用户名: 密码: 验证码:
活细胞实时动态观测与量化分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活细胞是生命体基本结构单位和功能单位,因此对单个活细胞的实时荧光观测对生命科学有重要意义,而深入量化分析实验数据有助于揭示生命科学中的信息。本论文改进了多功能高灵敏实时荧光显微成像系统及其图像处理方法,使其适合活细胞长时间实时荧光成像,并将该系统应用于小鼠胸腺细胞凋亡早期生物事件研究和中药抑制海马神经元网络自发同步钙振荡研究中。
     首先,设计搭建活细胞培养小室,改进多功能高灵敏实时荧光显微成像系统相关图像处理方法,使系统在实现实时荧光观测、全内反射荧光成像、双通道同时成像基础上更适合活细胞长时间实时荧光观测和数据分析。
     其次,在亚硝基谷胱甘肽(GSNO)诱导小鼠胸腺细胞凋亡早期研究中,不仅观测到GSNO作用胸腺细胞后胞内游离钙离子浓度([Ca2+]i)迅速增加并达到一个平台、线粒体跨膜电位(ΔΨm)下降、细胞内溶酶体pH降低及凋亡细胞胞质酸化。还使用量化分析方法分析大量单个细胞实验数据,计算拟合曲线拐点T和半最大值t1/2两个特征参数。发现[Ca2+]i、ΔΨm、溶酶体pH曲线的拐点(分别记为TCa、Tmito和Ti)数值上满足TCa     最后,研究了不同中药配伍对海马神经元网络自发同步钙振荡的抑制作用,观测了中药五味子甲素、乙素不同配伍对海马神经元网络自发同步钙振荡抑制情况和胡椒碱、甲素不同配伍对自发同步钙振荡抑制情况。通过对抑制频率和抑制振幅的量化分析发现,不同配伍对频率和振幅抑制作用不同,并且对频率抑制作用与对振幅抑制作用不相关。根据神经细胞钙离子浓度变化来源建立神经细胞钙离子振荡动力学模型,并对模型中7个参数对钙振荡频率和振幅的影响进行了分析。
     本文的研究将荧光显微成像技术应用于具体活细胞荧光观测和量化分析中,并将为活细胞生命科学提供有利的技术和方法。
Living cells are the basic structural units and functional units of organisms.Therefore, real-time dynamic observation in single living cells is of great importance inlife sciences and quantitative analysis the experiment data in depth is helpful to revealthe information of life sciences. In this thesis, a real-time multifunctional fluorescencemicroscopic imaging system as well as relevant image processing methods is improvedfor long term living cells observation. The studies of early apoptosis on thymocytes andthe spontaneous and synchronous intracellular Ca2+oscillations of cultured hippocampalneuronal networks are carried out in the system.
     First, the real-time multifunctional fluorescence microscopic imaging systembecame more suitable for long term living cells observation after the installation ofincubator and the development of relevant image processing methods.
     Secondly, a series of changes in thymocytes early apoptosis induced byS-nitrosoglutathione (GSNO) were studied. During the early apoptosis, the increase ofintracellular free calcium ion concentration ([Ca2+]i), the loss of mitochondrialmembrane potential (ΔΨm), the decrease of lysosomal pH, cytoplasmic acidification ofapoptosis cells were detected. The kinetic features were quantitatively analyzed andcompared by fitting the experiment data. The mathematical parameters, inflection pointand half-max effect point were proposed to analyze the fitting curve. The resultsrevealed that the inflection point of lysosomal pH always appeared prior to that of ΔΨmand posterior to that of [Ca2+]iin a certain GSNO concentration induced. Half-maxeffect point was also displayed the similar results. Such quantitative analyses ofreal-time observations are useful for interpreting the sequence of the biological eventsoperating in GSNO-induced thymocyte apoptosis and provide important clues forapoptotic signaling pathway studies.
     Finally, the modulation of different compatibilities of Chinese herbal medicine onsynchronized Ca2+oscillations in cultured hippocampal neuronal networks were carriedout. We investigated and quantitative analyzed the modulation effects of lowconcentration and different compatibilities on synchronized Ca2+oscillations of piperineand deoxyschizandrin, deoxyschizandrin and schisandrin B in cultured hippocampalneuronal networks. The results suggest that different compatibilities have different inhibition on the synchronized Ca2+oscillations. The inhibitory effect on the frequencyis irrelevantly to that on the amplitude. A calcium oscillation model of nerve cells wassetup and the effects of its seven parameters were analyzed.
     This thesis is a specific application of fluorescence microscopic imagingtechniques in living cells and quantitatively analyses and supposed to provideadvantageous techniques and methods to studies on living cells.
引文
[1]中国科学院生命科学与生物技术局,中国科学院上海生命科学信息中心编写.生命科学与生物技术发展报告.北京:科学出版社,2006.
    [2]刘文龙,等.简明生物物理学.北京:高等教育出版社主编,1994.
    [3]林克椿,等.生物物理学.武汉:华中师范大学出版社,1999.
    [4]张辉,钟博,邓玉福.生命单元表面行为的物理表征.北京:科学出版社,2006.
    [5] Chen L, Chu W, Xu Y, et al. Time-series investigation of fused vesicles in microvesselendothelial cells with atomic force microscopy. Microsc Res Techniq,2010,73:152-159.
    [6] Zhao Y, Zhang Y, Zhou W, et al. Characteristics of calcium signaling in astrocytes induced byphotostimulation with femtosecond laser. J Biomed Opt,2010,15(3):035001.
    [7] Liu X, Lv X, Zeng S, et al. Noncontact and nondestructive identification of neural circuitswith a femtosecond laser. Appl Phys Lett,2009,94,061113.
    [8]陈宜张,林其谁等.生命科学中的单分子行为及细胞内实时检测.北京:科学出版社,2006.
    [9]高体玉,冯军,慈云祥.单个活细胞分析的研究进展.科学通报,1998,43(7):673-681.
    [10] Roy S S, Hajnóczky G. Calcium, mitochondria and apoptosis studied by fluorescencemeasurements. Methods,2008,46(3):213-223.
    [11] Bouchier-Hayes L, Mu oz-Pinedob C, Connella S, Green D R. Measuring apoptosis at thesingle cell level. Methods,2008,44(3):222-228.
    [12] Takahashi A, Camacho P, Lechleiter J D, at el. Measurement of intracellular calcium. PhysiolRev,1999,79(4):1089-1125.
    [13] Kindmark H, K hler M, Brown G, et al. Glucose-induced oscillations in cytoplasmic freeCa2+concentration precede oscillations in mitochondrial membrane potential in thepancreatic β-cell. J Biol Chem,2001,276(37):34530-34536.
    [14] Wang G, Stender A S, Sun W, et al. Optical imaging of non-fluorescent nanoparticle probes inlive cells. Analyst,2010,135,215-221.
    [15]刘爱平,王琦琛等.细胞生物学荧光技术原理和应用.合肥:中国科学技术大学出版社,2007.
    [16]肖松山,范世福,李小兵,江丕栋.单个活细胞分析技术进展.细胞生物学杂志,2002,24(3):158-163.
    [17]黄晓峰,张远强,张英起,等.荧光探针技术.北京:人民军医出版社,2004.
    [18] Bentolila L A, Weiss S. Single-step multicolor fluorescence in situ hybridization usingsemiconductor quantum dot–DNA conjugates. Cell Biochem Biophys,2006,45(1):59-70.
    [19] Comiskey M, Warner C M. Spatio-temporal localization of membrane lipid rafts in mouseoocytes and cleaving preimplantation embryos. Dev Biol,2007,303:727-739.
    [20] Yezhelyev M, Yacoub R, Regan R. Inorganic nanoparticles for predictive oncology ofbreast cancer. Nanomedicine,2009,4(1):83-103.
    [21] Ram S, Prabhat P, Chao J, Ward E S, Ober R J. High accuracy3D quantum dot tracking withmultifocal plane microscopy for the study of fast intracellular dynamics in live cell. BiophysJ,2008,95:6025-6043.
    [22] Li J Y, Pu M T, et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b inthe methylation of Oct4and Nanog. Mol Cell Biol,2007,27(24):8748-8759.
    [23] He K, Luo W, Zhang Y, et al. Intercellular transportation of quantum dots mediated bymembrane nanotubes. ACS Nano,2010,4(6):3015-3022.
    [24] Zhang C, Hu J. Single quantum dot-based nanosensor for multiple DNA detection. AnalChem,2010,82:1921-1927.
    [25] Kim B Y S, Jiang W, Oreopoulos J, et al. Biodegradable quantum dot nanocomposites enablelive cell labeling and imaging of cytoplasmic targets. Nano Lett,2008,8(11):3887-3892.
    [26] Weber P, Wagner M, Schneckenburger H. Fluorescence imaging of membrane dynamics inliving cells. J Biomed Opt,2010,15(4):046017.
    [27] Durig U, Pohl D W, Rohner F. Near-field optical-scanning microscopy. J Appl Phys,1986,59(10):3318-3327.
    [28] Betzig E, Chichester R J. Single molecules observed by near-field scanning optical scanningoptical microscopy. Science,1993,262(5138):1422-1425.
    [29] Ye F, Yang S, Xing D. Three-dimensional photoacoustic imaging system in line confocalmode for breast cancer detection. Appl Phys Lett,2010,97:213702.
    [30] Masters B R, So P T C. Multi-photon excitation microscopy and confocal microscopyimaging of in vivo human skin: a comparison. Microsc Microanal,1999,5(4):282-289.
    [31] Zhou W, Ge W, Zeng S, Duan S, et al. Identification and two-photon imaging ofoligodendrocyte in CA1region of hippocampal slices. Biochem Bioph Res Co,2007,352:598-602.
    [32]王琛,王桂英,徐至展.全内反射荧光显微术.物理学进展,2002,22(4):406-415.
    [33]王琛,袁景和,王桂英,徐至展.入射光的偏振特性对全内反射荧光显微术中荧光激发的影响.物理学报,2003,52(12):3014-3019.
    [34]何化,任吉存.全内反射荧光成像技术及其在单分子检测中的研究进展.分析测试学报,2007,26(3):445-449.
    [35] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic,2001,2(11):764-774.
    [36] Truong K, Ikura M. The use of FRET imaging microscopy to detect protein-proteininteractions and protein conformational changes in vivo. Curr Opin Struc Biol,2001,11(5):573-578.
    [37] McKinney S A, Joo C, Ha T. Analysis of single-molecule FRET trajectories using hiddenmarkov modeling. Biophys J,2006,91:1941-1951.
    [38] Wo niaka A K, Schr derb G F, Grubmüllerb H, Seidel C, Oesterhelt F. Single-moleculeFRET measures bends and kinks in DNA. PNAS,2008,105(47):18337-18342.
    [39] Myong S, Bruno M M, Pyle A M, Ha T. Spring-loaded mechanism of DNA unwinding byhepatitis C Virus NS3Helicase. Science,2007,317(27):513-516.
    [40] Gupta S, Bhawna, Goswami P, Agarwal A, Pradhan A. Experimental and theoreticalinvestigation of fluorescence photobleaching and recovery in human breast tissue and tissuephantoms. Appl Optics,2004,43(5):1044-1052.
    [41] Shimi T, Koujin T, Segura-Totten M, Wilson K L, Haraguchi T, Hiraoka Y. Dynamicinteraction between BAF and emerin revealed by FRAP, FLIP, and FRET analyses in livingHeLa cells. J Struct Biol,2004,147(1):31-41.
    [42] Zeno F P.‘True’ single-molecule molecule observations by fluorescence correlationspectroscopy and two-color fluorescence cross-correlation spectroscopy. Exp Mol Pathol,2007,82(2):147-155.
    [43] Lidke D S, Wilson B S. Caught in the act: quantifying protein behaviour in living cells.Trends Cell Biol.2009,19(11):566-574.
    [44]吕志坚,陆敬泽,吴雅琼,陈良怡.几种超分辨率荧光显微技术的原理和近期进展,生物化学与生物物理进展,2009,36(12):1626-1634.
    [45] Sisan D R., Arevalo R, Graves C, et al. Spatially resolved fluorescence correlationspectroscopy using a spinning disk confocal microscope. Biophys J,2006,91:4241-4252.
    [46] Gr f R, Rietdorf J, Zimmermann T. Live cell spinning disk microscopy. MicroscopyTechniques,2005,95:57-75.
    [47] Nakano A. Spinning-disk confocal microscopy-a cutting-edge tool for imaging of membranetraffic. Cell Struct Funct,2002,27:349-355.
    [48] Thompson N L, Lagerholm B C. Total internal reflection fluorescence: applications incellular biophysics. Curr Opin Biotech,1997,8(1):58-64.
    [49]林丹樱,马万云.活细胞内的单分子荧光成像方法.物理,2007,36(10):783-790.
    [50] Meller K, Theiss C. Atomic force microscopy and confocal laser scanning microscopy on thecytoskeleton of permeabilised and embedded cells. Ultramicroscopy,2006,106(4-5):320-325.
    [51] Micic M, Hu D H, Suh Y D, Newton G, Romine M, Lu H P. Correlated atomic forcemicroscopy and fluorescence lifetime imaging of live bacterial cells. Colloid Surface B,2004,34(4):205-212.
    [52] Patterson G H, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling ofproteins and cells. Science,2002,297(5588):1873-1877.
    [53] Thompson R E, Larson D R, Webb W W. Precise nanometer localization analysis forindividual fluorescent probes. Biophys J,2002,82(5):2775-2783.
    [54] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins atnanometer resolution. Science,2006,313(5793):1642-1645.
    [55] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic opticalreconstruction microscopy (STORM). Nat Methods,2006,3(10):793-795.
    [56] Bates M, Blosser T R, Zhuang X. Short-range spectroscopic ruler based on a single-moleculeoptical switch. Phys Rev Lett,2005,94:108101.
    [57] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging withphoto-switchable fluorescent probes. Science,2007,317(5845):1749-1753.
    [58] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolutionbarrier broken by stimulated emission. PNAS,2000,97(15):8206-8210.
    [59] Gregory S. Harms, Laurent C, Piet H. M. L, et al. Single-molecule imaging of L-Type Ca2+Channels in Live Cells. Biophys J,2001,81:2639-2646.
    [60] Wheeler G, Kevin M. T. Widefield microscopy for live imaging of lipid domains andmembrane dynamics. BBA-Biomembranes,2011,1808:634-641.
    [61] Gai H, Stayton I, Liu X, Lin B, Ma Y. Visualizing chemical interactions in life sciences withwide-field fluorescence microscopy towards the single-molecule level. TrAC Trends inAnalytical Chemistry,2007,26(10):980-992.
    [62] Slepchenko B M, Schaff J C, Macara I, Loew L M. Quantitative cell biology with the virtualcell. Trends Cell Biol,2003,13(11):570-576.
    [63]贝时璋.对我国生物物理学发展的几点希望.1980年生物物理学术会议文集,北京:科学出版社,1982.
    [64]贝时璋.在生物物理研究中值得注意的几个问题.生物物理学报,1989,5(2):213.
    [65]周季维.生物统计学入门.昆明:云南人民出版社,1985.
    [66] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its applicationto conduction and excitation in nerve. J Physiol, I952, I I7:500-544.
    [67] Bustamante J, Libero E D. Kinetic analysis of thapsigargin-induced thymocyte apoptosis.Free Radical Bio Med,2004,37(9):1490-1498.
    [68] Bowser D N, Khakh B S. Two forms of single-vesicle astrocyte exocytosis imaged with totalinternal reflection fluorescence microscopy. PNAS,2007,104(1):4212-4217.
    [69] Wang Y M, Austin R H, Cox E C. Single molecule measurements of repressor protein1Ddiffusion on DNA. Phys Rev Lett,2006,97(4):048302.
    [70] Song W, Bossy B, Martin O J, et al. Assessing mitochondrial morphology and dynamicsusing fluorescence wide-field microscopy and3D image processing. Methods,2008,46:295-303.
    [71] Wang L, Chen T, Qu J, et al. Quantitative analysis of caspase-3activation by fittingfluorescence emission spectra in living cells. Micron,2009,40:811-820.
    [72] Distelmaier F, Koopman W J H, Testa E R, et al. Life cell quantification of mitochondrialmembrane potential at the single organelle level. Cytom Part A,2008,73A:129-138.
    [73] Jares-Erijman E A, Jovin T M. Imaging molecular interactions in living cells by FRETmicroscopy. Curr Opin Chem Biol,2006,10:409-416.
    [74] Krouwels I M, Wiesmeijer K, Abraham T E, et al. A glue for heterochromatin maintenance:stable SUV39H1binding to heterochromatin is reinforced by the SET domain. J Cell Biol,2005,170(4):537-549.
    [75]吴向平,李届悦,许迎科,许科帝,郑筱祥. TIRF显微镜下GLUT4囊泡的三维运动分析.中国医疗器械杂志,2008,32(1):14-18.
    [76] Schuh M, Ellenberg J. Self-organization of MTOCs replaces centrosome function duringacentrosomal spindle assembly in live mouse oocytes. Cell,2007,130:484-498.
    [77]林丹樱.单个活细胞多功能高灵敏实时荧光显微成像研究.博士学位论文.北京:清华大学,2008:21-45.
    [78] Berney C, Danuser G, FRET or No FRET: A quantitative comparison. Biophys J,2003,84:3992-4010.
    [79] Zhang H, Berg J S, Li Z, et al. Myosin-X provides a motor-based link between integrins andthe cytoskeleton. Nat Cell Biol,2004,6(6):523-531.
    [80] Susan E. Apoptosis: a review of programmed cell death. Toxicol Pathol (2007)35:495-516.
    [81] Chang M K, Binder C J, Miller Y I, Subbanagounder G, Silverman G J, Berliner J A,Witztum J L. Apoptotic cells with oxidation-specific epitopes are immunogenic andproinflammatory. J Exp Med,2004,200:1359-1370.
    [82] Smaili S S, Hsu Y T, Carvalho A C P, Rosenstock T R, Sharpe J C, Youle R J. Mitochondria,calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res,2003,36:183-190.
    [83] Duan S J,Wan L, Fu W J, Pan H, Ding Q, Chen C, Han P, Zhu X, Du L, Liu H, Chen Y, YanX, Deng M, Qian M. Nonlinear cooperation of p53-ING1-induced bax expression andprotein Snitrosylation in GSNO-induced thymocyte apoptosis: a quantitative approach withcross-platform validation. Apoptosis,2009,14:236-245.
    [84] Malcomson R D G, Oram S H, Harrison D J. The importance of apoptosis: is it real orimaginary? Biologicals,1996,24:295-299.
    [85] Sandau K, Brüne B. The dual role of S-nitrosoglutathione (GSNO) during thymocyteapoptosis. Cell Signal,1996,8:173-177.
    [86] Lin D Y, Ma W Y, Duan S J, Zhang Y, Du L Y. Real-time imaging of viable-apoptotic switchin GSNO-induced mouse thymocyte apoptosis. Apoptosis,2006,11:1289-1298.
    [87] Clapham D E. Calcium Signaling. Cell,2007,131:1047-1058.
    [88] Bustamante J, Di Libero E, Fernandez-Cobo M, Monti N, Cadenas E, Boveris A. Kineticanalysis of thapsigargininduced thymocyte apoptosis. Free Radic Bio Med,2004,37:1490-1498.
    [89] Pu Y, Luo K Q, Chang D C. A Ca2+signal is found upstream of cytochrome c release duringapoptosis in HeLa cell. Biochem Biophys Res Co,2002,299:762-769.
    [90] Jeong S Y, Seol D W. The role of mitochondria in apoptosis. BMB Rep,2008,41(1):11-22.
    [91] Pérez-Rodríguez R, Fuentes M P, et al. Mechanisms of nitric oxide-induced apoptosis inbovine chromaffin cells: role of mitochondria and apoptotic proteins. J Neurosci Res,2007,85:2224-2238.
    [92] Guo J, Pu Y M, Chang D C. Calcium signaling in apoptosis. Acta Biophys Sin,2005,21:1-18.
    [93] Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP3-linked mitochondrialcalcium signals. EMBO J,1999,18:6349-6361.
    [94] Foster K A, Galeffi F, Gerich F J, Turner D A, Müller M. Optical and pharmacological toolsto investigate the role of mitochondria during oxidative stress and neurodegeneration. ProgNeurobiol,2006,79:136-171.
    [95] Kurz T, Terman A, Gustafsson B, Brunk U T. Lysosomes in iron metabolism, ageing andapoptosis. Histochem Cell Biol,2008,129:389-406.
    [96] Lagadic-Gossmann, Huc L, Lecureur V. Alterations of intracellular pH homeostasis inapoptosis: origins and roles. Cell Death Differ,2004,11:953–961.
    [97] Lei H Y, Tang M J, Tsao N. Intracellular alkalinization in dexamethasone-induced thymocyteapoptosis. Apoptosis,1997,2:304-312.
    [98] Boyle K M, Irwin J P, Humes B R, et al. Apoptosis in C3H-10T1/2cells: roles of intracellularpH, protein kinase C, and the Na+/H+antiporter. J Cell Biochem,1997,67:231-240.
    [99] McConkey D J, Orrenius Sten. Signal Transduction Pathways in Apoptosis. Stem Cells,1996,14:619-631.
    [100] Wagstaff K M, Dias M M, Alvisi G, Jans D. A quantitative analysis of protein-proteininteractions by native page/fluorimaging. J Fluoresc,2005,15:469-473.
    [101] Li Y, Li M, Xu T. Quantitative time-resolved fluorescence spectrum of the cortical sarcomaand the adjacent normal tissue. J Fluoresc,2007,17:643-648.
    [102] Pittroff W, Dahm F, Blanc F, Keisler D, Cartwright T C. Onset of puberty and the inflectionpoint of the growth curve in sheep-Brody’s Law revisited. J Agric Sci,2008,146:239-250.
    [103] Heijden G W A M, Vossepoel A M, Polder G. Measuring onion cultivars with image analysisusing inflection points. Euphytica,1996,87:19-31.
    [104] Smith J R, Hershkowitz N, Coakley P. Inflection-point method of interpreting emissive probecharateristics. Rev Sci Instrum,1979,50:210-218.
    [105] Diwu Z, Chen C, Zhang C, Klaubert D H, Haugland R P, A novel acidotropic pH indicatorand its potential application in labeling acidic organelles of live cells. Chem Biol,1999,6:411-418.
    [106] Bankers-Fulbright J L, Kephart G M, Bartemes K R, Kita H, O’Grady S M.Platelet-activating factor stimulates cytoplasmic alkalinization and granule acidification inhuman eosinophils. J Cell Sci,2004,117:5749-5757.
    [107] Ishaque A, Al-Rubeai M. Use of intracellular pH and annexin-V flow cytometric assays tomonitor apoptosis and its suppression by bcl-2over-expression in hybridoma cell culture. JImmunol Methods,1998,221:43-57.
    [108] Matsuyama S, Llopis J, Deveraux Q L, Tsien R Y, Reed J C. Changes in intramitochondrialand cytosolic pH: early events that modulate caspase activation during apoptosis. Nat CellBiol,2000,2:318-325.
    [109] Dai H Y, Tsao N, Leung W C, Lei H Y, Increase of intracellular pH in p53-dependentapoptosis of thymocytes induced by gamma radiation. Radiat Res,1998,150:183-189.
    [110]段绍瑾,顾丽贞,张春阳,等.莱菔籽芥子碱延缓GSNO诱导胸腺细胞凋亡的作用.2006第六届中国药学会学术年会论文集,2006:5175-5198.
    [111]林丹樱,刘晓晨,马万云.利用三通道实时荧光成像方法研究单个活细胞凋亡与胞浆pH值变化的关系.光谱学与光谱分析.2009,29(6):1581-1585.
    [112]罗健东,郑平香,陈修.细胞内pH与细胞凋亡.生命科学.1997,9(5):218-221.
    [113] Verderio C, Coco S, Pravettoni E, et al.1999. Synaptogenesis in hippocampal cultures. CellMol Life Sci,55:1448-1462.
    [114] Pattanaik S, Hota D, Prabhakar S, Kharbanda P, Pandhi P. Effect of piperine on thesteady-state pharmacokinetics of phenytoin in patients with epilepsy. Phytother Res,2006,20:683-686.
    [115] Pattanaik S, Hota D, Prabhakar S, Kharbanda P, Pandhi P. Pharmacokinetic interaction ofsingle dose of piperine with steady-state carbamazepine in epilepsy patients. Phytother Res,2009,23:1281-1286.
    [116] Fu M, Sun Z, Zuo H. Neuroprotective effect of piperine on primarily cultured hippocampalneurons. Biol Pharm Bull,2010,33(4):598-603.
    [117] Panossian A, Wikmana G. Pharmacology of schisandra chinensis bail.: an overview ofRussian research and uses in medicine. J Ethnopharmacol,2008,118:183-212.
    [118]付敏,孙朝晖,左焕琮,谢佐平.五味子乙素抑制海马神经元网络自发同步钙振荡.西华大学学报(自然科学版),2009,128(2):60-62.
    [119] Fu M, Sun Z H, Zong M, He X P, Zuo H C, Xie Z P. Deoxyschisandrin modulatessynchronized Ca2+oscillations and spontaneous synaptic transmission of culturedhippocampal neurons. Acta Pharmacol Sin,2008,29:891-898.
    [120]孙建英,刘学伍,迟兆富.癫痫发作后神经元的损伤:凋亡与坏死.中国临床康复,2005,9(41):187-189.
    [121] Woo W S, Lee E B, Shin K H. Central nervous depressant activity of piperine. Arch PharmRes,1979,2:121-125.
    [122] Huang T, Shen P, Shen Y. Preparative separation and purification of deoxyschisandrin andγ-schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-currentchromatography. J Chromatogr A,2005,1066:239-242.
    [123] Ko K M, Chiu P Y. Structural determinants of schisandrin B which enhance mitochondrialfunctional ability and glutatione status as well as heat shock protein expression in rat heartsand H9c2cells. Mol Cell Biochem,2005,276:227-234.
    [124] Liu Z J, Geng L, Li R X, He X P, Zheng J, Xie Z P. Frequency modulation of synchronizedCa2+spikes in cultured hippocampal networks through G-protein-coupled receptors. JNeurosci,2003,23(10):4156-4163.
    [125]刘桂丰,牛遇达,杨传平,于影,侯英杰,王洋.不同产地五味子果实中甲素和乙素的差异性,生态学杂志,2006,25(11):1421-1424.
    [126] Chay T R. Chaos in a three-variable model of an excitable cell. Physica D,1985,16:233-242.
    [127]寿天德.神经生物学.北京:高等教育出版社,2001:58-59.
    [128] Chay T R. Effects of extracellular calcium on electrical bursting and intracellular and luminalcalcium oscillations in insulin secreting pancreatic β-cells. Biophys J,1997,73:1673-1688.
    [129]付敏.胡椒碱/五味子甲素对海马神经元网络抑制作用研究.博士学位论文.北京:清华大学,2009:32-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700