
    [51]许银玉,张晓蕾,吴朝阳,等. 2005年第九届中国电分析化学学术会议论文, C71, p303.
    [52]林丽,张华杰,仇佩虹,等.羧基化多壁碳纳米管修饰电极伏安法测定多巴胺.温州医学院学报, 2003, 33 (2): 73-75.
    [53]许秀琴,蔡铎昌,邹如意,等.多壁碳纳米管修饰电极对核黄索的电催化研究.应用化学, 2004, 21 (10): 1016-1019.
    [54]王亮,吕元琦,袁倬斌.左旋多巴在单层碳纳米管修饰电极上的电化学行为.分析实验室, 2004, 23 (6): 13-15.
    [55]李玉平,曹宏斌,张懿.血红蛋白在碳纳米管修饰碳糊电极上的直接电化学.物理化学学报, 2005, 21 (2): 187-191.
    [56]王宗花,刘军,颜流水,等.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化.分析化学, 2002, 30 (9): 1053-1057.
    [57] Anthony G.E., Lei C.H., Baughman R.H. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology, 2002, 13: 559-564
    [58]赫春香,赵常志,唐祯安,等.碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化.分析化学, 2003, 31 (8): 958-960.
    [59]罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用.高等学校化学学报, 2000, 21 (9): 1372-1374.
    [60] Luo H., Shi Z., Li N., et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Anal. Chem. 2001, 73: 915-920.
    [61] Wang J.X., Li M.X., Shi Z.J., et al. Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis, 2002, 14 (3): 225-230.
    [62]孙延一,吴康兵,胡胜水.己烯雌酚在多壁碳纳米管修饰电极上的电化学行为及其电化学测定.分析科学学报, 2004, 20 (1): 26-28.
    [63]张升晖,胡胜水.多壁碳纳米管修饰玻碳电极测定乙炔雌二醇.应用化学, 2005, 22 (8): 857-860.
    [64]吕少仿.多壁碳纳米管化学修饰电极测定替硝唑的研究.分析化学, 2004, 32 (3): 412.
    [65]吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用.分析化学, 2004, 32 (8): 1057-1060.
    [66]陈荣生,肖华,黄卫华,等.单壁碳纳米管修饰的高灵敏纳米碳纤维电极.高等学校化学学报, 2003, 24 (5): 808-810.
    [67] Richard C., Balavoine F., Schultz P., et al. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science, 2003, 300: 775-778.
    [68] O’Connell M. J., Poul P., Ericson L., et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342: 265-271.
    [69]杜岩滨,朱立群,刘慧丛.表面活性剂在碳纳米管表面处理中的应用.精细化工, 2004, 21 (10): 1-5.
    [70] Islam M.F., Rojas E., Bergey D.M., et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano. Lett., 2003, 3: 269-273.
    [71] Wang J., Musameh M., Lin. Y. Solubilization of carbon nanotubes by nation toward the preparation of ametric biosensors. J. Am. Chem. Soc., 2003, 125(9): 2048-2049.
    [72]孙延一,吴康兵,胡胜水.多壁碳钠米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺.高等学校化学学报, 2002, 23: 2067-2069.
    [73] Wu K.B., Hu S.S. Electrochemical study and selective determination of dopamine at a multi-wall carbon nanotube-Nafion film coated glassy carbon electrode. Microchim. Acta., 2004, 144: 131-137.
    [74]姜灵彦,刘传银,蒋丽萍,等.纳米材料修饰电极及其在电分析化学中的应用.化学研究与应用, 2004, 16 (5): 615-618.
    [75]瞿万云,吴康兵,胡胜水.多壁碳纳米管修饰玻碳电极测定肌苷的研究.武汉大学学报, 2004, 50 (4): 403-406.
    [76]蔡称心,陈静.碳纳米管电极上辣根过氧化物酶的直接电化学.化学学报, 2004, 62 (3): 335-340.
    [77] Hughes M., Chen G.Z., Shaffer M.S. et al. Tailoring the electrochemical properties of carbon nanotubepolypyrrole composite films for electrochemical capacitor applications. Chem. Mater, 2002, 14: 1610-1613.
    [78] Chen G.Z., Shaffer M.S.P., Coleby D., et al. Carbon nanotubes and polypyrrole composites: coating and doping. Adv. Mater, 2000, 12: 522-526.
    [79]袁倬斌,王月伶,张君,等.碳纳米管在电分析中的应用化学通报.化学通报, 2004, 7: 473-476.
    [80] Yu X.F., Mu T. The study of the attachment of a single-walled carbon nanotube to a self-assembled monolayer using X-ray photoelectron spectroscopy. Surface Science, 2000, 461: 199-207.
    [81] Liu Z.F., Shen Z.Y., Zhu T. Organizing singlewalled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir, 2000, 16(8): 3569-3573
    [82] Duesberg G.S., Roth S., Downes P., et al. Modification of single-walled carbon nanotubes by hydrothermal treatment. Chem Mater, 2003, 15: 3314-3319.
    [83] Sun G., Kürti J., Kertesz M., Baughman R.H., et al. Dimen-sional changes as a function of charge injection in single-walled carbon nanotubes, J. Am. Chem. Soc. 2002, 124(50):15076-15080.
    [84] Banks C.E., Davies T.J., Wildgoose G.G., et al. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun., 2005, 7: 829-841.
    [85] Moore R.R., Banks C.E., Compton R.G. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal. Chem., 2004, 76 (10): 2677-2682.
    [86] Davis J.J., Green M.L. H., Hill H.A.O., et al. The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta, 1998, 272: 261-266.
    [87] Yu X., Chattopadhyay D., Galeska L., et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electochem. Commun., 2003, 5: 408-411.
    [88] Poh W.C., Loh K.P., Zhang W.D., et al. Biosensing properties of diamond and carbon nanotubes. Langmuir, 2004, 20: 5484 5492.
    [89] Ye J.S., Wen Y., Zhang W.D., et al. Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode. Electroanalysis, 2003, 15: 1693-1698.
    [90] Xu Z., Chen X., Qu X., et al. Electrocatalytic oxidation of catechol at multi-walled carbon nanotubes modified electrode. Electroanalysis, 2004, 16: 684-687.
    [91] Cai C.X., Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem., 2004, 332: 75–83.
    [92] Gong k., Dong Y., Xiong S., et al. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosen. Bioelectron., 2004, 20: 253–259.
    [93] Salimi A., Hallaj R., Khayatian G. R. Chemically modified carbon nanotubes for use in electroanalysis. Electroanalysis, 2005, 17, (10): 873-879.
    [94] Wang J.X., Li M., Shi Z.J., et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem., 2002, 74, (9): 1993-1997.
    [95] Cai C.X., Chen J. Direct electron transfer and bioelectrocatalysis. of hemoglobin at a carbon nanotube electrode. Anal. Biochem., 2004, 325, (2): 285-292.
    [96] Zhao G.C., Zhang L., Wei X., et al. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem Commun., 2003, 5 (9): 825-829.
    [97] Wang J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis, 2005, 17: 7-14.
    [98] Xu Y., Jiang Y., Cai H., et al. Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal. Chim. Acta, 2004, 516: 19-27.
    [99] Kerman K., Morita Y., Takamura Y., et al. DNA-Directed attachment of carbon nanotubes for enhanced label-free electrochemical detection of DNA hybridization. Electroanalysis, 2004, 16: 1667-1672.
    [100] Wang J., Liu G., Jan M.R., et al. Electrochemical detection of DNA hybridization based on carbon nanotubes loaded CdS taps. Electrochem. Commun., 2003, 5: 1000-1004
    [101] Williams K.A., Veenhuizen P.T., Torre B.G.. Nanotechnology: carbon nanotubes with DNA recognition. Nature, 2002, 420: 761-765.
    [102] Erdem A., Papakonstantinou P., Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal. Chem., 2006, 78: 6656-6659.
    [103] Kerman K., Morita Y, Takamura Y., et al. Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-freeelectrochemical hybridization sensor. Anal. Bioanal. Chem., 2005, 381: 1114-1121.
    [104] Jung D.H., Kim B.H., Ko Y.K.,et al. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube Films. Langmuir, 2004, 20: 8886-8891.
    [105] He P., Li S., Dai. DNA-modified carbon nanotubes for self-assembling and biosensing application. Synth. Met., 2005, 154: 17-20.
    [106] Wang J., Kawde A.N., Musameh M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst, 2003, 128: 912-916.
    [107] Pedano M.L., Rivas G.A. Adsorption and electrooxidation of nucleic acidsm at carbon nanotubes paste electrode. Electrochem. Commun., 2004, 6: 10-16.
    [108] Wang J., Li M., Shi Z., et al. Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis, 2004, 16: 140-144.
    [109] Heng L.Y., Chou A., Yu J., et al. Demonstration of the advantages of using bamboo-like nanotubes for electrochemical biosensor applications compared with single walled carbon nanotubes. Electrochem. Commun., 2005, 7: 1457-1462.
    [110] Ye Y., Ju H. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosen. Bioelectron., 2005, 21 (5): 735-741.
    [111] Liu H., Wang G., Chen D., et al. Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sens. Actu. B, 2008, 128: 414-421.
    [112] Lu G., Maragakis P., Kaxiras E. Carbon nanotube interaction with DNA. Nano Lett., 2005, 5 (5): 897-900.
    [113] Hu C., Chen Z., Shen A., et al. Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon, 2006, 44: 428-434.
    [114] Zhang M., Mao L. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon, 2006, 44: 276-283.
    [115]黄海珍,杨秀荣.脱氧核糖核酸电分析化学研究进展.分析化学, 2002, 30: 491-497.
    [116] Palecek E. Oscillographic polarography of highly polymerized deoxyribo- nucleic acid. Nature (Landon), 1960, 188: 656-657.
    [117] Palecek E. Oscillographic polarography of deoxyribonucleic acid degradation products. Biochem. Biophys. Acta., 1961, 51: 1-8.
    [118] Boublikova P., Vojtiskova M., Palecek E. Determination of submicrogram quantities of circular duplex DNA in plasmid samples by adsorptive stripping voltammetry. Anal. Lett., 1987, 20 (2): 275-291.
    [119]陆宗鹏,卢莠芬,刘建源.脱氧核糖核酸变性和损伤的吸附伏安法研究.分析化学, 1996, 24 (4): 463-466.
    [120] Karadeniz H., Erdem A., Caliskan A. Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes. Electroanalysis, 2008, 20 (17): 1932–1938.
    [121] Erdem A., Karadeniz H., Caliskan A. Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis, 2009, 21: 464–471.
    [122] Bollo S., Ferreyra N.F., Rivas G.A. Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan. Electroanalysis, 2007, 19(7-8): 833–840.
    [123] Zhang R., Wang X., Chen C. Electrochemical biosensing platform using carbon nanotube activated glassy carbon electrode. Electroanalysis, 2007, 19 (15): 1623–1627.
    [124] Millan K.M., Mikkelsen S.R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem., 1993, 65: 2317-2323.
    [125] Gooding J.J. Electrochemical DNA hybridization biosensors. Electroanalysis, 2002, 14: 1149-1156.
    [126] Odenthal K.J., Gooding J.J. An introduction to electrochemical DNA biosensors. Analyst, 2007, 132: 603-610.
    [127] Wang J. Nanomaterial-based electrochemical biosensors. Analyst, 2005, 130: 421-426.
    [128] Li J., Ng H.T., Cassell A., et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA Detection. Nano. Lett., 2003, 3(5): 597-602.
    [129] Hazani M., Naaman R., Hennrich F. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett., 2003, 3: 153-155.
    [130]蔡宏.新型DNA电化学生物传感器的研制及纳米材料在其中的应用研究.华东师范大学,博士论文, 2003, 94-95.
    [131] Chang Z., Fan H., Zhao K., et al. Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis, 2008, 20( 2): 131–136.
    [132] Yang T., Zhang W., Du M, Jiao K. A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene. Talanta, 2008, 75(4): 987-994.
    [133] Jiang C., Yang T., Jiao K., et al. A DNA electrochemical sensor with poly-l-lysine/single- walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim. Acta, 2008, 53:2917-2924.
    [134] Cai H., Xu Y., He P.G., et al. Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode. Electroanal., 2003, 15(23): 1864-1870.
    [135] Buzzeo M.C., Hardacre C., Compton R.C. Use of room temperature ionic liquids in gas sensor design. Anal. Chem., 2004, 76: 4583-4588.
    [136] Lu X.B., Hu J.Q., Yao X., et al. Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecular, 2006, 7: 975-980.
    [137] Wilkes J.S., Levisky J.A., Wilson R.A., et al. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem., 1982, 21: 1263-1264.
    [138] Seddon K.R. Room-temperature ionic liquids-neoteric solvents for clean catalysis. Kinet. Catal. Engl. Transl., 1996, 37: 693-697.
    [139] Elaiwi A., Hitchcock P.B., Seddon K.R., et al. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc. Dalton Trans., 1995, 3467-3473.
    [140] Stegemann H., Rhode A., Reiche A. Room temperature molten polyiodides. Electrochim. Acta, 1992, 37: 379-383.
    [141] Larsen A.S., Holbrey J.D., Reed C.A. Designing ionic liquids: imidazolium melts with inert carborane anions. J. Am. Chem. Soc., 2000, 122: 7264-7272.
    [142] Buzze C.M., Evans R.G., Compton R.G. Non-Haloaluminate room-temperature ionic liquids in electrochemistry– a review. ChemPhysChem, 2004, 5: 1106-1120.
    [143]肖小华,刘淑娟,刘霞,蒋生祥.离子液体及其在分离分析中的应用进展,分析化学, 2005, 33: 569-574.
    [144] Yu P., Lin Y.Q., Xiang L., et al. Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications. Langmuir, 2005, 21: 9000-9006.
    [145] Kosmulski M., Osteryoung R.A., Ciszkowska M. Diffusion coefficients of ferrocene in composite materials containing ambient temperature ionic liquids. J. Electrochem. Soc., 2000, 147: 1454-1458.
    [146] Endres F. Ionic liquids: promising solvents for electrochemistry. Z. Phys. Chem., 2004, 218: 255-283.
    [147]孙伟,高瑞芳,焦奎.离子液体在分析化学中应用研究进展.分析化学, 2007, 35(12):1813-1819.
    [148] Barisci J.N., Wallace G.G., MacFarlane D.R., et al. Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem. Commun., 2004, 6: 22-27.
    [149] Rozniecka E., Shul G., Sirieix-Plenet J., et al. Electroactive ceramic carbon electrode modified with ionic liquid. Electrochem. Commun., 2005, 7: 299-304.
    [150] Sun W., Gao R.F., Jiao K. Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J. Phys. Chem. B, 2007, 111: 4560-4567.
    [151] Compton D.L., Laszlo J.A. Direct electrochemical reduction of hemin in imidazolium-based ionic liquids. J. Electroanal. Chem., 2002, 520: 71-78.
    [152] Wang S.F., Chen T., Zhang Z.L., et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir , 2005, 21: 9260-9266.
    [153] Maleki N., Safavi A., Tajabadi F. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem., 2006, 78: 3820-3826.
    [154] Liu Y., Wang M.J., Li J., et al. Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials.Chem. Commun., 2005, 1778-1780.
    [155] Sun W., Gao R., Jiao K. Direct electrochemistry of hemoglobin immobilized in sodium alginate film on the ionic liquid [BMIM]. Chin. Chem. Lett., 2006, 17 (12): 1589-1591
    [156] Fukushima T., Kosaka A., Ishimura Y., et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003, 300: 2072-2074.
    [157] Kim H.B., Choi J.S., Lim S.T., et al. Preparation and nanoscopic internal structure of single-walled carbon nanotube-ionic liquid gel. Synth. Met., 2005, 154:189-192.
    [158] Zhao Z.W., Guo Z.P., Ding J., et al. Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes. Electrochem. Commun., 2006, 8: 245-250.
    [159] Liu Y., Zou X.Q., Dong S.J. Electrochemical characteristics of facile prepared carbon nanotubes–ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochem.Commun., 2006, 8: 1429-1434.
    [160] Liu Y., Liu L., Dong S.J. Electrochemical characteristics of glucose oxidase adsorbed at carbon nanotubes modified electrode with ionic liquid as binder. Electroanalysis, 2007, 19: 55-59.
    [161] Zhao Q., Zhan D.P., Ma H.Y., et al. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode. Front. Biosci., 2005, 10:326-334.
    [162] Ju H.X., Ye Y.K., Zhao J.H., et al. Hybridization biosensor using di(2,2'-bipyridine)osmium (ш) as electrochemical indicator for detection of polymerase chain reaction product of hepatitis B virus DNA. Anal. Biochem., 2003, 313: 255-261.
    [163] Jelen F., Yosypchuk B., KourilováA., et al. Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Anal. Chem., 2002, 74: 4788-4793.
    [164] Wang Z., Xiao S., Chen Y. Electrocatalytic and analytical response ofβ-cyclodextrin incorporated carbon nanotubes-modified electrodes toward guanine. Electroanalysis, 2005, 17: 2057-2061.
    [165] Wu K., Fei J., Bai W., et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal. Bioanal. Chem., 2003, 376: 205-209.
    [166] Britto P.J., Santhanam K.S.V., Rubio A., et al. Improved charge transfer at carbon nanotube electrodes. Adv. Mater, 1999, 11: 154-157.
    [167] Gao H., Kong Y., Cui D. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett., 2003, 3: 471-473.
    [168] Chen X., Yang Y., Ding M. Electrocatalytic oxidation and sensitive detection of cysteine at layer-by-layer assembled carbon nanotube-modified electrode. Anal. Chim. Acta, 2006, 557: 52-56.
    [169] Ivandini T.A., Sarada B.V., Rao T.N., et al. Electrochemical oxidation of underivatized-nucleic acids at highly boron-doped diamond electrodes. Analyst, 2003, 128: 924-929.
    [170] Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Electronanal. Chem., 1974, 52: 355-359.
    [171] Gigliotti B., Sakizzie B., Bethune D.S., et al. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett., 2006, 6: 159-164.
    [172] Chen R.J., Zhang Y., Wang D., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123: 3838-3839.
    [173] Schutzbank T.E., Smith J. Detection of human immunodeficiency virus type 1 proviral DNA by PCR using an electrochemiluminescence-tagged probe. J. Clin. Microbiol., 1995, 33: 2036-2041.
    [174] Zhang Y., Kim H.H., Heller A. Enzyme-amplified amperometric detection of 3000 copies of DNA in a 10-μL droplet at 0.5 fM concentration. Anal. Chem., 2003, 75: 3267-3269.
    [175] Dorak M.T. Real-Time PCR. Taylor & Francis: New York, 2006, 1-31.
    [176] Monis P.T., Giglio S., Saint C.P. Comparison of SYTO-9 and SYBR Green I for real-time PCR and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal. Biochem., 2005, 340: 24-34.
    [177] Boeckh M., Huang M., Ferrenberg J., et al. Optimization of quantitative detection of cytomegalovirus DNA in plasma by real-time PCR. J. Clin. Microbiol., 2004, 42: 1142-1148.
    [178] Nath K., Sarosy J.W., Hahn J., et al. Effects of ethidium bromide and SYBR Green I on different polymerase chain reaction systems J. Biochem. Biophys. Methods, 2000, 42: 15-29.
    [179] Ozkan D., Erdem A., Kara P., et al. Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. Anal. Chem., 2002, 74: 5931-5936.
    [180] Wang J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron., 2006, 21: 1887-1892.
    [181] Sch?ning M..“Playing around”with field-effect sensors on the basis of EIS structures. Sensors, 2005, 5: 126-138.
    [182] Ariksoysal O.D., Karadeniz H., Erdem A., et al. Label-free electrochemical hybridization genosensor for the detection of hepatitis B virus genotype on the development of lamivudine resistance. Anal. Chem., 2005, 77: 4908-4917.
    [183] Yamashita K., Takagi A., Takagi M., et al. Ferrocenylnaphthalene diimide-based electrochemical hybridization assay for a heterozygous deficiency of the lipoprotein lipase gene. Bioconjugate Chem., 2002, 13: 1193-1199.
    [184] Lee T.M.H.; Hsing I.M. Sequence-specific electrochemical Detection of asymmetric PCR amplicons of traditional chinese medicinal plant DNA. Anal. Chem., 2002, 74: 5057-5062.
    [185] Mannelli I., Minunni M., Tombelli S., et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosen. Bioelectron., 2003, 18: 129-140.
    [186] Pale?ek, E. From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis, 1996, 8: 7-14.
    [187] Wang H.S., Ju H.X., Chen H.Y. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Anal. Chim. Acta, 2002, 461: 243-250.
    [188] Wang J., Kawde A.N., Jan M.R. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosen. Bioelectron., 2004, 20: 995-1000.
    [189] Armistead P.M., Thorp H.H. Modification of indium tin oxide electrodes with nucleic acids:detection of attomole quantities of immobilized DNA by electrocatalysis. Anal. Chem., 2000, 72: 3764-3770.
    [190] Minunni M., Tombelli S., Fonti J., et al. Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. J. Am. Chem., Soc., 2005, 127: 7966-7967.
    [191] Hou C.S.J., Milovic N., Godin M., et al. Label-free microelectronic PCR quantification. Anal. Chem., 2006, 78: 2526-2531.
    [192]http://www.molecularcloning.com/members/protocol.jsp?pronumber=1&chpnumber=5
    [193] Kruusma J., Mould N., Jurkschat K., et al. Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity. Electrochem. Commun., 2007, 9: 2330-2333.
    [194] Ye J.S., Wen Y., Zhang W.D., et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun., 2004, 6: 66-70.
    [195] Bard A.J., Faulkner L.R. Electrochemical Methods (2nd edition), New York: Wiley, 2001, p211.
    [196] Gong K.P., Zhang M.N., Yan Y.M., et al. Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications.Anal. Chem., 2004, 76: 6500-6505.
    [197] Britto P.J., Santhanam K.S.V., Ajayan P.M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg., 1996, 41: 121-125.
    [198] Wang Z.H., Wang Y.M., Luo G.A. A selective voltammetric method for uric acid detection atβ-cyclodextrin modified electrode incorporating carbon nanotubes. Ananlyst, 2002, 127: 1353-1358.
    [199] Zhao, Y.D., Zhang W.D., Chen H.Y., et al. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sens. Actu. B, 2003, 92: 279-285.
    [200] Zhu N., Chang Z., He P., et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal. Chim. Acta, 2005, 545: 21-26.
    [201]焦奎,任勇,徐桂云,等.脱氧核糖核酸在硬脂酸铝离子膜上固定杂交及BAR基因片段检测.分析化学, 2005, 33: 1381-1384
    [202] Erdem A., Kerman K., Meric B., et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the hepatitis B virus. Electroanalysis, 1999, 11: 586-587.
    [203] Meric B., Kerman K., Ozkan D., et al. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta, 2002, 56: 837-841.
    [204] Ye Y.K., Zhao J.H., Yan F., et al. Electrochemical behavior and detection of hepatitis B virus DNA PCR production at gold electrode. Biosens. Bioelectron., 2003, 18: 1501-1508.
    [205] Gong K.P., Yan Y.M., Zhang M.N., et al. Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal. Sci., 2005, 21: 1383-1394.
    [206]蔡称心,陈静,包建春,等.碳纳米管在分析化学中的应用.分析化学, 2004, 32: 381-387.
    [207] Gooding, J. J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta, 2005, 50: 3049-3060.
    [208] Huddleston J.G., Rogers R.D. Room temperature ionic liquids as novel media for cleanliquid–liquid extraction. Chem. Commun., 1998, 16: 1765-1766.
    [209]焦奎,张旭志,徐桂云,等. ssDNA/十八酸修饰碳糊电极的制备及伏安法表征.化学学报, 2005, 63 (12): 1100-1104.
    [210] Zhao F. Wu,X. Wang M.K., et al. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal. Chem., 2004, 76: 4960-4967.
    [211] Doherty A.D., Brooks C.A. Electrosynthesis in room-temperature ionic liquids: benzaldehyde reduction. Electrochem. Acta, 2004, 49: 3821-3826.
    [212] Zen J.M., Chang M.R., Ilangovan G. Simultaneous determination of guanine and adenine contents in DNA, RNA and synthetic oligonucleotides using a chemically modified electrode. Analyst, 1999, 124: 679-684.
    [213] Bard A.J., Faulkner L.R. Electrochemical methods: fundamentals and applications. 2nd. John Wiley & Sons Inc., 2001.
    [214]张正奇,刘辉,黎艳飞.碳糊电极新进展.分析科学学报, 1998, 14:80-86.
    [215]卢小泉,张焱,康敬万,等.分析化学中的化学修饰电极.分析测试学报, 2001, 20:88-93.
    [216] Millan K.M., Saraullo A., Mikkelsen S.R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal. Chem., 1994, 66: 2943-2948.
    [217] Wang J., Femandes J.R., Kabota L.T. Polishable and renewable DNA hybridization biosensors. Anal. Chem., 1998, 70: 3699-3702.
    [218] Kerman K., Meric B., Ozkan D., et al. Electrochemical DNA biosensor for the determination of benzo [a] pyrene–DNA adducts. Anal. Chim. Acta, 2001, 450: 45-52.
    [219] Valentini F., Orlanducci S., Terranova M.L., et al. Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors. Sens. Actu. B, 2004, 100: 117–125.
    [220] Kachoosangi R.T., Wildgoose G.G., Compton R.G. Room temperature ionic liquid carbon nanotube paste electrodes: overcoming large capacitive currents using rotating disk electrodes.Electroanalysis, 2007, 19: 1483-1489.
    [221] Liu H., He P., Li Z., et al. An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem. Commun., 2005, 7: 1357 - 1363.
    [222] Valentini F., Amine A., Orlanducci S., et al. Carbon nanotube purification: preparation and pharacterization of carbon nanotube paste electrodes. Anal. Chem., 2003, 75: 5413-5421.
    [223] Harrison J.A., Khan Z.A., The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem., 1970, 28: 131-138.
    [224] Abbaspour A., Mehrgardi M.A., Kia R. Electrocatalytic oxidation of guanine and ss-DNA at a cobalt (II) phthalocyanine modified carbon paste electrode. J. Electroanal. Chem., 2004, 568: 261-266.
    [225] Pang D.W., Abruna H.D. Interactions of benzyl viologen with surface-bound single- and double- stranded DNA. Anal. Chem., 2000, 72: 4700-4706.
    [226] Li J., Liu Q., Liu S., et al. DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem., 2005, 346: 107-114.
    [227] Wang, J. Electrochemical nucleic acid biosensors. Anal. Chim., Acta, 2002, 469: 63-71.
    [228] Lucarelli F., Marrazza G., Mascini M. Enzyme-based impedimetric detection of PCR products using oligonucleotide-modified screen-printed gold electrodes. Biosen. Bioelectron., 2005, 20: 2001-2009.
    [229] Chang Z., Chen M., Fan H., et al. Multilayer membranes via layer-by-layer deposition of PDDA and DNA with Au nanoparticles as tags for DNA biosensing. Electrochim. Acta, 2008, 53: 2939-2945.
    [230] Mearns F.J., Wong E.L.S., Short K., et al. DNA biosensor concepts based on a change in the DNA persistence length upon hybridization. Electroanalysis, 2006, 18: 1971-1981.
    [231] Kerman K., Morita Y., Takamura Y., et al. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochem. Commun., 2003, 5: 887-891.
    [232] Peng H., Soeller C., Vigar N., et al. Label-free electrochemical DNA sensor based on functionalised conducting copolymer. Biosen. Bioelectron., 2005, 20: 1821-1828.
    [233] Kara P., Cavdar S., Meric, B., et al. Electrochemical probe DNA design in PCR amplicon sequence for the optimum detection of microbiological diseases. Bioelectrochemistry, 2007, 71: 204-210.
    [234] Vagin M.Y., Trashin S.A., Karyakin A.A. et al. Label-free detection of DNA hybridization at a liquid liquid interface. Anal. Chem., 2008, 80: 1336-1340.
    [235] Zhu N., Gu Y., Chang Z., et al. PAMAM dendrimers-based DNA biosensors for electrochemical detection of DNA hybridization. Electroanalysis, 2006,18: 2107-2114.
    [236] Zheng M., Jagota A., Strano M.S., et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 2003, 302: 1545-1548.
    [237] Lustig S.R., Jagota A., Khripin C., et al. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B, 2005, 109: 2559-2566.
    [238] Meng S., Maragakis P., Papaloukas C., et al. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett., 2007, 7: 45-50.
    [239] Manohar S., Tang T., Jagota A. Structure of homopolymer DNA-CNT hybrids. J. Phys. Chem., C, 2007, 111: 17835-17845.
    [240] Zhao X., Johnson J. K. Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc., 2007, 129: 10438-10445.
    [241] Hughes M.E., Brandin E., Golovchenko J.A. Optical absorption of DNA-carbon nanotube structures. Nano Lett., 2007, 7: 1191-1194.
    [242] Meng S. Wang W.L. Maragakis P., et al. Determination of DNA-base orientation on carbon nanotubes through directional optical absorbance. Nano Lett., 2007, 7: 2312-2316.
    [243] Enyashin A.N., Gemming S., Seifert G. DNA-wrapped carbon nanotubes. Nanotechnology, 2007, 18: 245702-245802.
    [244] Chen R.J., Zhang Y. Controlled precipitation of solubilized carbon nanotubes by delamination of DNA. J. Phys. Chem. B, 2006, 110: 54-57.
    [245] Yim T.J., Liu J., Lu Y., et al. Highly active and stable DNAzyme carbon nanotube hybrids. J. Am. Chem. Soc., 2005, 127: 12200-12201.
    [246] Li A.X., Yang F., Ma Y., et al. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens. Bioelectron., 2007, 22: 1716-1722.
    [247] O’Connell, M.J., Bachilo, S.M., Huffman, C.B., et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593-596.
    [248] Wightman R.M., May L.J., Michael A.C. Detection of dopamine dynamics in the brain. Anal. Chem., 1988, 60: 769A–779A.
    [249] Xu F., Gao M.N., Shi G.F., et al. Sensitive determinati on of dopamine poly (aminobenzoic acid) modified electrode and the application toward an experimental parkinsonian animalmodel. Talanta, 2001, 55: 329-336.
    [250] Mo J.W., Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological level using voltammetric microprobe based on over oxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal. Chem., 2001, 73: 1196-1203.
    [251]陈贤光,王壬,赵国芳,等.聚对苯二酚修饰玻碳电极的制备及其对抗坏血酸的催化氧化作用.分析化学, 2006, 34: 1063-1067.
    [252] Zheng L.Z., Wu S.G., Lin X.Q., et al. Selective determination of dopamine in the presence of ascorbic acid at an over-oxidized poly(N-acetylaniline) electrode. Analyst, 2001, 126: 736 -738.
    [253] Hu C., Zhang Y., Bao G., et al. DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Physic. Chem. B, 2005, 109: 20072-20076.
    [254] Zare H.R., Nasirizadeh N., Mazloum A.M. Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem., 2005, 577: 25-33.
    [255] Selvaraju T., Ramaraj R. Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode. Electrochem. Commun., 2003, 5: 667-672.
    [256]邓雪蓉,王立世,张水锋,等.电聚合o-ImBPTPPMn(Ⅲ) Cl膜修饰玻碳电极同时测定抗坏血酸和多巴胺.分析化学,2006, 34 (5): 637-641.
    [257] Raj C.R., Ohsaka T. Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer. J. Electroanal. Chem., 2001, 496: 44-49.
    [258] Amiri M., Shahrokhian S., Marken F. Ultrathin carbon nanoparticle composite film electrodes: distinguishing dopamine and ascorbate. Electroanalysis, 2007, 19: 1032–1038.
    [259] Zhao Y., Gao Y., Zhan D., et al. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66: 51–57.
    [260] Mamantov G., Popov A.I. Chemistry in nonaqueous Solutions-current progress. VCH Publishers, New York, 1994, 227-275.
    [261] Fadeev A.G.; Meagher M.M. Opportunities for ionic liquids in recovery of biofuels. Chem. Commun. 2001, 295-296.
    [262] Cupta R.P. Physical methods in heterocyclic chemistry, New York, Wiley, 1984.
    [263] Zhang X., Ogorevc B., Wang J. Solid-state pH nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber. Anal. Chim. Acta, 2002, 452 (1): 1-10.
    [264]郭良洽,聂秋艳,谢增鸿,等.一种基于离子对技术的pH传感膜的研究.光谱学与光谱分析, 2003, 23 (6): 1210-1213.
    [265]薛晓康,郭兴蓬,余成平.电位型聚吡咯pH传感器的制备.应用化学, 2005, 22(4): 435-439.
    [266] Tongol B.J.V., Binag C.A., Sevilla F.B. Surface and electrochemical studies of a carbondioxide probe based on conducting polypyrrole. Sen. Actu. B, 2003, 93: 187-196.
    [267] Han W.S., Park M.Y., Chung K.C., et al. All solid state hydrogen ion selective electrode based on a tribenzylamine neutral carrier in a poly(vinyl chloride) membrane with a poly(aniline) solid contact. Electroanalysis, 2001, 13 (11): 955-959.
    [268] Wang S.G., Zhang Q., Wang R.L., et al. A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochem. Biophys. Res. Commun., 2003, 311: 572-576.
    [269] Imahori H., Hagiwara K., Akiyama T., et al. Synthesis and photophysical property of porphyrin-linked fullerene. Chem. Lett., 1995, 24: 265-266.
    [270] Allemand P.M., Koch A., Wudl F., et al. Two different fullerenes have the same cyclic voltammetry. J. Am. Chem. Soc., 1991, 113: 1050-1051.
    [271] Kuciauskas D., Lin S., Seely G.R., et al. Energy and Photoinduced Electron Transfer in Porphyrin?Fullerene Dyads. J. Phys. Chem., 1996, 100: 15926-15932.
    [272] Al-Ibrahim M., Roth H.K., Zhokhavets U., et al. Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energy Mater Sol. Cells, 2005, 85: 13-20.
    [273] Minato J., Miyazawa K. Structural characterization of C60 nanowhiskers and C60 nanotubes fabricated by the liquid–liquid interfacial precipitation method. Diam. Relat. Mater, 2006, 15: 1151-1154.
    [274] Miyazawa K., Suga T. Transmission electron microscopy investigation of fullerene nanowhiskers and needle-like precipitates formed by using C60 and (η2-C60)Pt(PPh3)2. J. Mater. Res., 2004, 19: 2410-2414.
    [275] Ringor C.L., Miyazawa K. Synthesis of C60 nanotubes by liquid–liquid interfacial precipitation method: Influence of solvent ratio, growth temperature, and light illumination. Diam. Relat. Mater, 2008, 17: 529-534.
    [276] Ji H.X., Hu J.S., Tang Q.X., et al. Controllable preparation of submicrometer single-crystal C60 rods and tubes trough concentration depletion at the surfaces of seeds. J. Phys. Chem. C, 2007, 111: 10498-10502.
    [277] Echegoyen L., Echegoyen L.E. Electrochemistry of fullerenes and their derivatives. Acc. Chem. Res., 1998, 31: 593-601.
    [278] Csiszar M., Szucs A., Tolgyesi M., et al. Electrochemical reactions of cytochrome c on electrodes modified by fullerene films. Electroanal. Chem., 2001, 497: 69-74.
    [279] Li Y., Li H.G., Jia X.F., et al. Electrochemical behavior of C60 films and C60/lipid films in ionic liquids. Carbon, 2006, 44: 894-899.
    [280] Goyal R.N., Gupta V.K., Bachheti N. Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone-An anabolic steroid used in doping. Anal.Chim. Acta, 2007, 597: 82-89.
    [281] D’Souza F., Rogers L.M., O’Dell E. S., et al. Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes Bioelectrochem., 2005, 66: 35-40.
    [282] Minato J., Miyazawa K., Suga T. Morphology of C60 nanotubes fabricated by the liquid–liquid interfacial precipitation method. Sci. Tech, Adv. Mater, 2005, 6: 272-277.
    [283] Yang S.H., Pettiette C.L., Conceicao J., et al. Ups of buckminsterfullerene and other large clusters of carbon. Chem. Phys. Lett., 1987, 139: 233-238.
    [284] Jehoulet C., Obeng Y.S., Kim Y.T., et al. Electrochemistry and Langmuir trough studies of fullerene C60 and C70 films. J. Am. Chem. Soc., 1992, 114: 4237-4247.
    [285] Haufler R.E., Conceicao J., Chibante L.P.F., et al. Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem., 1990, 94: 8634-8636.
    [286] Xu M., Pathak Y., Fujita D., et al. Covered conduction of individual C60 nanowhiskers. Nanotechnology, 2008, 19: 075712-072717.
    [287] Popa E., Notsu H., Miwa T., et al. Selective Electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes. Electrochem. Solid-State Lett., 1999, 2: 49-51.
    [288] Notsu, H., Yagi I., Tatsuma T., et al. Introduction of oxygen-containing functional groups onto diamond electrode surfaces by oxygen plasma and anodic polarization. Electrochem. Solid-State Lett., 1999, 2: 522-524.
    [289] Handbook of Chemistry and Physics, 62nd.CRC Press: Boca Raton, FL, 1981-1982.
    [290] Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications. 2nd. John Wiley & Sons Inc., 2001, p409.
    [291]赫春香,赵常志,唐祯安,等.碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化.分析化学, 2003, 31: 958-960.
    [292] Ciszewski A., Milezarek G. Polyeugenol-Modified Platinum Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid. Anal. Chem., 1999, 71: 1055-1061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700