用户名: 密码: 验证码:
基于二齿、三齿和四齿配体与顺磁离子的分子基磁性材料设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子基磁性材料是一个活跃且多学科交叉的研究领域,通常在分子水平上设计、合成并研究其组成、结构与性能间相互关系。分子设计的灵活性赋予了分子磁性材料结构的多样性,从而产生多种不同的磁行为,如自旋翻转、变磁、自旋倾斜、自旋阻挫、自旋玻璃、单分子磁体、单链磁体等。目前对分子基磁性材料研究热点主要如下:(i)具有高临界温度的分子磁体;(ii)多功能磁性材料,如磁电共存、磁手性和用于磁分离的多孔材料等;(iii)非热刺激磁材料,如光诱导、压力诱导磁体和电诱导磁体等。
     本论文选择三类多齿配体,如二齿的4-甲基-3-硝基苯甲酸(HL)、三齿的亚磷酸和三羟甲基丙烷(H3tmp)以及四齿的西弗碱N, N'-bis(salicylidene)hydrazine (H2salhn)和4-(tris(hydroxylmethyl)methyl)pyridine (4-thmpyH3)为主配体,结合辅助配体与过渡金属离子配位合成出13种配合物,其中有两例为多孔磁性材料。分析了溶剂、温度、pH值及辅助配体等对配合物结构的影响,系统地研究这些化合物的磁性及相应的多孔性质,发现结构与性质之间的相互关系。研究内容主要包括以下五个方面:
     1.桥连配体对四齿西弗碱H2salhn与钴和铜离子配位的影响:利用叠氮作为桥连配体,使H2salhn与过渡金属钴和铜离子配位得到两个新化合物,[CoIICoIII4(salhn)4(N3)6(MeOH)2(H2O)2]·4MeOH·2H2O (1)和[CuII2(salhn)(N3)2]n(2)。X-射线单晶衍射结果表明,化合物1是一个“之”字型[CoIICoIII4]钴簇,而化合物2是一个结构单元为[CuII2(salhn)(N3)2]的一维配位化合物。两个化合物中叠氮配体均采用end-on (EO,μ-1,1)桥连配位模式。磁性测试结果显示1和2为反铁磁化合物。同时,化合物2具有短程有序,在2K下存在一个0.02T的临界场。与已报道的双核Co2(salhn)3和Cu2(salhn)2(H2O)4体系相比,发现叠氮桥连配体的引入成功实现顺磁离子核数的增加,从而为高核簇化合物的制备提供方案。
     2.抗衡离子对基于三齿配体(三羟甲基丙烷)的六核铁簇化合物性质的影响:选择三种不同尺寸含氮的抗衡离子(哌嗪、咪唑和三氮唑)与三羟甲基丙烷(H3tmp)和FeCl3采用溶剂热反应合成三例六核Fe(III)化合物:(C5N2H14)[Fe6(μ6-O)Cl6(tmp)4]·2H2O·CH3OH (3)、(C3N2H5)2[Fe6(μ6-O)Cl6(tmp)4](4)和(C4N3H8)3(C2N3H4)[Fe12(μ6-O)2Cl12(tmp)8]·3CH3OH (5),并对它们的结构和磁学性质进行表征。发现三元醇配体有利于合成高核磁性金属簇。三个化合物具有相同的阴离子簇[Fe6(μ6-O)Cl6(tmp)4]2-,由六个Fe(III)离子、四个tmp3-配体、一个中心O2-离子和六个Cl-离子组成。磁性测试结果表明这三个化合物具有不同的精细磁学性质。化合物3和4表现出自旋翻转行为,化合物5没有明显的自旋翻转行为特征。化合物3显示自旋玻璃行为,化合物4和5为长程有序。利用不同的抗衡阳离子,通过不同的偶极和氢键相互作用,实现调节分子间堆积方式,从而产生不同的精细磁学性质,为精细地调节磁学性质提供实验依据。
     3.溶剂对基于二齿配体(4-甲基-3-硝基苯甲酸)稀土配合物性能的影响:以4-甲基-3-硝基苯甲酸(HL)为配体通过溶剂热反应合成三例新一维镧系配位聚合物—[Gd(L)3(H2O)(CH3OH)](6)、[Gd(L)3(H2O)2]·(4,4’-bpy)·CH3OH (7)和[Dy(L)3(H2O)(CH3OH)](8)。采用单晶X-射线衍射、红外、粉末XRD、热重和元素分析等手段对这三个化合物进行结构表征。只有混合溶剂条件才可以合成化合物6-8,使用单一的溶剂无法得到任何晶体。除金属离子不同,化合物6和8是同构的。磁性测试表明化合物6和7表现出顺磁行为,而化合物8具有反铁磁行为。化合物8表现出磁化强度的慢驰豫,并观察到频率依赖的虚部信号。然而,在2K零直流场下,并未观察到交流信号最大值。当施加5000Oe的直流场时,观察到频率依赖的交流信号峰值,通过Arrhenius定律拟合,[ln(1/2πf)=lnτ0+Δ/kBT],得到能垒Δ/kB为39.4K和指前因子τ0为2.12×10-8。
     4.溶剂挥发速度对基于三齿配体的过渡金属配合物结构与性质的影响:采用亚磷酸配体合成四个新化合物[Ni(HPO3)(4,4’-bpy)(H2O)3]·4H2O (9)、[Co2(HPO3)2(4,4’-bpy)2(H2O)6]·9H2O (10)、[Zn(HPO3)(4,4’-bpy)0.5]·H2O (11)和[Co3(PO3)2(4,4’-bpy)3(H2O)6]·3H2O (12)。化合物9-11均在较快溶剂挥发速度下制得。与化合物10的反应体系相同,通过密封滤液容器,降低滤液挥发速度,从而得到化合物12。对于反应体系9和11,降低溶剂挥发速度并未获得新的晶体。除金属离子和结晶水的数量不同外,化合物9和10是同构的,均为链状结构,亚磷酸的氧原子仅采用单配位方式。化合物11为二维层状结构。化合物12中亚磷酸采取η1:η1:η1:μ3配位模式形成Kagomé结构,具有沿c轴的一维孔道。磁性测试表明化合物9表现出顺磁行为,化合物10为反铁磁行为。化合物12为反铁磁性,并具有显著的场诱导自旋翻转。通过dM/dH曲线得出在2.0K下的临界场为3T。化合物12由于具有kagomé晶格的几何阻挫,因此表现出强的自旋阻挫。去水相12a表现出type-II型氮气吸附等温线。磁性测试表明化合物12a和12的磁学性质略有不同。化合物12a表现出亚铁磁行为,具有0.2T的临界场,自旋阻挫更弱。通过降低溶剂挥发速度使得配体的配位模式发生变化从而得到了具有自旋翻转和自旋阻挫共存的多孔磁性化合物12。当移除晶格溶剂后,体系的氢键消失,从而使得磁学性质发生了变化。在这里的研究结果表明客体分子即主客体氢键相互作用可以对体系的磁学性质起到一定的调控作用。同时较慢的溶剂挥发速度会导致配体配位更完全。
     5.利用四齿半刚性配体(4-(tris(hydroxylmethyl)methyl)pyridine)与钴离子构建多孔磁性材料:选用半刚性4-(tris(hydroxylmethyl)methyl)pyridine (4-thmpyH3)配体与乙酸钴合成出微孔磁性化合物[Co10O(4-thmpy)4(CH3COO)3(H2O)6(CH3O)3]·8CH3OH (13)。化合物13中,十核钴金属簇作为节点,4-thmpy3-配体作为支架,形成一个NaCl型网络结构。13表现出自旋倾斜的反铁磁性,并具有自旋玻璃行为。客体分子与框架存在氢键相互作用,当移除客体分子后,框架发生了微小变化,从而磁性测试结果表明自发磁化强度移向高温区域。去溶剂样品仍然保持着自旋倾斜和自旋玻璃行为。氮气吸附结果表明该化合物表现出type-I型的吸附曲线,证明其微孔特性。298K下的甲醇和水的吸附测试结果表明该化合物主要表现出疏水特性。GCMC理论模拟得到的氮气吸附结果与实验结果完全吻合。结果显示甲醇的吸附点位于孔内,并与框架中的吡啶环之间形成了强的氢键相互作用(C-H···π=2.879)。使用半刚性的多齿配体为合成多孔磁性材料提供另一个新思路。
Molecule-based magnetism designates an active and interdisciplinary research field thatfocuses on the use of molecular approaches to design, synthesize, and study the composition,structure, properties and structure-property relationships of the magnetic materials. Until now,lots of molecule-based magnetic materials have been reported owing to the flexibility ofmolecular chemistry. The various structures of magnetic materials have demonstrateddifferent magnetic behaviors, such as spin-flop, metamagnetism, spin-canting, spin-frustration,spin-glass, single-molecule magnets (SMM), single-chain magnets (SCM), etc. The trends ofresearch based on the molecule-based magnetic materials can be classified into the followingfour main classes:(i) molecule-based magnets with higher critical temperatures;(ii)multifunctional magnetic materials, such as magneto-electronic coexist, magnetic chiral, andporous material for magnetic separation;(iii) non-thermally stimulated magnetic materials,such as light-induced/stress-induced/electric induced magnet.
     In order to obtain novel molecule-based magnetic materials and porous magneticmaterials, we have chosen different polydentate ligands Schiff base ligand N,N'-bis(salicylidene)hydrazine (H2salhn),1,1,1-tris(hydroxymethyl)propane (H3tmp),4-methyl-3-nitrobenzoic acid (HL), phosphite, and/or4-(tris(hydroxylmethyl)methyl)pyridine(4-thmpyH3) to react with transition metal ions to obtain thirteen compounds. We haveanalyzed the effects of solvent, temperature, pH, and ancillary ligands on the structures of thecompounds. The structure-property relationships have been summarized by systematicalinvestigation and detailed discussion of the magnetic and porous properties. The outline ofthis dissertation is as follows:
     1. Two novel complexes,[CoIICoIII4(salhn)4(N3)6(MeOH)2(H2O)2]·4MeOH·2H2O (1) and[CuII2(salhn)(N3)2]n(2)(H2salhn=N, N'-bis(salicylidene)hydrazine), were synthesized andstructurally characterized by X-ray single-crystal diffraction. Complex1is a zigzag-likepentanulear [CoIICoIII4] cobalt cluster, while complex2consists of a1D coordination complexcontaining subunit [CuII2(salhn)(N3)2]. Compounds1and2both possess end-on (EO, μ-1,1)azide bridging. The magnetic measurements indicate that both1and2showantiferromagnetic behaviors. Complex2displays a phase transition with a critical field of0.02T at2.0K. Compared with the previous Co2(salhn)3diamagnetic system andCu2(salhn)2(H2O)4system, we have successfully obtained two extended networks withantiferromagnetism by employing the azide ligand, which play a guiding role for the future ofexperimental research.
     2. Solvothermal reactions of1,1,1-tris(hydroxymethyl)propane (H3tmp) and FeCl3using different counterions resulted in three hexanuclear iron(III) clusters(C5N2H14)[Fe6(μ6-O)Cl6(tmp)4]·2H2O·CH3OH (3),(C3N2H5)2[Fe6(μ6-O)Cl6(tmp)4](4), and(C4N3H8)3(C2N3H4)[Fe12(μ6-O)2Cl12(tmp)8]·3(CH3OH)(5), then their structures andmagnetic properties were characterized. The tripodal alcohols ligands are very useful inconstructing magnetically high-nuclearity metal clusters. In all cases, similar anionic cluster[Fe6(μ6-O)Cl6(tmp)4]2-is formed by six Fe(III) ions, four tmp3-ligands, one center O2-ion,and six Cl-ions. Magnetic studies indicate that these three compounds show slightly differentmagnetic data, despite they display similar magnetic features. The dipolar interactions and thehydrogen-bond interactions may be responsible for such differences.
     3. Three novel one-dimensional (1D) lanthanide coordination complexes involving the4-methyl-3-nitrobenzoic acid (HL) ligand, with the general formula [Gd(L)3(H2O)(CH3OH)](6),[Gd(L)3(H2O)2]·(4,4’-bpy)·CH3OH (7),[Dy(L)3(H2O)(CH3OH)](8), have beensynthesized by the solvothermal reactions. These complexes have been structurallycharacterized by single-crystal X-ray diffraction, IR, PXRD, TGA, and elemental analyses.Compounds6-8were obtained under the condition of the mixed solvent. We want to employpure solvent conditions to investigate whether the mono-solvent coordinated complex can beassembled or not. Unfortunately, single crystals could not be obtained when the reactionsolvent was employed pure water or methanol. Complexes6and8are isostructural except thedistinction of metal ion. Magnetic measurements indicate that complexes6and7both showparamagnetic behaviors, but complex8shows antiferromagnetic behavior. Complex8behaves slow relaxation of the magnetization, where the frequency-dependent out-of-phasesignals are noticed. However, the characteristic maxima were not reached above2K underzero direct current (DC) fields. When a DC field of5000Oe was employed, the frequencydependent peaks of alternating current (AC) signals were obtained.
     4. Four new compounds,[Ni(HPO3)(4,4’-bpy)(H2O)3]·4H2O (9),[Co2(HPO3)2(4,4’-bpy)2(H2O)6]·9H2O (10),[Zn(HPO3)(4,4’-bpy)0.5]·H2O (11), and[Co3(PO3)2(4,4’-bpy)3(H2O)6]·3H2O (12), have been synthesized. Compounds9-11wereformed under the condition of the unsealed filtrated solution leading to the fast evaporationrate. we change the process of our experiment, i.e., seal the filtrated solution for each, toreduce the rate of the evaporation of the filtrated solution. As expected, new crystal, i.e.,complex12, has been formed with different color and shape from10. However, no newcrystals have been obtained from the systems9and11, which indicate that the differentevaporation rate is feeble for the systems9and11. Compounds9and10are linear chains andisostructural except for the distinction of the metal ion and the number of lattice watermolecules. Compound11consists of2D sheet structure. For compound12, phosphite PO33-group acts as η1:η1:η1:μ3mode linking three Co ions forming Kagomé framework with1Dhexagonal channels along the c axis. Magnetic measurements indicate that compound9shows paramagnetic behavior, while compound10displays antiferromagnetic behavior. Compound12exhibits the antiferromagnetism with a pronounced field-induced spin-flop transition. Acritical field of3T at2.0K is determined from the derivative dM/dH curve. Meanwhile,compound12shows a strong spin-frustration arising from the geometric frustration inkagomé lattice. The dehydrated phase12a displays a characteristic of N2-adsorption withtype-II isotherm. We performed detailed magnetic measurements for12a, which exhibits quitedifferent magnetic properties from12. Compound12a displays a ferrimagnetic behavior witha lower transition field of0.2T, and a weaker spin-frustration. The results showed that themagnetic properties of the system can be tuned by the hydrogen bonding interactions betweenthe guest molecules and the host framework. Furthermore, slower evaporation rate of thesolvent may result in more complete of coordination.
     5. We have synthesized a microporous magnetic framework based on the tripodal alcoholderivative with pyridyl group4-(tris(hydroxymethyl)methyl)pyridine (4-thmpyH3) ligand,[Co10O(4-thmpy)4(CH3COO)3(H2O)6(CH3O)3]·8CH3OH (13), which contains supertetrahedraldeca-metallic cobalt clusters as nodes and4-thmpy3-ligands as linkers to form a NaCl-likenetwork. The complex shows a canted antiferromagnetism with spin-glass behavior. There ishydrogen bonding between the guest methanol molecules and the framework in compound13.The removal of guest molecules might lead to the slight change of the framework, whichbenefits the spontaneous magnetization at higher temperature. Nonetheless, the spin-cantingand spin-glass behaviors are still maintained. The permanent porosity was evaluated by N2adsorption measurement, which exhibits a typical type-I curve. The complex mainly showshydrophobic nature validated by CH3OH and H2O adsorption measurements that is consistentwith the grand canonical Monte Carlo (GCMC) theoretical simulation. It is observed that theCH3OH molecule locates inside the hole and forms short contacts with the pyridine ring(C-H···π=2.879). We have obtained microporous magnetic materials by using semirigidligand, which provide another theoretical and experimental basis for the future synthesis ofporous magnetic.
引文
[1] Manriquez J M, Yee G T, Mclean R S, et al. A Room-Temperature Molecular/Organic-BasedMagnet[J]. Science,1991,252:1415-1417;(b) Kahn O. Molecular Magnetism[M], VCH Publishers,Weinheim,1993;(c) E Coronado, P Delhaes, D Gatteschi, J S Miller (Eds), Molecular Magnetism:from Molecular Assemblies to Devices, NATO ASI Series, Kluwer, Dordrecht,1995, vol321.
    [2](a) Troiani F, Affronte M. Molecular spins for quantum information technologies[J]. Chem Soc Rev,2011,40:3119–3129;(b) Gatteschi D, Sessoli R, Villain J. Molecular nanomagnets[M], OxfordUniversity Press,2007.
    [3](a) Thomas L, Liontl F, Ballou R, et al. Macroscopic quantum tunnelling of magnetization in a singlecrystal of nanomagnets[J]. Nature,1996,383:145-147;(b) Ferlay S, Mallah T, Ouahes R, et al. Aroom-temperature organometallic magnet based on Prussian blue[J]. Nature,1995,378:701-703;(c)Loss M N L D. Quantum computing in molecularmagnets[J]. Nature,2001,410:789-793;(d) Jones JA. Fast Searches with Nuclear Magnetic Resonance Computers[J]. science,1998,280:229;(e)Makhlin Y, Scohn G, Shnirman A. Josephson-junction qubits with controlled couplings[J]. Nature,1999,398:305-307;(f) Stamp P C E. Tunnelling secrets extracted[J]. Nature,1996,383:125-127;(g)Gatteschi D, Caneschi A, Pardi L, et al. Large Clusters of Metal Ions: The Transition from Molecularto Bulk Magnets[J]. science,1994,265:1054-1058;(h) Bogani L, Wernsdorfer W. Molecularspintronics using single-molecule magnets[J]. Nat Mater,2008:179-186;(i) Sessoll R, Qatteschi D,Caneechi A, et al. Magnetic bistability in a metal-ion cluster[J]. Nature,1993,365:141-143;(j)Gatteschi D, Sessoli R. Quantum Tunneling of Magnetization and Related Phenomena in MolecularMaterials[J]. Angew Chem,2003,115:279-309; Angew Chem Int Ed,2003,42:268-297;(k) Sorai M,Nakazawa Y, Nakano M, et al. Update1of: Calorimetric Investigation of Phase Transitions Occurringin Molecule-Based Magnets[J]. Chemical Reviews,2012,113: PR41-PR122;(l) Sanvito S. Molecularspintronics [J]. Chem Soc Rev,2011,40:3336-3355;(m) Timco G A, Faust T B, Tuna F, et al. Linkingheterometallic rings for quantum information processing and amusement[J]. Chem Soc Rev,2011,40:3067–3075.
    [4](a) McConnell H M. Ferromagnetism in Solid Free Radicals[J]. J Chem Phys,1963,39:1910-1910;(b)Anderson M. Concepts in Solids, W A Benjamin, Inc, New York, NY,1963,7;(c) McConnell H M.Proc Robert A, Welch Found, Conf Chem Res,1967,11,144.
    [5] Miller J S, Calabrese J C, Rommelmann H, et al. Ferromagnetic Behavior of [Fe(C5Me5)2]+[TCNE]-.Structural and Magnetic Characterization of Decamethylferrocenium Tetracyanoethenide,[Fe(C5Me5)2]+.[TCNE]-MeCN and Decamethylferrocenium Pentacyanopropenide,[Fe(C+5Me5)2][C3(CN)5][J]. J Am Chem Soc,1987,109:769-781.
    [6](a) Caneschi A, Gatteschi D, Lalioti N, et al. Cobalt(II)-Nitronyl Nitroxide Chains as MolecularMagnetic Nanowires[J]. Angew Chem Int Ed,2001,40:1760-1763;(b) Clérac R, Miyasaka H,Yamashita M, et al. Evidence for Single-Chain Magnet Behavior in a MnIII NiIIChain Designed withHigh Spin Magnetic Units: A Route to High Temperature Metastable Magnets[J]. J Am Chem Soc,2002,124:12837-12844;(c) Lescou zec R, Vaissermann J, Ruiz-Pérez C, et al. Cyanide-BridgedIron(III)–Cobalt(II) Double Zigzag Ferromagnetic Chains: Two New Molecular MagneticNanowires[J]. Angew Chem Int Ed,2003,42:1483-1486;(d) Toma L M, Lescouezec R, Lloret F, et al.Cyanide-bridged Fe(III)-Co(II) bis double zigzag chains with a slow relaxation of the magnetisation[J].Chem Commun,2003:1850-1851;(e) Liu T F, Fu D, Gao S, et al. An azide-bridged homospinsingle-chain magnet:[Co(2,2'-bithiazoline)(N3)2]n[J]. J Am Chem Soc,2003,125:13976-13977;(f)Ferbinteanu M, Miyasaka H, Wernsdorfer W, et al. Single-Chain Magnet(NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] Made of MnIII FeIII MnIIITrinuclear Single-Molecule Magnetwith an ST=9/2Spin Ground State[J]. J Am Chem Soc,2005,127:3090-3099;(g) Moulton B, Lu J,Hajndl R, et al. Crystal Engineering of a Nanoscale Kagomé Lattice[J]. Angew Chem Int Ed,2002,41:2821-2824;(h) Grohol D, Matan K, Cho J-H, et al. Spin chirality on a two-dimensional frustratedlattice[J]. Nat Mater,2005,4:323-328;(i) Ramirez A P, Hayashi A, Cava R J, et al. Zero-point entropyin‘spin ice’[J]. Nature,1999,399:333-335;(j) Ye F, Chi S, Fernandez-Baca J A, et al. Magnetic orderand spin-flop transitions in the cobalt-doped multiferroic Mn1-xCoxWO4[J]. Phys Rev B,2012,86:094429;(k) Zhou H-B, Wang J, Wang H-S, et al. Synthesis, Structure, and Magnetic Properties ofThree1D Chain Complexes Based on High-Spin Metal–Cyanide Clusters:[MnIII6MIII](M=Cr, Fe,Co)[J]. Inorg Chem,2011,50:6868-6877;(l) Leitch A A, Brusso J L, Cvrkalj K, et al. Spin-canting inheavy atom heterocyclic radicals[J]. Chem Commun,2007,0:3368-3370;(m) Yoshida H, Yamaura J-i,Isobe M, et al. Orbital switching in a frustrated magnet[J]. Nat Commun,2012,3:860-864;(n)Mydosh J A. Spin Glasses: An Experimental Introduction; Taylor&Francis: London,1993;(o)Galán-Mascarós J R, Dunbar K R. A Self-Assembled2D Molecule-Based Magnet: The HoneycombLayered Material {Co3Cl4(H2O)2[Co(Hbbiz)3]2}[J]. Angew Chem Int Ed,2003,42:2289-2293;(p)Batten S R, Murray K S. Structure and magnetism of coordination polymers containing dicyanamideand tricyanomethanide[J]. Coord Chem Rev,2003,246:103-130;(q) Zeng Y-F, Hu X, Liu F-C, et al.Azido-mediated systems showing different magnetic behaviors[J]. Chem Soc Rev,2009,38:469-480;(r) Yoon J H, Lee J W, Ryu D W, et al. One-Dimensional End-To-End Azide-Bridged MnIIIComplexesIncorporating Alkali Metal Ions: Slow Magnetic Relaxations and Metamagnetism[J]. Chem Eur J,2011,17:3028-3034.
    [7](a) Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselectiveseparation and catalysis[J]. Nature,2000,404:982-986;(b) Mitzi D B, Wang S, Feild C A, et al.Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets[J].Science,1995,267:1473-1476;(c) Pang J, Marcotte E J P, Seward C, et al. A Blue LuminescentStar-Shaped ZnIIComplex that Can Detect Benzene[J]. Angew Chem Int Ed,2001,40:4042-4045;(d)Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-OrganicFrameworks[J]. Science,2003,300:1127-1129;(e) Train C, Gruselle M, Verdaguer M. The fruitfulintroduction of chirality and control of absolute configurations in molecular magnets[J]. Chem SocRev,2011,40:3297–3312.
    [8] Bogdanov A N, Zhuravlev A V, R ler U K. Spin-flop transition in uniaxial antiferromagnets:Magnetic phases, reorientation effects, and multidomain states[J]. Phys Rev B,2007,75:094425.
    [9](a) Saines P J, Barton P T, Jain P, et al. Structures and magnetic properties of Mn and Coinorganic-organic frameworks with mixed linear dicarboxylate ligands[J]. CrystEngComm,2012,14:2711-2720;(b) Carlin R L, van-Duyneveldt A J, Magnetic Properties of Transition MetalCompounds[J], Springer-Verlag, New York,1977.
    [10](a) Sato M, English L Q, Hubbard B E, et al. Influence of sample shape on the production of intrinsiclocalized modes in an antiferromagnetic lattice[J]. J Appl Phys,2002,91:8676-8678;(b) Fiebig M,Fr hlich D, Pisarev R V. Nonlinear spectroscopy of antiferromagnetic Cr2O3[J]. J Appl Phys,1997,81:4875-4877.
    [11](a) Fries T, Shapira Y, Palacio F, et al. Magnetic ordering of the antiferromagnet Cu2MnSnS4frommagnetization and neutron-scattering measurements[J]. Phys Rev B,1997,56:5424-5431;(b)Quintero M, Cadenas R, Tovar R, et al. Magnetic spin-flop and magnetic saturation in Ag2FeGeSe4,Ag2FeSiSe4and Cu2MnGeSe4semiconductor compounds[J]. Physica B: Condensed Matter,2001,294–295:471-474.
    [12] Wernsdorfer W, Aliaga-Alcalde N, Hendrickson D N, et al. Exchange-biased quantum tunnelling in asupramolecular dimer of single-molecule magnets[J]. Nature,2002,416:406-409.
    [13] Kastner M A, Birgeneau R J, Shirane G, et al. Magnetic, transport, and optical properties of monolayercopper oxides[J]. Rev Mod Phys,1998,70:897-928.
    [14](a) Bogdanov A N, R ler U K, Wolf M, et al. Magnetic structures and reorientation transitions innoncentrosymmetric uniaxial antiferromagnets[J]. Phys Rev B,2002,66:214410;(b) Lumsden M D,Sales B C, Mandrus D, et al. Weak Ferromagnetism and Field-Induced Spin Reorientation inK2V3O8[J]. Phys Rev Lett,2001,86:159-162;(c) Zheludev A, Maslov S, Shirane G, et al.Field-Induced Commensurate-Incommensurate Phase Transition in a Dzyaloshinskii-Moriya SpiralAntiferromagnet[J]. Phys Rev Lett,1997,78:4857-4860.
    [15](a) Moser A, Takano K, Margulies D T, et al. Magnetic recording: advancing into the future[J]. J PhysD: Appl Phys,2002,35R157-R167;(b) Fullerton E E, Margulies D T, Supper N, et al.Antiferromagnetically coupled magnetic recording media [J]. IEEE Trans Magn,2003,39:639;(c)Worledge D C. Magnetic phase diagram of two identical coupled nanomagnets[J]. Appl Phys Lett,2004,84:2847-2849;(d) Bogdanov A N, R ler U K. Instabilities of switching processes in syntheticantiferromagnets[J]. Appl Phys Lett,2006,89:163109-163112.
    [16](a) Sun W-W, Tian C-Y, Jing X-H, et al. Solvent-modulated metamagnetism in a nickel(II)coordination polymer with mixed azide and carboxylate bridges[J]. Chem Commun,2009:4741-4743;(b) Carlin R L. Magnetochemistry[M], Springer, Berlin-Heidelberg,1986;(c) Zhang X-M, Wang Y-Q,Wang K, et al. Metamagnetism and slow magnetic dynamics in an antiferromagnet composed ofcobalt(II) chains with mixed azide-carboxylate bridges[J]. Chem Commun,2011,47:1815-1817.
    [17](a) Wang X-Y, Wang L, Wang Z-M, et al. Coexistence of Spin-Canting, Metamagnetism, andSpin-Flop in a (4,4) Layered Manganese Azide Polymer[J]. Chem Mater,2005,17:6369-6380;(b)Weng D-F, Wang Z-M, Gao S. Framework-structured weak ferromagnets[J]. Chem Soc Rev,2011,40:3157–3181.
    [18] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics[J].Journal of Physics and Chemistry of Solids,1958,4:241-255.
    [19] Moriya T. Anisotropic Superexchange Interaction and Weak Ferromagnetism[J]. Phys Rev,1960,120:91-98.
    [20] Ma X, Zhang J, Cong H, et al. Effect of Dzialoshinski-Moriya interaction on thermal entanglement ofa mixed-spin chain[J]. Sci China Ser G-Phys Mech Astron,2008,51:1897-1904.
    [21] Bernot K, Luzon J, Sessoli R, et al. The Canted Antiferromagnetic Approach to Single-ChainMagnets[J]. J Am Chem Soc,2008,130:1619-1627.
    [22](a) Pati S K, Rao C N R. Kagomé network compounds and their novel magnetic properties[J]. ChemCommun,2008,0:4683-4693;(b) Kenneth R P, Masaki A. A new spin on frustration: Solid-statescience and technology in the twentieth century was defned by the transistor and the integrated circuit.Will the quest for a quantum spin liquid, which is inspired by theoretical and experimental advances,spawn the information technology of tomorrow?[J]. Nat Chem,2011,3:758-759;(c) Kim K, ChangM S, Korenblit S, et al. Quantum simulation of frustrated Ising spins with trapped ions[J]. Nature,2010,465:590-593;(d) Zheng Y-Z, Tong M-L, Xue W, et al. A “Star” Antiferromagnet: A PolymericIron(III) Acetate That Exhibits Both Spin Frustration and Long-Range Magnetic Ordering[J]. AngewChem,2007,119:6188-6192; Angew Chem Int Ed,2007,46:6076-6080.
    [23] Wang R F, Nisoli C, Freitas R S, et al. Artificial 'spin ice' in a geometrically frustrated lattice ofnanoscale ferromagnetic islands[J]. Nature,2006,439,303–306.
    [24] Balents L. Spin liquids in frustrated magnets[J]. Nature,2010,464:199-208.
    [25]李波.基于氰根、1,10-邻菲罗啉、8-羟基喹啉或磷酸根的零、一或三维分子磁体的结构与磁性行为之间相互关系的研究[D][博士毕业论文]。长春:东北师范大学化学学院,2011.
    [26] Miller J S. Magnetically ordered molecule-based materials[J]. Chem Soc Rev,2011,40:3266–3296.
    [27](a) Glaser T. Rational design of single-molecule magnets: a supramolecular approach[J]. ChemCommun,2011,47:116-130;(b) Langley S K, Wielechowski D P, Vieru V, et al. A {CrIII2DyIII2}Single-Molecule Magnet: Enhancing the Blocking Temperature through3d Magnetic Exchange[J].Angew Chem Int Ed,2013,52:12014-12019;(c) Atanasov M, Zadrozny J M, Long J R, et al. Atheoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II)complexes with single-molecule magnet behavior[J]. Chem Sci,2013,4:139-156;(d) Mondal K C,Sundt A, Lan Y, et al. Coexistence of Distinct Single-Ion and Exchange-Based Mechanisms forBlocking of Magnetization in a CoII2DyIII2Single-Molecule Magnet[J]. Angew Chem Int Ed,2012,51:7550-7554.
    [28] Sessoli R, Tsai H L, Schake A R, et al. High-spin molecules:[Mn12O12(O2CR)16(H2O)4][J]. J AmChem Soc,1993,115:1804-1816.
    [29](a) Miyasaka H, Clérac R, Wernsdorfer W, et al. A Dimeric Manganese(III) Tetradentate Schiff BaseComplex as a Single-Molecule Magnet[J]. Angew Chem Int Ed,2004,43:2801-2805;(b) Lecren L,Wernsdorfer W, Li Y-G, et al. One-Dimensional Supramolecular Organization of Single-MoleculeMagnets[J]. J Am Chem Soc,2007,129:5045-5051;(c) Prescimone A, Wolowska J, Rajaraman G, etal. Studies of a linear single-molecule magnet[J]. Dalton Trans,2007:5282-5289;(d) Yang C-I,Wernsdorfer W, Cheng K-H, et al. A [MnIII73O]+Single-Molecule Magnet: the Anisotropy BarrierEnhanced by Structural Distortion[J]. Inorg Chem,2008,47:10184-10186;(e) Pathmalingam T,Gorelsky S I, Burchell T J, et al. A rare ligand bridged ferromagnetically coupled MnIV3complex witha ground spin state of S=9/2[J]. Chem Commun,2008:2782-2784;(f) Inglis R, Jones L F, Karotsis G,et al. Enhancing SMM properties via axial distortion of MnIII3clusters[J]. Chem Commun,2008:5924-5926;(g) K. Brechin E, C. Huffman J, Christou G, et al. A new class of single-molecule magnets:mixed-valent [Mn4(O2CMe)2(Hpdm)6][ClO4]2with an S=8ground state[J]. Chem Commun,1999:783-784;(h) Yoo J, Brechin E K, Yamaguchi A, et al. Single-Molecule Magnets: A New Class ofTetranuclear Manganese Magnets[J]. Inorg Chem,2000,39:3615-3623;(i) Stamatatos T C, Poole KM, Abboud K A, et al. High-Spin Mn4and Mn10Molecules: Large Spin Changes with Structure inMixed-Valence MnII4MnIII6Clusters with Azide and Alkoxide-Based Ligands[J]. Inorg Chem,2008,47:5006-5021;(j) Yang C-I, Wernsdorfer W, Lee G-H, et al. A Pentanuclear ManganeseSingle-Molecule Magnet with a Large Anisotropy[J]. J Am Chem Soc,2006,129:456-457;(k)Cremades E, Cano J, Ruiz E, et al. Theoretical Methods Enlighten Magnetic Properties of a Family ofMn6Single-Molecule Magnets[J]. Inorg Chem,2009,48:8012-8019;(l) Inglis R, Jones L F, Milios CJ, et al. Attempting to understand (and control) the relationship between structure and magnetism in anextended family of Mn6single-molecule magnets[J]. Dalton Trans,2009:3403-3412;(m) Tomsa A-R,Martinez-Lillo J, Li Y, et al. A new family of oxime-based hexanuclear manganese(III) singlemolecule magnets with high anisotropy energy barriers[J]. Chem Commun,2010,46:5106-5108;(n)Milios C J, Vinslava A, Wood P A, et al. A Single-Molecule Magnet with a “Twist”[J]. J Am ChemSoc,2006,129:8-9;(o) Jones L F, Inglis R, Cochrane M E, et al. New structural types and differentoxidation levels in the family of Mn6-oxime single-molecule magnets[J]. Dalton Trans,2008:6205-6210;(p) Ritchie C, Ferguson A, Nojiri H, et al. Polyoxometalate-Mediated Self-Assembly ofSingle-Molecule Magnets:{[XW9O34]2[MnIIII4MnI2O4(H2O)4]}12-[J]. Angew Chem Int Ed,2008,47:5609-5612;(q) Murugesu M, Wernsdorfer W, Abboud K A, et al. New Structural Motifs in ManganeseSingle-Molecule Magnetism from the Use of Triethanolamine Ligands[J]. Angew Chem Int Ed,2005,44:892-896;(r) John R P, Lee K, Kim B J, et al. Modulation of the Ring Size and Nuclearity ofMetallamacrocycles via the Steric Effect of Ligands: Preparation and Characterization of
    18-Membered Hexanuclear,24-Membered Octanuclear, and30-Membered Decanuclear Manganese
    Metalladiazamacrocycles with α-and β-Branched N-Acylsalicylhydrazides[J]. Inorg Chem,2005,44:
    7109-7121;(s) Tasiopoulos A J, Wernsdorfer W, Moulton B, et al. Template Synthesis and
    Single-Molecule Magnetism Properties of a Complex with Spin S=16and a [Mn8O8]8+Saddle-Like
    Core[J]. J Am Chem Soc,2003,125:15274-15275;(t) Godbole M D, Roubeau O, Clerac R, et al. A
    novel octanuclear Mn(III) aggregate as a single-molecule magnet[J]. Chem Commun,2005:
    3715-3717;(u) Boskovic C, Wernsdorfer W, Folting K, et al. Single-Molecule Magnets: Novel Mn8
    and Mn9Carboxylate Clusters Containing an Unusual Pentadentate Ligand Derived from
    Pyridine-2,6-dimethanol[J]. Inorg Chem,2002,41:5107-5118;(v) Mondal K C, Song Y, Mukherjee P
    S. Self-Assembly of a Mn9Nanoscopic Mixed-Valent Cluster: Synthesis, Crystal Structure, and
    Magnetic Behavior[J]. Inorg Chem,2007,46:9736-9742;(w) Zhong Z J, Seino H, Mizobe Y, et al. A
    High-Spin Cyanide-Bridged Mn9W6Cluster (S=39/2) with a Full-Capped Cubane Structure[J]. J Am
    Chem Soc,2000,122:2952-2953;(x) Liu S-X, Lin S, Lin B-Z, et al.[30]Metallacrown-10
    Compounds:[Mn(C14H9N2O3)(CH3OH)]105CH2Cl216CH3OH H2O and
    [Fe(C14H9N2O3)(CH3OH)]103CH2Cl212.5CH3OH5H2O[J]. Angew Chem,2001,113:1118-1121;
    Angew Chem Int Ed,2001,40:1084-1087,2001;(y) Caneschi A, Gatteschi D, Sessoli R, et al.
    Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a
    ground S=10state in [Mn12O12(CH3COO)16(H2O)4]2CH3COOH4H2O[J]. J Am Chem Soc,1991,
    113:5873-5874;(z) Eppley H J, Tsai H-L, de Vries N, et al. High-Spin Molecules: Unusual Magnetic
    Susceptibility Relaxation Effects in [Mn12O12(O2CEt)16(H2O)3](S=9) and the One-Electron
    Reduction Product (PPh4)[Mn12O12(O2CEt)16(H2O)4](S=19/2)[J]. J Am Chem Soc,1995,117:
    301-317;(aa) Coronado E, Forment-Aliaga A, Gaita-Ari o A, et al. Polycationic Mn12
    Single-Molecule Magnets as Electron Reservoirs with S>10Ground States[J]. Angew Chem Int Ed,
    2004,43:6152-6156;(ab) Foguet-Albiol D, O'Brien T A, Wernsdorfer W, et al. DFT Computational
    Rationalization of an Unusual Spin Ground State in an Mn12Single-Molecule Magnet with a
    Low-Symmetry Loop Structure[J]. Angew Chem Int Ed,2005,44:897-901;(ac) Shah S J, Ramsey C
    M, Heroux K J, et al. Wheel-Shaped Mn16Single-Molecule Magnets[J]. Inorg Chem,2008,47:
    6245-6253;(ad) Stamatatos T C, Foguet-Albiol D, Wernsdorfer W, et al. High-nuclearity,
    mixed-valence Mn17, Mn18and {Mn62}ncomplexes from the use of triethanolamine[J]. Chem
    Commun,2011,47:274-276;(ae) Brechin E K, Boskovic C, Wernsdorfer W, et al. Quantum
    Tunneling of Magnetization in a New [Mn18]2+Single-Molecule Magnet with S=13[J]. J Am Chem
    Soc,2002,124:9710-9711;(af) Ako A M, Hewitt I J, Mereacre V, et al. A Ferromagnetically Coupled
    Mn19Aggregate with a Record S=83/2Ground Spin State[J]. Angew Chem Int Ed,2006,45:
    4926-4929;(ag) Waldmann O, Ako A M, Gudel H U, et al. Assessment of the Anisotropy in the
    Molecule Mn19with a High-Spin Ground State S=83/2by35GHz Electron Paramagnetic
    Resonance[J]. Inorg Chem,2008,47:3486-3488;(ah) Liu W, Lee K, Park M, et al. Novel
    48-Membered Hexadecanuclear and60-Membered Icosanuclear Manganese Metallamacrocycles[J].Inorg Chem,2008,47:8807-8812;(ai) Brockman J T, Huffman J C, Christou G. A High Nuclearity,Mixed-Valence Manganese(III, IV) Complex:[Mn21O24(OMe)8(O2CCH2tBu)16(H2O)10][J]. AngewChem Int Ed,2002,41:2506-2508;(aj) Brockman J T, Stamatatos T C, Wernsdorfer W, et al.Synthesis and Characterization of a Mn22Single-Molecule Magnet and a [Mn22]nSingle-ChainMagnet[J]. Inorg Chem,2007,46:9160-9171;(ak) Stamatatos T C, Abboud K A, Wernsdorfer W, et al.Covalently Linked Dimers of Clusters: Loop-and Dumbbell-Shaped Mn24and Mn26Single-MoleculeMagnets[J]. Angew Chem Int Ed,2008,47:6694-6698;(al) Stamatatos T C, Abboud K A,Wernsdorfer W, et al. A new Mn25single-molecule magnet with an S=61/2ground state arising fromligand-induced ‘spin-tweaking’ in a high-spin molecule[J]. Polyhedron,2007,26:2095-2100;(am)Murugesu M, Habrych M, Wernsdorfer W, et al. Single-Molecule Magnets: A Mn25Complex with aRecord S=51/2Spin for a Molecular Species[J]. J Am Chem Soc,2004,126:4766-4767;(an)Murugesu M, Takahashi S, Wilson A, et al. Large Mn25Single-Molecule Magnet with Spin S=51/2:Magnetic and High-Frequency Electron Paramagnetic Resonance Spectroscopic Characterization of aGiant Spin State[J]. Inorg Chem,2008,47:9459-9470;(ao) Zaleski C M, Depperman E C,Dendrinou-Samara C, et al. Metallacryptate Single-Molecule Magnets: Effect of Lower MolecularSymmetry on Blocking Temperature[J]. J Am Chem Soc,2005,127:12862-12872;(ap) Stamatatos TC, Nastopoulos V, Tasiopoulos A J, et al. High Nuclearity Single-Molecule Magnets: a Mixed-ValenceMn26Cluster Containing the Di-2-pyridylketone Diolate Dianion[J]. Inorg Chem,2008,47:10081-10089;(aq) Soler M, Rumberger E, Folting K, et al. Synthesis, characterization and magneticproperties of [Mn30O24(OH)8(O2CCH2C(CH3)3)32(H2O)2(CH3NO2)4]: the largest manganesecarboxylate cluster[J]. Polyhedron,2001,20:1365-1369;(ar) Soler M, Wernsdorfer W, Folting K, et al.Single-Molecule Magnets: A Large Mn30Molecular Nanomagnet Exhibiting Quantum Tunneling ofMagnetization[J]. J Am Chem Soc,2004,126:2156-2165;(as) Scott R T W, Parsons S, Murugesu M,et al. Linking Centered Manganese Triangles into Larger Clusters: A {Mn32} Truncated Cube[J].Angew Chem Int Ed,2005,44:6540-6543;(at) Moushi E E, Lampropoulos C, Wernsdorfer W, et al.Inducing Single-Molecule Magnetism in a Family of Loop-of-Loops Aggregates: HeterometallicMn40Na4Clusters and the Homometallic Mn44Analogue[J]. J Am Chem Soc,2010,132:16146-16155;(au) Tasiopoulos A J, Vinslava A, Wernsdorfer W, et al. Giant Single-Molecule Magnets: A {Mn84}Torus and Its Supramolecular Nanotubes[J]. Angew Chem Int Ed,2004,43:2117-2121.
    30] Milios C J, Vinslava A, Wernsdorfer W, et al. A Record Anisotropy Barrier for a Single-MoleculeMagnet[J]. J Am Chem Soc,2007,129:2754-2755.
    31](a) Barra A L, Caneschi A, Cornia A, et al. Single-Molecule Magnet Behavior of a TetranuclearIron(III) Complex. The Origin of Slow Magnetic Relaxation in Iron(III) Clusters[J]. J Am Chem Soc,1999,121:5302-5310;(b) Taft K L, Caneschi A, Pence L E, et al. Iron and manganese alkoxidecubes[J]. J Am Chem Soc,1993,115:11753-11766;(c) Oshio H, Hoshino N, Ito T.Superparamagnetic behavior in an alkoxo-bridged iron (II) cube[J]. J Am Chem Soc,2000,122:12602-12603;(d) Saalfrank R W, Scheurer A, Bernt I, et al. The {FeIII[FeIII(L1)2]3} star-typesingle-molecule magnet[J]. Dalton Trans,2006:2865-2874;(e) Accorsi S, Barra A-L, Caneschi A, etal. Tuning Anisotropy Barriers in a Family of Tetrairon(III) Single-Molecule Magnets with an S=5Ground State[J]. J Am Chem Soc,2006,128:4742-4755;(f) Oshio H, Hoshino N, Ito T, et al. High‐Spin Wheel of a Heptanuclear Mixed-Valent FeII, IIIComplex[J]. Angew Chem Int Ed,2003,42:223-225;(g) Delfs C, Gatteschi D, Pardi L, et al. Magnetic properties of an octanuclear iron (III)cation[J]. Inorg Chem,1993,32:3099-3103;(h) Bahr S, Petukhov K, Mosser V, et al. Energy levellifetimes in the single-molecule magnet Fe8: Experiments and simulations[J]. Phys Rev B,2008,77:064404;(i) Boudalis A K, Sanakis Y, Clemente-Juan J M, et al. A Family of Enneanuclear Iron(II)Single-Molecule Magnets[J]. Chem Eur J,2008,14:2514-2526;(j) Benelli C, Cano J, Journaux Y, etal. A Decanuclear Iron(III) Single Molecule Magnet: Use of Monte Carlo Methodology To Model theMagnetic Properties[J]. Inorg Chem,2000,40:188-189;(k) Ako A M, Mereacre V, Lan Y, et al. AnUndecanuclear FeIIISingle-Molecule Magnet[J]. Inorg Chem,2009,49:1-3;(l) Powell G W,Lancashire H N, Brechin E K, et al. Building Molecular Minerals: All Ferric Pieces of MolecularMagnetite[J]. Angew Chem,2004,116:5896-5899; Angew Chem Int Ed,2004,43:5772–5775,2004;(m) Gass I A, Milios C J, Evangelisti M, et al. Synthesis and magnetic properties of heptadecametallicFe(III) clusters[J]. Polyhedron,2007,26:1835-1837;(n) Vecchini C, Ryan D H, Cranswick L M D, etal. From single-molecule magnetism to long-range ferromagnetism inHpyr[Fe17O16(OH)12(py)12Br4]Br4[J]. Phys Rev B,2008,77:224403;(o) Goodwin J C, Sessoli R,Gatteschi D, et al. Towards nanostructured arrays of single molecule magnets: new Fe19oxyhydroxideclusters displaying high ground state spins and hysteresis[J]. Journal of the Chemical Society, DaltonTransactions,2000:1835-1840;(p) Zhang Z-M, Li Y-G, Yao S, et al. Enantiomerically Pure Chiral{Fe28} Wheels[J]. Angew Chem Int Ed,2009,48:1581-1584;(q) Liu T, Zhang Y-J, Wang Z-M, et al.A64-Nuclear Cubic Cage Incorporating Propeller-like FeIII8Apices and HCOO Edges[J]. J Am ChemSoc,2008,130:10500-10501;(r) Zhang Z-M, Yao S, Li Y-G, et al. Protein-Sized Chiral Fe168Cageswith NbO-Type Topology[J]. J Am Chem Soc,2009,131:14600-14601.
    [32] Sun Z, N. Hendrickson D, M. Grant C, et al. Single-molecule magnets: out-of-phase ac susceptibilitysignals from tetranuclear vanadium(III) complexes with an S=3ground state[J]. Chem Commun,1998:721-722.
    [33](a) Murrie M. Cobalt(II) single-molecule magnets[J]. Chem Soc Rev,2010,39:1986-1995;(b)Alborés P, Rentschler E. A Co36Cluster Assembled from the Reaction of Cobalt Pivalate with2,3-Dicarboxypyrazine[J]. Angew Chem Int Ed,2009,48:9366-9370.
    [34] Murugesu M, Clérac R, Anson C E, et al. Structure and Magnetic Properties of a Giant Cu44IIAggregate Which Packs with a Zeotypic Superstructure[J]. Inorg Chem,2004,43:7269-7271.
    [35] Foguet-Albiol D, Abboud K A, Christou G. High-nuclearity homometallic iron and nickel clusters:Fe22and Ni24complexes from the use of N-methyldiethanolamine[J]. Chem Commun,2005:4282-4284.
    [36](a) Zou L, Zhao L, Chen P, et al. Phenoxido and alkoxido-bridged dinuclear dysprosium complexes
    showing single-molecule magnet behaviour[J]. Dalton Trans,2012,41:2966-2971;(b) Zhao L, Wu J,
    Xue S, et al. A Linear3d–4f Tetranuclear CoIII2DyIII2Single-Molecule Magnet: Synthesis, Structure,
    and Magnetic Properties[J]. Chem Asian J,2012,7:2419-2423;(c) Xue S, Zhao L, Guo Y-N, et al.
    The use of a versatile o-vanilloyl hydrazone ligand to prepare SMM-like Dy3molecular cluster pair[J].
    Chem Commun,2012,48:8946-8948;(d) Xue S, Zhao L, Guo Y-N, et al. Field enhanced thermally
    activated mechanism in a square Dy4aggregate[J]. Chem Commun,2012,48:7031-7033;(e) Tian H,
    Zhao L, Guo Y-N, et al. Quadruple-CO32-bridged octanuclear dysprosium(III) compound showing
    single-molecule magnet behaviour[J]. Chem Commun,2012,48;(f) Tian H, Wang M, Zhao L, et al. A
    Discrete Dysprosium Trigonal Prism Showing Single-Molecule Magnet Behaviour[J]. Chem Eur J,
    2012,18:442-445;(g) Novitchi G, Pilet G, Ungur L, et al. Heterometallic CuII/DyIII1D chiral
    polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy3single molecule
    magnets[J]. Chem Sci,2012,3:1169-1176;(h) Lin S-Y, Guo Y-N, Guo Y, et al. Macrocyclic ligand
    encapsulating dysprosium triangles: axial ligands perturbed magnetic dynamics[J]. Chem Commun,
    2012,48:6924-6926;(i) Lin S Y, Zhao L, Guo Y N, et al. Two new Dy3triangles with trinuclear
    circular helicates and their single-molecule magnet behavior[J]. Inorg Chem,2012,51:10522-10528;
    (j) Lin S Y, Wernsdorfer W, Ungur L, et al. Coupling Dy3triangles to maximize the toroidal
    moment[J]. Angew Chem Int Ed,2012,51:12767-12771;(k) Guo Y-N, Chen X-H, Xue S, et al.
    Molecular Assembly and Magnetic Dynamics of Two Novel Dy6and Dy8Aggregates[J]. Inorg Chem,
    2012,51:4035-4042;(l) Chen G-J, Guo Y-N, Tian J-L, et al. Enhancing Anisotropy Barriers of
    Dysprosium(III) Single-Ion Magnets[J]. Chem Eur J,2012,18:2484-2487;(m) Zou L F, Zhao L, Guo
    Y N, et al. A dodecanuclear heterometallic dysprosium-cobalt wheel exhibiting single-molecule
    magnet behaviour[J]. Chem Commun,2011,47:8659-8661;(n) Yang P P, Gao X F, Song H B, et al.
    Slow magnetic relaxation in novel Dy4and Dy8compounds[J]. Inorg Chem,2011,50:720-722;(o)
    Tian H, Guo Y-N, Zhao L, et al. Hexanuclear Dysprosium(III) Compound Incorporating Vertex-and
    Edge-Sharing Dy3Triangles Exhibiting Single-Molecule-Magnet Behavior[J]. Inorg Chem,2011,50:
    8688-8690;(p) Guo Y-N, Xu G-F, Guo Y, et al. Relaxation dynamics of dysprosium(III) single
    molecule magnets[J]. Dalton Trans,2011,40;(q) Chen G-J, Gao C-Y, Tian J-L, et al.
    Coordination-perturbed single-molecule magnet behaviour of mononuclear dysprosium complexes[J].
    Dalton Trans,2011,40;(r) Bi Y, Guo Y-N, Zhao L, et al. Capping Ligand Perturbed Slow Magnetic
    Relaxation in Dysprosium Single-Ion Magnets[J]. Chem Eur J,2011,17:12476-12481;(s) Xu G-F,
    Wang Q-L, Gamez P, et al. A promising new route towards single-molecule magnets based on the
    oxalate ligand[J]. Chem Commun,2010,46;(t) Ke H, Xu G-F, Guo Y-N, et al. A linear tetranuclear
    dysprosium(III) compound showing single-molecule magnet behaviour[J]. Chem Commun,2010,46:
    6057-6059;(u) Tang J, Hewitt I, Madhu N T, et al. Dysprosium Triangles Showing Single-Molecule
    Magnet Behavior of Thermally Excited Spin States[J]. Angew Chem Int Ed,2006,45:1729-1733;(v)
    Gamer M T, Lan Y, Roesky P W, et al. Pentanuclear Dysprosium Hydroxy Cluster Showing
    Single-Molecule-Magnet Behavior[J]. Inorg Chem,2008,47:6581-6583;(w) Lin P-H, Burchell T J,Clérac R, et al. Dinuclear Dysprosium(III) Single-Molecule Magnets with a Large AnisotropicBarrier[J]. Angew Chem Int Ed,2008,47:8848-8851;(x) Zheng Y-Z, Lan Y, Anson C E, et al.Anion-Perturbed Magnetic Slow Relaxation in Planar {Dy4} Clusters[J]. Inorg Chem,2008,47:10813-10815;(y) Hewitt I J, Lan Y, Anson C E, et al. Opening up a dysprosium triangle by ligandoximation[J]. Chem Commun,2009:6765-6767;(z) Hussain B, Savard D, Burchell T J, et al. Linkinghigh anisotropy Dy3triangles to create a Dy6single-molecule magnet[J]. Chem Commun,2009:1100-1102;(aa) Lin P-H, Burchell T J, Ungur L, et al. A Polynuclear Lanthanide Single-MoleculeMagnet with a Record Anisotropic Barrier[J]. Angew Chem Int Ed,2009,48:9489-9492;(ab) LangleyS K, Moubaraki B, Forsyth C M, et al. Structure and magnetism of new lanthanide6-wheelcompounds utilizing triethanolamine as a stabilizing ligand[J]. Dalton Trans,2010,39:1705-1708;(ac)Layfield R A, McDouall J J W, Sulway S A, et al. Influence of the N-Bridging Ligand on MagneticRelaxation in an Organometallic Dysprosium Single-Molecule Magnet[J]. Chem Eur J,2010,16:4442-4446;(ad) Wang Y, Li X-L, Wang T-W, et al. Slow Relaxation Processes and Single-IonMagnetic Behaviors in Dysprosium-Containing Complexes[J]. Inorg Chem,2009,49:969-976;(ae)Xu G-F, Wang Q-L, Gamez P, et al. A promising new route towards single-molecule magnets based onthe oxalate ligand[J]. Chem Commun,2010,46:1506-1508;(af) Guo Y-N, Xu G-F, Gamez P, et al.Two-Step Relaxation in a Linear Tetranuclear Dysprosium(III) Aggregate Showing Single-MoleculeMagnet Behavior[J]. J Am Chem Soc,2010,132:8538-8539.
    [37] Kong X-J, Wu Y, Long L-S, et al. A Chiral60-Metal Sodalite Cage Featuring24Vertex-Sharing[Er4(μ3-OH)4] Cubanes[J]. J Am Chem Soc,2009,131:6918-6919.
    [38](a) Compain J-D, Mialane P, Dolbecq A, et al. Iron Polyoxometalate Single-Molecule Magnets[J].Angew Chem Int Ed,2009,48:3077-3081;(b) Clemente-Juan J M, Coronado E, Gaita-Arino A.Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantumcomputing[J]. Chem Soc Rev,2012,41:7464-7478.
    [39](a) Das A, Gieb K, Krupskaya Y, et al. A New Family of1D Exchange Biased HeterometalSingle-Molecule Magnets: Observation of Pronounced Quantum Tunneling Steps in the HysteresisLoops of Quasi-Linear {Mn2Ni3} Clusters[J]. J Am Chem Soc,2011,133:3433-3443;(b) Glaser T,Heidemeier M, Weyhermüller T, et al. Property-Oriented Rational Design of Single-Molecule Magnets:A C3-Symmetric Mn6Cr Complex based on Three Molecular Building Blocks with a Spin GroundState of St=21/2[J]. Angew Chem Int Ed,2006,45:6033-6037;(c) Li D, Parkin S, Wang G, et al. AnS=6Cyanide-Bridged Octanuclear FeIII4NiII4Complex that Exhibits Slow Relaxation of theMagnetization[J]. J Am Chem Soc,2006,128:4214-4215.
    [40](a) Karotsis G, Kennedy S, Teat S J, et al.[MnIIII4LnII4] Calix[4]arene Clusters as Enhanced MagneticCoolers and Molecular Magnets[J]. J Am Chem Soc,2010,132:12983-12990;(b) Kong X-J, Ren Y-P,Chen W-X, et al. A Four-Shell, Nesting Doll-like3d–4f Cluster Containing108Metal Ions[J]. AngewChem Int Ed,2008,47:2398-2401;(c) Naoto Ishikawa M S, Tadahiko Ishikawa, Shin-ya Koshihara,and Youkoh Kaizu. Lanthanide Double-Decker Complexes Functioning as Magnets at theSingle-Molecular Level[J]. J Am Chem Soc,2003,125:8694-8695.
    [41] Glauber R J. Time‐Dependent Statistics of the Ising Model[J]. J Math Phys,1963,4:294-307.
    [42] Hao-Ling Sun Z-M, Song Gao. Strategies towards single-chain magnets[J]. Coord Chem Rev,2010,254:1081–1100.
    [43] Feng X, Liu J, Harris T D, et al. Slow Magnetic Relaxation Induced by a Large Transverse Zero-FieldSplitting in a MnIIReIV(CN)2Single-Chain Magnet[J]. J Am Chem Soc,2012,134:7521-7529.
    [44](a) Ferrando-Soria J, Ruiz-García R, Cano J, et al. Reversible Solvatomagnetic Switching in aSpongelike Manganese(II)–Copper(II)3D Open Framework with a Pillared Square/Octagonal LayerArchitecture[J]. Chem Eur J,2012,18:1608-1617;(b) Coronado E, Minguez Espallargas G. Dynamicmagnetic MOFs[J]. Chem Soc Rev,2013,42:1525-1539.
    [45](a) Kurmoo M. Magnetic metal-organic frameworks[J]. Chem Soc Rev,2009,38:1353-1379;(b)Maspoch D, Ruiz-Molina D, Veciana J. Old materials with new tricks: multifunctionalopen-framework materials[J]. Chem Soc Rev,2007,36:770-818;(c) Kuppler R J, Timmons D J, FangQ-R, et al. Potential applications of metal-organic frameworks[J]. Coord Chem Rev,2009,253:3042-3066.
    [46] Dechambenoit P, Long J R. Microporous magnets[J]. Chem Soc Rev,2011,40:3249-3265.
    [47] Kaye S S, Choi H J, Long J R. Generation and O2Adsorption Studies of the Microporous MagnetsCsNi[Cr(CN)6](TC=75K) and Cr3[Cr(CN)6]2·6H2O (TN=219K)[J]. J Am Chem Soc,2008,130:16921-16925.
    [48](a) Zhang X-M, Hao Z-M, Zhang W-X, et al. Dehydration-Induced Conversion from a Single-ChainMagnet into a Metamagnet in a Homometallic Nanoporous Metal–Organic Framework[J]. AngewChem Int Ed,2007,46:3456-3459;(b) Yanai N, Kaneko W, Yoneda K, et al. ReversibleWater-Induced Magnetic and Structural Conversion of a Flexible Microporous Ni(II)Fe(III)Ferromagnet[J]. J Am Chem Soc,2007,129:3496-3497;(c) Milon J, Daniel M-C, Kaiba A, et al.Nanoporous Magnets of Chiral and Racemic [{Mn(HL)}2Mn{Mo(CN)7}2] with Switchable OrderingTemperatures (TC=85K106K) Driven by H2O Sorption (L=N,N-Dimethylalaninol)[J]. J AmChem Soc,2007,129:13872-13878;(d) Cheng X N, Zhang W X, Lin Y Y, et al. A Dynamic PorousMagnet Exhibiting Reversible Guest-Induced Magnetic Behavior Modulation[J]. Adv Mater,2007,19:1494-1498;(e) Kar P, Haldar R, Gómez-García C J, et al. Antiferromagnetic Porous Metal–OrganicFramework Containing Mixed-Valence [MnII4MnIII2(μ4-O)2]10+Units with Catecholase Activity andSelective Gas Adsorption[J]. Inorg Chem,2012,51:4265-4273.
    [49] Dietzel P D C, Morita Y, Blom R, et al. An In Situ High-Temperature Single-Crystal Investigation of aDehydrated Metal–Organic Framework Compound and Field-Induced Magnetization ofOne-Dimensional Metal–Oxygen Chains[J]. Angew Chem Int Ed,2005,44:6354-6358.
    [50] Maspoch D, Ruiz-Molina D, Wurst K, et al. A nanoporous molecular magnet with reversiblesolvent-induced mechanical and magnetic properties[J]. Nat Mater,2003,2:190-195.
    [1] Mazzanti M. Uranium memory: A diuranium compound featuring an arene bridge showssingle-molecule-magnet behaviour, which could arise from a mechanism diferent from the traditional‘super-exchange’ spin coupling[J]. Nat Chem,2011,3:426-427.
    [2] Li B, Zhang J P, Zhang Y, et al. Two unique8-quinolinato (q) based one dimensional complexes[FeIIMnII(q)4·(H2O)0.25]nand [MnII(q)2]n: synthesis, structures, and magnetism[J]. CrystEngComm,2011,13:418-420.
    [3] Mougel V, Chatelain L, Pécaut J, et al. Uranium and manganese assembled in a wheel-shapednanoscale single-molecule magnet with high spin-reversal barrier[J]. Nat Chem,2012,4:1011-1017.
    [4] Mills D P, Moro F, McMaster J, et al. A delocalized arene-bridged diuranium single-moleculemagnet[J]. Nat Chem,2011,3:454-460.
    [5] Das A, Gieb K, Krupskaya Y, et al. A New Family of1D Exchange Biased HeterometalSingle-Molecule Magnets: Observation of Pronounced Quantum Tunneling Steps in the HysteresisLoops of Quasi-Linear {Mn2Ni3} Clusters[J]. J Am Chem Soc,2011,133:3433-3443.
    [6] Sanvito S. Molecular spintronics[J]. Chem Soc Rev,2011,40:3336-3355.
    [7] Peng J-B, Zhang Q-C, Kong X-J, et al. A48-Metal Cluster Exhibiting a Large MagnetocaloricEffect[J]. Angew Chem Int Ed,2011,50:10649-10652.
    [8] Peng J-B, Zhang Q-C, Kong X-J, et al. High-Nuclearity3d–4f Clusters as Enhanced Magnetic Coolersand Molecular Magnets[J]. J Am Chem Soc,2012,134:3314-3317.
    [9] Coronado E, Giménez-Marqués M, Espallargas G M, et al. Tuning the magneto-structural propertiesof non-porous coordination polymers by HCl chemisorption[J]. Nat Commun,2012,3:828-835.
    [10] Yoshida H, Yamaura J-i, Isobe M, et al. Orbital switching in a frustrated magnet[J]. Nat Commun,2012,3:860-864.
    [11] Choubey S, Bhar K, Chattopadhyay S, et al. First examples of two ferromagnetic end-to-end cyanatebridged1D linear coordination polymers of nickel(II) containing an unsymmetrical diamine[J]. DaltonTrans,2012,41:11551-11554.
    [12] Han S-D, Song W-C, Zhao J-P, et al. Synthesis and ferrimagnetic properties of an unprecedentedpolynuclear cobalt complex composed of [Co24] macrocycles[J]. Chem Commun,2013,49:871-873.
    [13] Chandrasekhar V, Dey A, Das S, et al. Syntheses, structures, and magnetic properties of a family ofheterometallic heptanuclear [Cu5Ln2](Ln=Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III))complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues[J]. Inorg Chem,2013,52:2588-2598.
    [14] Talham D R, Meisel M W. Thin films of coordination polymer magnets[J]. Chem Soc Rev,2011,40:3356-3365.
    [15] Jian F-F, Zhu C-Y, Xiao H-L, et al. Synthesis and Structure Characterization of Metal-organicFrameworks with a Triple Iron Helical Complex[J]. Z Anorg Allg Chem,2005,631:769-772.
    [16] Saroja J, Manivannan V, Chakraborty P, et al. A Diiron(III) Complex Containing N-N Bridges.Synthesis, Structure, and Properties[J]. Inorg Chem,1995,34:3099-3101.
    [17] Sreerama S G, Pal S. Dinuclear Triple Helicates with Diazine Ligands: X-ray Structural,Electrochemical, and Magnetic Studies[J]. Inorg Chem,2005,44:6299-6307.
    [18] Hong M, Chen-jie F, Chun-ying D, et al. Crystal structures of metal-organic frameworks sustained byπ–π interactions between triple-helices[J]. Dalton Trans,2003:1229-1234.
    [19] Aggarwal R C, Singh N K, Singh R P. J Indian Chem Soc,1986,63:466.
    [20] Trivedi M, Chandra M, Pandey D S, et al. Mononuclear hydridocarbonyl ruthenium complexesincorporating N2O2bis-chelating ligands[J]. J Organomet Chem,2004,689:879-882.
    [21] Singh S K, Chandra M, Pandey D S. Ru(II) complexes imparting N2O2donor bis chelating ligandN,N′-bis(salicylidine)-hydrazine in unusual coordination mode[J]. J Organomet Chem,2004,689:2073-2079.
    [22] Gopinathan S, Pardhy S A, Gopinathan C, et al. Binuclear rhodium(I) complexes of aromatic azinesand crystal structure of salicylaldazinotetracarbonyldirhodium, C18H10N2O6Rh2[J]. Inorg Chim Acta,1986,111:133-138.
    [23] Cui S X, Zhao Y L, Zhang J P, et al. Structural and magnetic properties of metal complexes withpyridine-2,6-dicarboxylate and5-(4-bromophenyl)-2,4′-bipyridine[J]. Polyhedron,2009,28:980-986.
    [24] Cui S X, Zhao Y L, Zhang J P, et al. Structural and magnetic properties of metal complexesconstructed by pyridine-2,6-dicarboxylate and5-(4-bromophenyl)-2,4′-bipyridine[J]. Synth Met,2009,159:2191-2193.
    [25] Hao Z-M, Zhang X-M. Solvent induced molecular magnetic changes observed insingle-crystal-to-single-crystal transformation[J]. Dalton Trans,2011,40:2092-2098.
    [26] Zeng Y-F, Hu X, Liu F-C, et al. Azido-mediated systems showing different magnetic behaviors[J].Chem Soc Rev,2009,38:469-480.
    [27] Kang L-C, Chen X, Wang X-S, et al. Hydrogencyanamido bridged multinuclear copper(II) complexes:from strong antiferromagnetic couplings to weak ferromagnetic couplings[J]. Dalton Trans,2011,40:5200-5209.
    [28] Naiya S, Biswas C, Drew M G B, et al. A Unique Example of Structural and Magnetic Diversity inFour Interconvertible Copper(II) Azide Complexes with the Same Schiff Base Ligand: A Monomer, aDimer, a Chain, and a Layer[J]. Inorg Chem,2010,49:6616-6627.
    [29] Tandon S S, Bunge S D, Motry D, et al. Copper Coordination Polymers Based on Single-Chain orSheet Structures Involving Dinuclear and Tetranuclear Copper(II) Units: Synthesis, Structures, andMagnetostructural Correlations[J]. Inorg Chem,2009,48:4873-4881.
    [30] Mukherjee S, Gole B, Chakrabarty R, et al. CuII–Azide Polymers of Cu3and Cu6Building Units:Synthesis, Structures, and Magnetic Exchange Mechanism[J]. Inorg Chem,2009,48:11325-11334.
    [31] Tian C-B, Li Z-H, Lin J-D, et al. Cluster-Based CuII–Azide Polymers: Synthesis, Structure, MagneticProperties, and Effect of Polyamines on Crystal Structures[J]. Eur J Inorg Chem,2010,2010:427-437.
    [32] Zhang L-F, Yu M-M, Ni Z-H, et al. Synthesis, crystal structure and magnetic properties of aone-dimensional copper(II) polymer bridged by different double end-on azide bridges[J]. J Mol Struct,2011,1006:629-634.
    [33] Gao Q, Xie Y-B, Thorstad M, et al. Two azido-bridged copper(II) coordination polymers withisonicotinate-N-oxide and picolinate-N-oxide acting as co-ligands[J]. CrystEngComm,2011,13:6787-6793.
    [34] Dan-Feng Weng, Zhe-Ming Wang, Gao S. Framework-structured weak ferromagnets[J]. Chem SocRev,2011,40:3157–3181.
    [35] Wang S, Zuo J L, Gao S, et al. The observation of superparamagnetic behavior in molecularnanowires[J]. J Am Chem Soc,2004,126:8900-8901.
    [36] Tandon S S, Bunge S D, Rakosi R, et al. Self-assembly of mixed-valence Co(II/III) and Ni(II) clusters:azide-bridged1D single chain coordination polymers comprised of tetranuclear units, tetranuclearCo(II/III) complexes, ferromagnetically coupled azide-bridged tetranuclear, and hexanuclear Ni(II)complexes: synthesis, structural, and magnetic properties[J]. Dalton Trans,2009:6536-6551.
    [37] Sheldrick G M. SHELXS97and SHELXL97, University of G ttingen: Germany,1997.
    [38] Demeshko S, Leibeling G, Maringgele W, et al. Structural Variety and Magnetic Properties ofTetranuclear Nickel(II) Complexes with a Central μ4-Azide[J]. Inorg Chem,2005,44:519-528.
    [39] Alley K G, Bircher R, Waldmann O, et al. Mixed-Valent Cobalt Spin Clusters: a Hexanuclear Complexand a One-Dimensional Coordination Polymer Comprised of Alternating Hepta-and MononuclearFragments[J]. Inorg Chem,2006,45:8950-8957.
    [40] Adhikary C, Koner S. Structural and magnetic studies on copper(II) azido complexes[J]. Coord ChemRev,2010,254:2933-2958.
    [41] Nagaraja C M, Kumar N, Maji T K, et al. Amine-Templated Cobalt(II) Coordination PolymerExhibiting Novel Magnetic Properties: Effect of Dehydration[J]. Eur J Inorg Chem,2011,2011:2057-2063.
    [42] Karasawa S, Koga N. Magnetic Behaviors of Heterospin Chains Consisting of Cobalt(II) Complexesand Dipyridylcarbenes[J]. Inorg Chem,2011,50:2055-2057.
    [43] Li B, Zhang J P, Yong X, et al. The low spin CoIIfragment with homoleptic1,10-phenanthrolineligands: synthesis, structures, DFT investigations, and magnetic properties[J]. Dalton Trans,2011,40:4459-4464.
    [44] Vallejo J, Castro I, Ruiz-García R, et al. Field-Induced Slow Magnetic Relaxation in a Six-CoordinateMononuclear Cobalt(II) Complex with a Positive Anisotropy[J]. J Am Chem Soc,2012,134:15704-15707.
    [45] Han Y, Xu H, Liu Y, et al. Temperature-Dependent Capture of Water Molecules by Saddle-ShapedHexanuclear Carboxylate Cycloclusters in a (3,18)-Connected Metal–Organic Framework[J]. ChemEur J,2012,18:13954-13958.
    [46] Kahn O. Molecular Magnetism[M], Wiley-VCH, New York,1993.
    [1] Milway V A, Tuna F, Farrell A R, et al. Directed Synthesis of {Mn18Cu6} HeterometallicComplexes[J]. Angew Chem Int Ed,2013,52:1949-1952;(b) Mannini M, Pineider F, Danieli C, et al.Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets[J].Nature,2010,468:417-421;(c) Engelhardt L P, Muryn C A, Pritchard R G, et al. Octa-, Deca-,Trideca-, and Tetradecanuclear Heterometallic Cyclic Chromium–Copper Cages[J]. Angew Chem IntEd,2008,47:924-927;(d) Xiang S, Hu S, Sheng T, et al. A Fan-Shaped Polynuclear Gd6Cu12AminoAcid Cluster: A “Hollow” and Ferromagnetic [Gd6(μ3-OH)8] Octahedral Core Encapsulated by Six[Cu2] Glycinato Blade Fragments[J]. J Am Chem Soc,2007,129:15144-15146;(e) Han S-D, SongW-C, Zhao J-P, et al. Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobaltcomplex composed of [Co24] macrocycles[J]. Chem Commun,2013,49:871-873.
    [2](a) Zhang Y-J, Liu T, Kanegawa S, et al. Reversible Single-Crystal-to-Single-Crystal Transformationfrom Achiral Antiferromagnetic Hexanuclears to a Chiral Ferrimagnetic Double Zigzag Chain[J]. JAm Chem Soc,2009,131:7942-7943;(b) Ohba M, Kaneko W, Kitagawa S, et al. Pressure Responseof Three-Dimensional Cyanide-Bridged Bimetallic Magnets[J]. J Am Chem Soc,2008,130:4475-4484;(c) Numata Y, Inoue K, Baranov N, et al. Field-Induced Ferrimagnetic State in aMolecule-Based Magnet Consisting of a CoIIIon and a Chiral Triplet Bis(nitroxide) Radical[J]. J AmChem Soc,2007,129:9902-9909;(d) Folven E, Scholl A, Young A, et al. Crossover from Spin-FlopCoupling to Collinear Spin Alignment in Antiferromagnetic/Ferromagnetic Nanostructures[J]. NanoLetters,2012,12:2386-2390;(e) P ka a M, Wolff-Fabris F, Fagnard J F, et al. Magnetic propertiesand anisotropy of orthorhombic DyMnO3single crystal[J]. Journal of Magnetism and MagneticMaterials,2013,335:46-52;(f) Zhao J-P, Zhao R, Yang Q, et al. One pot synthesis of heterometallic3d-3d azido architectures: assembling strategy and magnetic properties[J]. Dalton Trans,2012,41:4852-4858;(g) Lennartson A, Bond A D, Piligkos S, et al. Four-Site Cooperative Spin Crossover in aMononuclear FeIIComplex[J]. Angew Chem Int Ed,2012,51:11049-11052;(h) Hoshino N, Iijima F,Newton G N, et al. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nat Chem,2012,4:921-926;(i) Miller J S. Magnetically ordered molecule-based materials[J]. Chem Soc Rev,2011,40:3266–3296.
    [3] Bi Y, Wang X-T, Liao W, et al. A {Co32} Nanosphere Supported by p-tert-Butylthiacalix[4]arene[J]. JAm Chem Soc,2009,131:11650-11651.
    [4] Sanudo E C, Font-Bardia M, Solans X, et al. Hexanuclear Fe(III) complexes and their thermaldecomposition into an undecanuclear species[J]. New J Chem,2011,35:842-848.
    [5] Brechin E K. Using tripodal alcohols to build high-spin molecules and single-molecule magnets[J].Chem Commun,2005:5141-5153.
    [6] Yang F, Li B, Xu W, et al. Two Metal–Organic Frameworks Constructed from One-DimensionalCobalt(II) Ferrimagnetic Chains with Alternating Antiferromagnetic/Ferromagnetic and AF/AF/FMInteraction: Synthesis, Structures, and Magnetic Properties[J]. Inorg Chem,2012,51:6813-6820.
    [7] Sheldrick G M. SHELXS97and SHELXL97[J]. SHELXS97and SHELXL97, University of G ttingen,Germany,1997.
    [8](a) Batchelor L J, Shaw R, Markey S J, et al. An All-Vanadium(III) Hexametalate Lindqvist Structureand Its Chromium and Iron Analogues[J]. Chem Eur J,2010,16:5554-5557;(b) Jiang G, Bai J, XingH, et al. A Tetrahedral Water Tetramer in a Zeolite-like Metal Organic Framework Constructed from{(H3O)2[Fe6O{(OCH2)3CCH3}4Cl6]·4H2O}[J]. Cryst Growth Des,2006,6:1264-1266.
    [9](a) Dobson K D, J.McQuillan A. Spectrochim Acta Part A,1999,55:1395–1405;(b) Sun Z, Gantzel PK, Hendrickson D N. Supercubane Mixed-Valence Tridecanuclear Manganese Complex[J]. InorgChem,1996,35:6640-6641;(c) Thorp W L a H H. Bond Valence Sum Analysis of Metal-LigandBond Lengths in Metalloenzymes and Model Complexes.2. Refined Distances and Other Enzymes[J].Inorg Chem,1993,32:4102-4105.
    [10] Song J-L, Yi F-Y, Mao J-G. New Types of Luminescent Lanthanide Squarato-Aminophosphonates[J].Cryst Growth Des,2009,9:3273-3277.
    [11] Burkill H A, Robertson N, Vilar R, et al. Synthesis, Structural Characterization, and Magnetic Studiesof Polynuclear Iron Complexes with a New Disubstituted Pyridine Ligand[J]. Inorg Chem,2005,44:3337-3346.
    [12] Harris T D, Zhao Q, Sanchez R H, et al. Expanded redox accessibility via ligand substitution in anoctahedral Fe6Br6cluster[J]. Chem Commun,2011,47:6344-6346.
    [13](a) Han T, Shi W, Niu Z, et al. Magnetic Blocking from Exchange Interactions: Slow Relaxation ofthe Magnetization and Hysteresis Loop Observed in a Dysprosium–Nitronyl Nitroxide ChainCompound with an Antiferromagnetic Ground State[J]. Chem Eur J,2013,19:994-1001;(b) LangleyS K, Wielechowski D P, Vieru V, et al. A {CrIII2DyIII2} Single-Molecule Magnet: Enhancing theBlocking Temperature through3d Magnetic Exchange[J]. Angew Chem Int Ed,2013,52:12014-12019.
    [14](a) Tian J, Li B, Zhang X, et al. Transition-metal phosphite complexes: from one-dimensional chain,two-dimensional sheet, to three-dimensional architecture with unusual magnetic properties[J].CrystEngComm,2013;(b) Li W, Jia H-P, Ju Z-F, et al. A series of manganese-carboxylatecoordination polymers exhibiting diverse magnetic properties[J]. Dalton Trans,2008:5350-5357.
    [15] Mahata P, Natarajan S, Panissod P, et al. Quasi-2D XY Magnetic Properties and Slow Relaxation in aBody Centered Metal Organic Network of [Co4] Clusters[J]. J Am Chem Soc,2009,131:10140-10150.
    [16](a) Ishikawa R, Katoh K, Breedlove B K, et al. MnIII(tetra-biphenyl-porphyrin)–TCNE Single-ChainMagnet via Suppression of the Interchain Interactions[J]. Inorg Chem,2012,51:9123-9131;(b) Tian J,Li W, Li B, et al. Decametallic CoII-Cluster-Based Microporous Magnetic Framework with aSemirigid Multicoordinating Ligand[J]. Chemistry–A European Journal,2013,19:5097-5103;(c)Liu X-T, Wang X-Y, Zhang W-X, et al. Weak Ferromagnetism and Dynamic Magnetic Behavior in aSingle End-to-End Azide-Bridged Nickel(II) Chain[J]. Adv Mater2006,18:2852-2856;(d) Mydosh JA. Spin Glasses: An Experimental Introduction; Taylor&Francis: London,1993.
    [17] Zou J Y, Shi W, Xu N, et al. A homospin cobalt(II) topological ferrimagnet[J]. Chem Commun,2013,49:8226-8228.
    [18] Xu H-B, Wang Z-M, Liu T, et al. Synthesis, Structure, and Magnetic Properties of(A)[FeIII(oxalate)Cl2](A=Alkyl Ammonium Cations) with Anionic1D [FeIII(oxalate)Cl2]-Chains[J].Inorg Chem,2007,46:3089-3096.
    [19](a) Affronte M, Lasjaunias J C, Wernsdorfer W, et al. Magnetic ordering in a high-spin Fe19molecularnanomagnet[J]. Phys Rev B,2002,66:064408;(b) Morello A, Mettes F L, Bakharev O N, et al.Magnetic dipolar ordering and relaxation in the high-spin molecular cluster compound Mn6[J]. PhysRev B,2006,73:134406.
    [1] Liu R, Hu P, Li L, et al. One-dimensional lanthanide complexes bridged by nitronyl nitroxide radicalligands with non-chelating nitrogen donors: Structure and magnetic characterization[J]. Sci ChinaChem,2012,55:997-1003.
    [2] Zuo Y, Fang M, Xiong G, et al. Structural Diversity, Luminescence, and Magnetic Property: Series ofCoordination Polymers with2,2′-Bipyridyl-4,4′-Dicarboxylic Acid[J]. Cryst Growth Des,2012,12:3917-3926.
    [3] Zhao J P, Yang Q, Liu Z Y, et al. A unique substituted Co(II)-formate coordination frameworkexhibits weak ferromagnetic single-chain-magnet like behavior[J]. Chem Commun,2012,48:6568-6570.
    [4] Zhang W-X, Shiga T, Miyasaka H, et al. New Approach for Designing Single-Chain Magnets:Organization of Chains via Hydrogen Bonding between Nucleobases[J]. J Am Chem Soc,2012,134:6908-6911.
    [5] Tsai H L, Yang C I, Wernsdorfer W, et al. Mn4single-molecule-magnet-based polymers of aone-dimensional helical chain and a three-dimensional network: syntheses, crystal structures, andmagnetic properties[J]. Inorg Chem,2012,51:13171-13180.
    [6] Mannini M, Pineider F, Danieli C, et al. Quantum tunnelling of the magnetization in a monolayer oforiented single-molecule magnets[J]. Nature,2010,468:417-421.
    [7] Sorace L, Benelli C, Gatteschi D. Lanthanides in molecular magnetism: old tools in a new field[J].Chem Soc Rev,2011,40:3092–3104.
    [8] Liu R, Xiong C, Zhao S, et al. Slow magnetic relaxation in one dimensional nitronyl nitroxide-Dy(III)chain suggesting single-chain magnet behavior[J]. Inorg Chem Commun,2012,22:104-107.
    [9] Han T, Shi W, Niu Z, et al. Magnetic Blocking from Exchange Interactions: Slow Relaxation of theMagnetization and Hysteresis Loop Observed in a Dysprosium–Nitronyl Nitroxide Chain Compoundwith an Antiferromagnetic Ground State[J]. Chem Eur J,2013,19:994-1001.
    [10] Boulon M-E, Cucinotta G, Luzon J, et al. Magnetic Anisotropy and Spin-Parity Effect Along theSeries of Lanthanide Complexes with DOTA[J]. Angew Chem Int Ed,2013,52:350-354.
    [11] Wang Y, Li X-L, Wang T-W, et al. Slow Relaxation Processes and Single-Ion Magnetic Behaviors inDysprosium-Containing Complexes[J]. Inorg Chem,2010,49:969-976.
    [12] Ye J-W, Wang J, Zhang J-Y, et al. Construction of2-D lanthanide coordination frameworks:syntheses, structures and luminescent property[J]. CrystEngComm,2007,9:515-523.
    [13] Lin S-Y, Zhao L, Ke H, et al. Steric hindrances create a discrete linear Dy4complex exhibiting SMMbehaviour[J]. Dalton Trans,2012,41:3248-3252.
    [14] Yang P P, Gao X F, Song H B, et al. Slow magnetic relaxation in novel Dy4and Dy8compounds[J].Inorg Chem,2011,50:720-722.
    [15] Davies K, Bourne S A, Oliver C L. Solvent-and Vapor-Mediated Solid-State Transformations in1,3,5-Benzenetricarboxylate Metal–Organic Frameworks[J]. Cryst Growth Des,2012,12:1999-2003.
    [16] Cai S-L, Zheng S-R, Wen Z-Z, et al. Construction of luminescent three-dimensional Ln(III)-Zn(II)heterometallic coordination polymers based on2-pyridyl imidazole dicarboxylate[J]. CrystEngComm,2012,14:8236-8243.
    [17] Wang X-Y, Wang Z-M, Gao S. Constructing magnetic molecular solids by employing three-atomligands as bridges[J]. Chem Commun,2008,0:281-294.
    [18] Lu W-G, Zhong D-C, Jiang L, et al. Lanthanide Coordination Polymers Constructed fromImidazole-4,5-Dicarboxylate and Sulfate: Syntheses, Structural Diversity, and PhotoluminescentProperties[J]. Cryst Growth Des,2012,12:3675-3683.
    [19] Gong H-Y, Rambo B M, Nelson C A, et al. Rare-earth cation effects on three-dimensionalmetal-organic rotaxane framework (MORF) self assembly[J]. Chem Commun,2012,48:10186-10188.
    [20] Wang D-E, Deng K-J, Lv K-L, et al. Structures, photoluminescence and photocatalytic properties ofthree new metal-organic frameworks based on non-rigid long bridges[J]. CrystEngComm,2009,11:1442-1450.
    [21] Ye J, Zhang J, Ning G, et al. Lanthanide Coordination Polymers Constructed from Dinuclear BuildingBlocks: Novel Structure Evolution from One-Dimensional Chains to Three-DimensionalArchitectures[J]. Cryst Growth Des,2008,8:3098-3106.
    [22] Fang M, Shi P-F, Zhao B, et al. A series of3d-4f heterometallic three-dimensional coordinationpolymers: syntheses, structures and magnetic properties[J]. Dalton Trans,2012,41:6820-6826.
    [23] Sheldrick G M. SHELXS97and SHELXL97, University of G ttingen: Germany,1997.
    [24] Thuery P, Masci B. Lanthanide-organic assemblies with pyrazinetetracarboxylic andbenzophenone-3,3′,4,4′-tetracarboxylic acids[J]. CrystEngComm,2010,12:2982-2988.
    [25] Ji B, Deng D, He X, et al. Syntheses, Structures, Luminescence, and Magnetic Properties ofOne-dimensional Lanthanide Coordination Polymers with a Rigid2,2′-Bipyridine-3,3′,6,6′-tetracarboxylic Acid Ligand[J]. Inorg Chem,2012,51:2170-2177.
    [26] Feng X, Wang J G, Liu B, et al. From Two-Dimensional Double Decker Architecture toThree-Dimensional pcu Framework with One-Dimensional Tube: Syntheses, Structures,Luminescence, and Magnetic Studies[J]. Cryst Growth Des,2012,12:927-938.
    [27] Su S, Wang S, Song X, et al. Syntheses, structures, photoluminescence, and magnetic properties of(3,6)-and4-connected lanthanide metal-organic frameworks with a semirigid tricarboxylate ligand[J].Dalton Trans,2012,41:4772-4779.
    [28] Song J-L, Yi F-Y, Mao J-G. New Types of Luminescent Lanthanide Squarato-Aminophosphonates[J].Cryst Growth Des,2009,9:3273-3277.
    [29] Cortés R, Drillon M, Solans X, et al. Alternating Ferromagnetic Antiferromagnetic Interactions in aManganese(II) Azido One-Dimensional Compound:[Mn(bipy)(N3)2][J]. Inorg Chem,1997,36:677-683.
    [30] Su S, Chen W, Qin C, et al. Lanthanide Anionic Metal Organic Frameworks Containing SemirigidTetracarboxylate Ligands: Structure, Photoluminescence, and Magnetism[J]. Cryst Growth Des,2012,12:1808-1815.
    [31] Hou Y-L, Xiong G, Shen B, et al. Structures, luminescent and magnetic properties of sixlanthanide-organic frameworks: observation of slow magnetic relaxation behavior in the DyIIIcompound[J]. Dalton Trans,2013,42:3587-3596.
    [32] Glauber R J. Time-Dependent Statistics of the Ising Model[J]. J Appl Phys,1963,4:294-307.
    [33] Han Y-F, Zhou X-H, Zheng Y-X, et al. Syntheses, structures, photoluminescence, and magneticproperties of nanoporous3D lanthanide coordination polymers with4,4′-biphenyldicarboxylateligand[J]. CrystEngComm,2008,10:1237-1242.
    [34] Kahn O. Molecular Magnetism[M]. Wiley-VCH: New York,1993.
    [35] Guo Y-N, Xu G-F, Wernsdorfer W, et al. Strong Axiality and Ising Exchange Interaction SuppressZero-Field Tunneling of Magnetization of an Asymmetric Dy2Single-Molecule Magnet[J]. J AmChem Soc,2011,133:11948-11951.
    [36] Zheng Y-Z, Lan Y, Wernsdorfer W, et al. Polymerisation of the Dysprosium Acetate Dimer Switcheson Single-Chain Magnetism[J]. Chem Eur J,2009,15:12566-12570.
    [37] Benelli C, Gatteschi D. Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ionsand Organic Radicals[J]. Chem Rev,2002,102:2369-2387.
    [38] Wang Y-X, Shi W, Li H, et al. A single-molecule magnet assembly exhibiting a dielectric transition at470K[J]. Chem Sci,2012,3:3366-3370.
    [39] Lin P-H, Burchell T J, Clérac R, et al. Dinuclear Dysprosium(III) Single-Molecule Magnets with aLarge Anisotropic Barrier[J]. Angew Chem Int Ed,2008,47:8848-8851.
    [40] Ke H, Zhao L, Guo Y, et al. Heterobimetallic hexanuclear [MnIII4LnIII2] clusters: A rare MnIII4NdIII2example exhibiting slow relaxation of magnetization[J]. Dalton Trans,2012,41:2314–2319.
    [41] Zhao L, Xue S, Tang J. A Dodecanuclear Dysprosium Wheel Assembled by Six Vertex-Sharing Dy3Triangles Exhibiting Slow Magnetic Relaxation[J]. Inorg Chem,2012,51:5994-5996.
    [42] Xue S, Chen X H, Zhao L, et al. Two bulky-decorated triangular dysprosium aggregates conservingvortex-spin structure[J]. Inorg Chem,2012,51:13264-13270.
    [43] Lin S-Y, Xu G-F, Zhao L, et al. Observation of slow magnetic relaxation in triple-stranded lanthanidehelicates[J]. Dalton Trans,2011,40:8213–8217.
    [44] Guo Y-N, Chen X-H, Xue S, et al. Molecular Assembly and Magnetic Dynamics of Two Novel Dy6and Dy8Aggregates[J]. Inorg Chem,2012,51:4035-4042.
    [45] Guo Y-N, Chen X-H, Xue S, et al. Modulating Magnetic Dynamics of Three Dy2Complexes throughKeto–Enol Tautomerism of the o-Vanillin Picolinoylhydrazone Ligand[J]. Inorg Chem,2011,50:9705-9713.
    [46] Ke H, Gamez P, Zhao L, et al. Magnetic Properties of Dysprosium Cubanes Dictated by the M O MAngles of the [Dy4(μ3-OH)4] Core[J]. Inorg Chem,2010,49:7549-7557.
    [47] Ke H, Zhao L, Guo Y, et al. Syntheses, Structures, and Magnetic Analyses of a Family ofHeterometallic Hexanuclear [Ni4M2](M=Gd, Dy, Y) Compounds: Observation of Slow MagneticRelaxation in the DyIIIDerivative[J]. Inorg Chem,2012,51:2699-2705.
    [48] Li X-B, Zhang J-Y, Wang Y-Q, et al. Tricomponent Azide, Tetrazolate, and Carboxylate CobridgingMagnetic Systems: Ferromagnetic Coupling, Metamagnetism, and Single-Chain Magnetism[J]. ChemEur J,2011,17:13883-13891.
    [49] Yang C-I, Tsai Y-J, Hung S-P, et al. A manganese single-chain magnet exhibits a large magneticcoercivity[J]. Chem Commun,2010,46:5716-5718.
    [50] Liang L, Peng G, Li G, et al. In situ hydrothermal synthesis of dysprosium(III) single-moleculemagnet with lanthanide salt as catalyst[J]. Dalton Trans,2012,41:5816-5823.
    [51] Luo F, Song Y-M, Huang H-X, et al. Two New One-Dimensional Homospin Dy(III) CompoundsShowing Slow Magnetic Relaxation[J]. Aust J Chem,2012,65:1436-1442.
    [52] Tsurkan V, Hemberger J, Klemm M, et al. Ac susceptibility studies of ferromagnetic FeCr2S4singlecrystals[J]. J Appl Phys,2001,90:4639-4644.
    [53] Mydosh J A. Spin Glasses: An Experimental Introduction; Taylor&Francis: London,1993.
    [1] Aidoudi F H, Aldous D W, Goff R J, et al. An ionothermally prepared S=1/2vanadium oxyfluoridekagomé lattice[J]. Nat Chem,2011,3:801-806.
    [2] An J, Farha O K, Hupp J T, et al. Metal-adeninate vertices for the construction of an exceptionallyporous metal-organic framework[J]. Nat Commun,2012,3:604-609.
    [3] Zhu Y-Y, Cui C, Zhang Y-Q, et al. Zero-field slow magnetic relaxation from single Co(II) ion: atransition metal single-molecule magnet with high anisotropy barrier[J]. Chemical Science,2013,4:1802-1806.
    [4] Xing H, Yang W, Su T, et al. Ionothermal Synthesis of Extra-Large-Pore Open-Framework NickelPhosphite5H3O·[Ni8(HPO3)9Cl3]·1.5H2O: Magnetic Anisotropy of the Antiferromagnetism[J]. AngewChem Int Ed,2010,49:2328-2331.
    [5] Zhao L, Li J, Chen P, et al.2H3O·[Co8(HPO3)9(CH3OH)3]·2H2O: An Open-Framework CobaltPhosphite Containing Extra-Large18-Ring Channels[J]. Chem Mater,2007,20:17-19.
    [6] Zeng M-H, Feng X-L, Zhang W-X, et al. A robust microporous3D cobalt(II) coordination polymerwith new magnetically frustrated2D lattices: single-crystal transformation and guest modulation ofcooperative magnetic properties[J]. Dalton Trans,2006:5294-5303.
    [7] Dechambenoit P, Long J R. Microporous magnets[J]. Chem Soc Rev,2011,40:3249-3265.
    [8] Mandal S, Pati S K, Green M A, et al. The First One-Dimensional Iron Phosphite Phosphate,[FeIII(2,2′-bipyridine)(HPO3)(H2PO4)]: Synthesis, Structure, and Magnetic Properties[J]. Chemistry ofMaterials,2005,17:638-643.
    [9] Chen L, Bu X. Histidine-Controlled Two-Dimensional Assembly of Zinc Phosphite Four-RingUnits[J]. Chemistry of Materials,2006,18:1857-1860.
    [10] Liang J, Li J, Yu J, et al.[(C4H12N)2][Zn3(HPO3)4]: An Open-Framework Zinc Phosphite ContainingExtra-Large24-Ring Channels[J]. Angew Chem Int Ed,2006,45:2546-2548.
    [11] Natarajan S, Mandal S, Mahata P, et al. F R Orgmet Chem Pr Tri Sem,2006,118:525.
    [12] Jing X, Zhang L, Gong S, et al. Hydrothermal synthesis and characterization of two novelthree-dimensional vanadium phosphites:|(C10H10N2)|[VIV2O2(HPO3)2(H2PO3)2] and|(C4H16N3)|[(VIV2VIIIO2F2(HPO3)4[J]. Microporous and Mesoporous Materials,2008,116:101-107.
    [13] Ramaswamy P, Mandal S, Hegde N N, et al. Synthesis, Structure, and Magnetic Properties ofAmine-Templated Transition-Metal Phosphites[J]. Eur J Inorg Chem,2010,2010:1829-1838.
    [14] Liao J-H, Chen P-L, Hsu C-C. Syntheses and structure characterization of inorganic/organiccoordination polymers: Ag(dpa), Co(O3PH)(4,4′-bpy)(H2O), Zn(O3PH)(4,4′-bpy)0.5andMn[O2PH(C6H5)]2(4,4′-bpy)(dpa=2,2′-dipyridylamine;4,4′-bpy=4,4′-bipyridine)[J]. J Phys ChemSolids,2001,62:1629-1642.
    [15] Sheldrick G M. SHELXS97and SHELXL97, University of G ttingen, Germany,1997.
    [16] Li J-R, Kuppler R J, Zhou H-C. Selective gas adsorption and separation in metal-organicframeworks[J]. Chem Soc Rev,2009,38:1477-1504.
    [17] Spek A L. PLATON, A Multipurpose Crystallographic Tool (Utrecht University,2001),2001.
    [18] Spek A L. Single-crystal structure validation with the program PLATON[J]. J Appl Cryst,2003,36:7-13.
    [19] Zeng M-H, Zhang W-X, Sun X-Z, et al. Spin Canting and Metamagnetism in a3D HomometallicMolecular Material Constructed by Interpenetration of Two Kinds of Cobalt(II)-Coordination-PolymerSheets[J]. Angew Chem Int Ed,2005,44:3079-3082.
    [20] Brese N E, O'Keeffe M. Bond-valence parameters for solids[J]. Acta Crystallogr,Sect B,1991,47:192-197.
    [21] Tian J, Li B, Zhang X, et al. Three novel1D lanthanide-carboxylate polymeric complexes: syntheses,crystal structures and magnetic analyses[J]. Dalton Trans,2013,42:8504-8511.
    [22] Song J-L, Yi F-Y, Mao J-G. New Types of Luminescent Lanthanide Squarato-Aminophosphonates[J].Cryst Growth Des,2009,9:3273-3277.
    [23] Yang Y, Li N, Song H, et al. Metal Phosphite Containing24-Ring Channels with10-Ring Windows[J].Chem Mater,2007,19:1889-1891.
    [24] Dong Z, Yan Y, Li Y, et al. A new open-framework indium phosphate–phosphite containingintersecting extra-large16-ring channels[J]. Inorg Chem Commun,2011,14:727-730.
    [25] Kanoo P, Madhu C, Mostafa G, et al. A planar Cu2+(S=1/2) kagome network pillared by1,2-bis(4-pyridyl) ethane with interesting magnetic properties[J]. Dalton Trans,2009,0:5062-5064.
    [26] Kurmoo M. Magnetic metal-organic frameworks[J]. Chem Soc Rev,2009,38:1353-1379.
    [27] Han Y, Xu H, Liu Y, et al. Temperature-Dependent Capture of Water Molecules by Saddle-ShapedHexanuclear Carboxylate Cycloclusters in a (3,18)-Connected Metal–Organic Framework[J]. ChemEur J,2012,18:13954-13958.
    [28] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems—with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem.1985:603-619.
    [29] Sen R, Mal D, Brandao P, et al. Synthesis, characterization and observation of structural diversities ina series of transition metal based furan dicarboxylic acid systems[J]. CrystEngComm,2013,15:2113-2119.
    [30] Murrie M. Cobalt(II) single-molecule magnets[J]. Chem Soc Rev,2010,39:1986-1995.
    [31] Bi Y, Wang X-T, Liao W, et al. A {Co32} Nanosphere Supported by p-tert-Butylthiacalix[4]arene[J]. JAm Chem Soc,2009,131:11650-11651.
    [32] Tian J, Li W, Li B, et al. Decametallic CoII-Cluster-Based Microporous Magnetic Framework with aSemirigid Multicoordinating Ligand[J]. Chemistry–A European Journal,2013,19:5097-5103.
    [33] Huang F-P, Li H-Y, Yu Q, et al. Co(II)/Ni(II) coordination polymers incorporated with a bentconnector: crystal structures and magnetic properties[J]. CrystEngComm,2012,14:4756-4766.
    [34] Saines P J, Barton P T, Jain P, et al. Structures and magnetic properties of Mn and Coinorganic-organic frameworks with mixed linear dicarboxylate ligands[J]. CrystEngComm,2012,14:2711-2720.
    [35] Li W, Jia H-P, Ju Z-F, et al. A series of manganese-carboxylate coordination polymers exhibitingdiverse magnetic properties[J]. Dalton Trans,2008:5350-5357.
    [36] Feng M-L, Prosvirin A V, Mao J-G, et al. Syntheses, Structural Studies, and Magnetic Properties ofDivalent Cu and Co Selenites with Organic Constituents[J]. Chemistry–A European Journal,2006,12:8312-8323.
    [37] Lu Y-B, Wang M-S, Zhou W-W, et al. Novel3-D PtS-like Tetrazolate-Bridged Manganese(II)Complex Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition[J].Inorg Chem,2008,47:8935-8942.
    [38] Kim K, Chang M S, Korenblit S, et al. Quantum simulation of frustrated Ising spins with trappedions[J]. Nature,2010,465:590-593.
    [39] Zheng Y-Z, Tong M-L, Xue W, et al. A “Star” Antiferromagnet: A Polymeric Iron(III) Acetate ThatExhibits Both Spin Frustration and Long-Range Magnetic Ordering[J]. Angew Chem,2007,119:6188-6192; Angew Chem Int Ed,2007,46:6076-6080.
    [40] Zhang W-X, Xue W, Zheng Y-Z, et al. Two spin-competing manganese(II) coordination polymersexhibiting unusual multi-step magnetization jumps[J]. Chem Commun,2009:3804-3806.
    [41] Lee S H, Broholm C, Ratcliff W, et al. Emergent excitations in a geometrically frustrated magnet[J].Nature,2002,418:856-858.
    [42] Wang X-Y, Sevov S C. A Manganese Carboxylate with Geometrically Frustrated Magnetic Layers ofNovel Topology[J]. Chemistry of Materials,2007,19:3763-3766.
    [43] Yoshida H, Yamaura J-i, Isobe M, et al. Orbital switching in a frustrated magnet[J]. Nat Commun,2012,3:860-864.
    [44] Zheng Y-Z, Tong M-L, Zhang W-X, et al. Coexistence of spin frustration and long-range magneticordering in a triangular CoII3(μ3-OH)-based two-dimensional compound[J]. Chem Commun,2006,0:
    [1] Deng H, Grunder S, Cordova K E, et al. Large-Pore Apertures in a Series of Metal-OrganicFrameworks[J]. science,2012,336:1018-1023.
    [2] Zhang Y-B, Zhou H-L, Lin R-B, et al. Geometry analysis and systematic synthesis of highly porousisoreticular frameworks with a unique topology[J]. Nat Commun,2012,3:642-650.
    [3] Weng D-F, Wang Z-M, Gao S. Framework-structured weak ferromagnets[J]. Chem Soc Rev,2011,40:3157–3181.
    [4] Yang T, Bartoszewicz A, Ju J, et al. Microporous Aluminoborates with Large Channels: Structural andCatalytic Properties[J]. Angew Chem Int Ed,2011,50:12555-12558.
    [5] Li Q, Zhang W, Miljani O, et al. Docking in Metal-Organic Frameworks[J]. Science,2009,325:855-859.
    [6] Jimenez-Millan E, Giner-Casares J J, Martin-Romero M T, et al. Chiral Textures inside2D AchiralDomains[J]. J Am Chem Soc,2011,133:19028-19031.
    [7] Ferrando-Soria J, Serra-Crespo P, de Lange M, et al. Selective Gas and Vapor Sorption and MagneticSensing by an Isoreticular Mixed-Metal–Organic Framework[J]. J Am Chem Soc,2012,134:15301-15304.
    [8] Dechambenoit P, Long J R. Microporous magnets[J]. Chem Soc Rev,2011,40:3249–3265.
    [9] Chen Q, Lin J-B, Xue W, et al. A Porous Coordination Polymer Assembled from8-Connected{CoII3(OH)} Clusters and Isonicotinate: Multiple Active Metal Sites, Apical Ligand Substitution, H2Adsorption, and Magnetism[J]. Inorg Chem,2011,50:2321-2328.
    [10] Zeng M-H, Zou H-H, Hu S, et al. Unique (3,13)-Connected Coordination Framework Based onPentacobalt Clusters Constructed from the (3,12)-Connected Analogue and4,4′-Bipyridyl Spacer:Structural and Magnetic Aspects[J]. Cryst Growth Des,2009,9:4239-4242.
    [11] Hou L, Zhang W-X, Zhang J-P, et al. An octacobalt cluster based,(3,12)-connected, magnetic, porouscoordination polymer[J]. Chem Commun,2010,46:6311-6313.
    [12] Bi Y, Wang X-T, Liao W, et al. A {Co32} Nanosphere Supported by p-tert-Butylthiacalix[4]arene[J]. JAm Chem Soc,2009,131:11650-11651.
    [13] Cheng X N, Zhang W X, Lin Y Y, et al. A Dynamic Porous Magnet Exhibiting ReversibleGuest-Induced Magnetic Behavior Modulation[J]. Adv Mater,2007,19:1494-1498.
    [14] Shimizu G K H, Vaidhyanathan R, Taylor J M. Phosphonate and sulfonate metal organicframeworks[J]. Chem Soc Rev,2009,38:1430-1449.
    [15] Lisnard L, Tuna F, Candini A, et al. Supertetrahedral and Bi-supertetrahedral Cages: Synthesis,Structures, and Magnetic Properties of Deca-and Enneadecametallic Cobalt(II) Clusters[J]. AngewChem Int Ed,2008,47:9695-9699.
    [16] Brechin E K. Using tripodal alcohols to build high-spin molecules and single-molecule magnets[J].Chem Commun,2005:5141-5153.
    [17] Hu L-L, Jia Z-Q, Tao J, et al. Synthesis, crystal structure and magnetic properties of a mixed-valencepentanuclear cobalt complex[J]. Dalton Trans,2008:6113-6116.
    [18] Batchelor L J, Shaw R, Markey S J, et al. An All-Vanadium(III) Hexametalate Lindqvist Structure andIts Chromium and Iron Analogues[J]. Chem Eur J,2010,16:5554-5557.
    [19] Rajaraman G, Murugesu M, Sa udo E C, et al. A Family of Manganese Rods: Syntheses, Structures,and Magnetic Properties[J]. J Am Chem Soc,2004,126:15445-15457.
    [20] Manoli M, Johnstone R D, Parsons S, et al. A ferromagnetic mixed-valent Mn supertetrahedron:towards low-temperature magnetic refrigeration with molecular clusters[J]. Angew Chem Int Ed,2007,46:4456-4460.
    [21] Kurmoo M. Magnetic metal-organic frameworks[J]. Chem Soc Rev,2009,38:1353-1379.
    [22] Koval C A, Pravata R L A, Reidsema C M. Steric effects in electron-transfer reactions.1. Trends inhomogeneous rate constants for reactions between members of structurally related redox series[J].Inorg Chem,1984,23:545-553.
    [23] Sheldrick G M. SHELXS97and SHELXL97, University of G ttingen, Germany,1997.
    [24] Spek A L. PLATON, A Multipurpose Crystallographic Tool (Utrecht University,2001),2001.
    [25] Spek A L. Single-crystal structure validation with the program PLATON[J]. J Appl Cryst,2003,36:7-13.
    [26] Gupta A, Chempath S, Sanborn M J, et al. Object-oriented Programming Paradigms for MolecularModeling[J]. Mol Simul,2003,29:29-46.
    [27] Materials Studio; Accelrys Inc: San Diego, CA,2005.
    [28] Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecularmechanics and molecular dynamics simulations[J]. J Am Chem Soc,1992,114:10024-10035.
    [29] Shaw R, Tidmarsh I S, Laye R H, et al. Supertetrahedral decametallic Ni(II) clusters directed byμ6-tris-alkoxides[J]. Chem Commun,2004:1418-1419.
    [30] Brese N E, O'Keeffe M. Bond-valence parameters for solids[J]. Acta Crystallogr,Sect B,1991,47:192-197.
    [31] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems—with special reference to the determination of surface area and porosity[J]. Pure Appl Chem.1985:603–619.
    [32] Bloch E D, Queen W L, Krishna R, et al. Hydrocarbon Separations in a Metal-Organic Frameworkwith Open Iron(II) Coordination Sites[J]. science,2012,335:1606-1610.
    [33] Mu B, Li F, Huang Y, et al. Breathing effects of CO2adsorption on a flexible3D lanthanidemetal-organic framework[J]. J Mater Chem,2012,22:10172-10178.
    [34] Lin J-B, Zhang J-P, Chen X-M. Nonclassical Active Site for Enhanced Gas Sorption in PorousCoordination Polymer[J]. J Am Chem Soc,2010,132:6654-6656.
    [35] Qin J-S, Du D-Y, Li W-L, et al. N-rich zeolite-like metal-organic framework with sodalite topology:high CO2uptake, selective gas adsorption and efficient drug delivery[J]. Chem Sci,2012,3:2114-2118.
    [36] Duan Z M, Zhang Y, Zhang B, et al. Crystal-to-Crystal Transformation from Antiferromagnetic Chainsinto a Ferromagnetic Diamondoid Framework[J]. J Am Chem Soc,2009,131:6934-6935.
    [37] Hu J-S, Yao X-Q, Zhang M-D, et al. Syntheses, Structures, and Characteristics of Four NewMetal–Organic Frameworks Based on Flexible Tetrapyridines and Aromatic Polycarboxylate Acids[J].Cryst Growth Des,2012,12:3426-3435.
    [38] Luo F, Che Y-X, Zheng J-M. Trinuclear Cobalt Based Porous Coordination Polymers Showing UniqueTopological and Magnetic Variety upon Different Dicarboxylate-like Ligands[J]. Cryst Growth Des,2008,9:1066-1071.
    [39] Zhang X-M, Hao Z-M, Zhang W-X, et al. Dehydration-Induced Conversion from a Single-ChainMagnet into a Metamagnet in a Homometallic Nanoporous Metal–Organic Framework[J]. AngewChem Int Ed,2007,46:3456-3459.
    [40] Li B, Zhang X Y, Tian J M, et al. Two-step relaxation in the3D spin-canted manganese phosphate withhigh P-O-Mn connectivity[J]. Chem Commun,2011,47:1737-1739.
    [41] Yang M, Yu J, Shi L, et al. Synthesis, Structure, and Magnetic Property of a New Open-FrameworkManganese Borophosphate,[NH4]4[Mn9B2(OH)2(HPO4)4(PO4)6][J]. Chem Mater,2005,18:476-481.
    [42] Cheng X-N, Zhang W-X, Chen X-M. Single Crystal-to-Single Crystal Transformation fromFerromagnetic Discrete Molecules to a Spin-Canting Antiferromagnetic Layer[J]. J Am Chem Soc,2007,129:15738-15739.
    [43] Mahata P, Natarajan S, Panissod P, et al. Quasi-2D XY Magnetic Properties and Slow Relaxation in aBody Centered Metal Organic Network of [Co4] Clusters[J]. J Am Chem Soc,2009,131:10140-10150.
    [44] Ishikawa R, Katoh K, Breedlove B K, et al. MnIII(tetra-biphenyl-porphyrin)–TCNE Single-ChainMagnet via Suppression of the Interchain Interactions[J]. Inorg Chem,2012,51:9123-9131.
    [45] Huang F-P, Tian J-L, Li D-D, et al. Spin Canting and Slow Relaxation in a3D PillaredNickel Organic Framework[J]. Inorg Chem,2010,49:2525-2529.
    [46] Weng D-F, Wang Z-M, Gao S. Framework-structured weak ferromagnets[J]. Chem Soc Rev,2011,40:3157-3181.
    [47] Liu X-T, Wang X-Y, Zhang W-X, et al. Weak Ferromagnetism and Dynamic Magnetic Behavior in aSingle End-to-End Azide-Bridged Nickel(II) Chain[J]. Adv Mater,2006,18:2852-2856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700