用户名: 密码: 验证码:
农用车永磁发电机关键技术研究及绿色属性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以农用车永磁发电机的关键技术研究与绿色属性评价为研究主题,对农用车永磁发电机研发和推广过程中所涉及的技术问题和绿色评价、生命周期评价、矛盾问题处理等管理问题进行了详细的研究,形成了一个较为完整的农用车永磁发电机设计体系。其中,对发电机电磁设计的研究主要包括永磁材料的特性研究,永磁材料对发电机性能的影响研究,转子、定子结构的改进设计,电磁设计与计算,性能参数对发电机外特性的影响,结构参数对性能的影响等等;对发电机稳压整流电路的研究包括永磁发电机电压控制现状分析,四相半波整流原理分析(可控整流电路设计、电压平均值计算、电压脉动系数计算、电流平均值计算等等),发电机自稳压原理分析,稳压电路设计,整流稳压系统的仿真及仿真参数的变化对发电机性能的影响等等;对发电机的绿色设计与评价包括绿色产品基本概念及特征的界定,发电机绿色评价指标的设计,绿色评价模型方法研究,发电机绿色优化分析等等;对发电机生命周期评价与分析主要包括生命周期评价的技术框架的建立,农用车发电机生命周期框架分析(材料选择、结构设计、生命周期评价框架的建构),发电机生命周期评价的技术步骤,生命周期评价的缺陷与不足,以及发电机生命周期评价的指导作用等等;对农用车发电机研发体系中的不相容问题研究主要包括不相容问题的辨识(问题的提出、人才问题辨识、资金问题辨识、其他问题辨识),不相容问题的可拓分析(目标的界定、条件的界定、问题的界定、相容度判断、可拓策略的生成、相容度二次判断等等)。通过对以上内容的研究,取得了一系列创新性成果,有利于促进农用车永磁发电机的技术创新并使之更好地服务于“三农”。
Generator is the necessity and main power supplier on agricultural vehicle, which acts very provical function and impartible composeing part. Currently, the ordinary usage of generator in agricultural vehicle is silicon rectification and alternator generator, which produce maganent field by winding electro-magnetic. In this process, the power which goes through the electro-magnetic unit can not transfer into magnet for producing electorcity. Most of power is consumed by heat which induced in the winding. On the same time, the silicon rectification and alternator generators are easy to be burned and cut, which need to be supplied current by accumulator. All of them need to increase the cost in production and application. With the developing of vehicle industry, the generation should have higher reliability, longer life-span, more power and upper rotation speedy. They need a new green generation generator which has the capability to improve low speed supply performance. Obviously, the silicon rectification and alternator generators can not satisfy the development and demands of vehicle industry. The topics of this dissertation were proposed uner the background mentioned above. By using the high magnet character of Nd-Iron-Boron thulium permanent-magnet material, we can design the permanent-magnet generator for agricultural vehicle, which can make up for the sortcomings in silicon rectification and alternator generators and meet the needs of vehicle industry. With the advanced structure and characters, the new material can substitute the silicon rectification and alternator generators and enhance the technical level in vehicle power instruments and technology in vehicle industry.
     The main research works and conclusion can be described as follow
     1. The material choice and electro-magnet design for agricultural vehicle. By comparing the romance magnetic induction ( B r), coercive coerce ( H c), magnet power product ( ( B ? H)), temperature coefficient (%/°C), specific gravity (g/cm3) and ratio resistance capability (μΩ/cm) of Nd-Iron-Boron thulium permanent-magnet material, the thulium permanent-magnet material has more advanced merit in generator manufacture. Based on the optimal design of thulium permanent-magnet material, the radial excitation structure and magnetic route calculation, volumeter calculation on Nd-Iron-Boron thulium permanent-magnet material, calculation for winding circle for each posture, calculation on armature feedback, voltage balance module and equivalence were proposed in this dissertation, which can prove the advantage of permanent magnet in-phase generator.
     2. The design and simulation for permanent magnet generator voltage stable commutate circuit. Based on the characters of permanent magnet generator, according to the theory of four-phase half-wave commutate circuit and theory of self-stable voltage in generator, the design of four-phase half-wave controllable commutate circuit for permanent magnet generator was proposed in this dissertation, which involved four-phase half-wave controllable commutate circuit, benchmark circuit, voltage signal sampling circuit and spring circuit. By applying the design of protection circuit and over voltage protection circuit in permanent magnet generator, the security and safety for application of permanent magnet generator in agricultural vehicle will be enforced. By using Simulink Software, a commutating stable voltage circuit module was established. By changing the variable coefficient, we can identify the effect to the function of generator with the change of stimulating coefficients.
     3. The green design and evaluation for permanent magnet in agricultural vehicle. By using the analysis on the conception and characters of green production, the green appraisal indexes are identified which include environmental property, energy source property, resources property, economy property and time property. On the same time, all of the indexes can be divided into input indexes and output indexes. In the survey at Wuzheng Company, we got three series of data for different type of agricultural vehicle. By using the peer appraisal method, we can calculate the green property in cross efficiency for different type of agricultural vehicle. As result, the green property of agricultural vehicle with Nd-Iron-Boron thulium permanent-magnet generator was ranked on the first comparing to the other two type of agricultural vehicle. For pinning down the range of green property, the aggressive and tolerant models are calculated for the three types of agricultural vehicles. The range for agricultural vehicle with Nd-Iron-Boron thulium permanent-magnet generator is shorter than agricultural vehicles with ferrite permanent magnet generator and silicon commutate generators, whose upper bound is the value of tolerant efficiency and lower bound is aggressive efficiency. Therefore, we can draw the conclusion that agricultural vehicle with Nd-Iron-Boron thulium permanent-magnet generator has higher green property.
     4. Life cycle assessment and analysis on agricultural vehicle. In the process of permanent magnet generator industrialization, the life cycle assessment and analysis on agricultural vehicle is significant. Based on the basic frame of LCA, the LCA process for agricultural vehicle with permanent magnet generator can be listed as Identification of Goal and scope, Inventory Analysis, Impact Assessment and Interpretation & Improvement Analysis. According to the characters of permanent magnet generator, the shortcomings in LCA process were proposed in this section.
     5. The incompatibility issues in the research system of agricultural vehicle with permanent magnet generator. Identify the contradictions in the process of design and popularize on agricultural vehicle with permanent magnet generator. For the main issues, the extension analysis was proposed in this dissertation. On the same time, the extension strategy collection can be drawn for resolve the contradiction issues. By establishing the extension model of human resource incompatibility issue, the kernel issue can be identified. Then, we can calculate the compatibility for the kernel issue. In the scope of integrating internal and external resources in the process of research design and extension application system, by using the radiation analysis on conditions and applying corresponding extension transformation, the extension strategy for resolving human resource incompatibility. The second judgment for compatibility was also applied in this section. At last, the human resource incompatibility issue was transfer into the compatibility issue in the process of design and popularize for agricultural vehicle with permanent magnet generator.
引文
[1]王自.车用发电机综述[J].贵州农机化,1999(2):30-33.
    [2]沈树盛.车用三相交流硅可控整流永磁发电机[C].四川省汽车工程学会,成都市汽车工程学会2005年南骏杯学术年会论文集,22-27.
    [3]张学义,王亚林,王建设.车用永磁发电机的发展展望[J].微电机,2005,38(5):69-71.
    [4]杜钦君.车用永磁发电机的现状及其发展[J].山东农机,2005(3):15-16.
    [5]张学义,杜钦君,谭德荣.农用运输车用张紧轮式永磁恒压发电机[J].农业机械学报,2000,31(6):98-100.
    [6]王自,张晓英,陈国弟.车用永磁发电机的研制[J].微电机,2000,33(1):49-53.
    [7]陈照章.车用永磁交流发电机电压调节器的设计[J].汽车电器,2002(3):12-16.
    [8]张学义,高明玲,康保江等.农用车用离心式永磁直流发电机的设计开发[J].农业工程学报,2002,18(6):74-76.
    [9]王金平,周晓燕,唐任远.具有自动调节能力的新型车用永磁发电机[J].沈阳工业大学学报,2004,26(1):30-33.
    [10]张学义,史立伟,温晓岳.农用运输车用永磁恒压发电机的技术设计[J].拖拉机与农用运输车,2004(4):26-28.
    [11]侯开礼.农用运输车用爪极式永磁直流发电机的设计[J].农机化研究,2004(1):144-146.
    [12]周晓燕,王金平,唐任远.新型车用永磁发电机的研制[J].微电机,2004,37(6):51-53.
    [13]彭巍,赵玉民,杨金娥.车用发电机磁极的精密成形技术[J].模具制造,2006(3):23-25.
    [14]赵刚.车载电励磁双凸极发电机系统的研究[D].南京航空航天大学,2007.
    [15]薛斌峰.电动车用横向磁通式永磁直线发电机的研究[D].哈尔滨工业大学,2007.
    [16]李斐斐.电动车用径向充磁式永磁直线发电机的研究[D].哈尔滨工业大学,2007.
    [17]刘景林.复合励磁同步发电机技术研究[D].西北工业大学,2007.
    [18]李斐斐,薜斌峰,郑萍.电动车用径向充磁自由活塞式永磁直线发电机研究[J] .微电机,2008,41(2):22-24.
    [19]王自.车用永磁发电机的使用技术研究[J].贵州农机化,2000(1):39-44.
    [20]卫绍元,陈蕴超.车用发电机装配操作技术对其使用寿命的影响[J].中小型电机,2002,29(3):45-46.
    [21]康保江.农用车压带轮式发电机的电子稳压问题研究[J].农机化研究,2003(3):139-141.
    [22]李伟清.大型汽轮发电机常见故障的检查及状态监测[J].电力设备,2003,4(1):29-33.
    [23]张光达,尹正军,谢炜.大型汽轮发电机状态监测与故障诊断系统的开发与应用[J].山东电力技术,2003(1):6-9.
    [24]魏延华,刘万军.电力系统发电机电气状态监测与故障诊断系统[J].辽宁工程技术大学学报,2004,23(1):73-75.
    [25]肖本贤,娄天玲,郭福权.基于模糊神经网络的车用发电机故障诊断系统的研究[J].系统仿真学报,2004,16(5):1001-1008.
    [26]张家欣.发电机故障诊断及状态监测技术研究[J].南京工业职业技术学院学报,2006,6(2):25-28.
    [27]党晓强,刘俊勇,杨可.大型发电机状态监测与故障诊断[J].电气时代,2006(1):62-64.
    [28]刘长胜,葛嘉,沈勇环.基于马尔可夫链的发电机状态检修决策[J].电力系统及其自动化学报,2006,18(2):82-85.
    [29]王雪波.大型发电机状态监测的方法研究[J].科技信息,2008(12):318-320.
    [30]侯运红.基于虚拟仪器的发电机励磁状态监测与故障诊断系统研究[D].西安理工大学,2008.
    [31]姚毅,殷卫乔.农用车辆硅整流发电机充电系统的故障快速诊断[J].农业与技术,2008,28(3):140-141.
    [32]郭庆宇.大型高压发电机新绝缘材料性能的研究[J].武工业大学学报,1999,21(2):20-22.
    [33]成德明.大中型发电机绝缘材料的改进[J].绝缘材料通讯,2000(6):23-26.
    [34]项东,刘增良,全锦.发电机转子材料分析[J].山东建筑工程学院学报,2002,17(2):77-80.
    [35]韩加蓬,翟庆志.永磁发电机用永磁材料的选择[J].山东理工大学学报(自然科学版),2003,17(2):35-37.
    [36] G萨洛西.超导材料在未来水轮发电机中的应用[J].水利水电快报,2005,26(9):18-20.
    [37]黄顺礼.当今的永磁材料及大裂永磁风力发电机[J].电气技术,2005(1):30-31.
    [38]满宇光.聚四氟乙烯材料在大型水轮发电机绝缘系统中的应用[J].大电机技术,2009(1):1-6.
    [39] Bigon B W. Life-cycle assessment: inventory guidelines and principles [M]. CRCPress LLC, 1994.
    [40] Robert. Hunt G., William E Franklin. LCA-How it Came About: Personal Reflection on the Original and the Development of LCA in the USA [J]. International Journal of Life Cycle Assessment, 1996, 1(1):4-7.
    [41] Bonifaz Oberbacher, Hansjorg Nikodem, Walter Klopffer. LCA-How it Came About: An Early System Analysis of Packing for Liquids [J]. The International Journal of Life Cycle Assessment, 1996, 1(2):62-65.
    [42] Allan Astrup Jensen, John Elkington, et al. Life Cycle Assessment (LCA): A guide to approaches, experiences and information sources [J]. Report to the European Environment Agency, Copenhagen, 1997: 13.
    [43]孙启宏,万年青,范与华.国外生命周期评价((LCA)研究综述[J].世界标准化与质量管理,2000,(2):24-25.
    [44] Russell A, Ekvall T, Baumann H. Life cycle assessment-introduction and overview [J]. Journal of Cleaner Production, 2005(13):1207-1210.
    [45] David Hunkeler, Gerald Rebitzer. The future of life cycle assessment [J]. The International Journal of Life Cycle Assessment, 2005, 10(5):305-308.
    [46]翁端,余晓军.关于环境材料的一些研究进展[J].材料导报,2000,14(11):19-21.
    [47] Edgar G.Hertwich,Thomas E.McKone, William S Pease. Parameter Uncertainty and Variability In Evaluative Fate and Exposure Models [J].Risk Analysis, 1999, 19(6):1193-1204.
    [48] Hansen OJ.Status of Life Cycle Assessment (LCA) activities in the Nordic region [J]. International Journal of LCA, 1999(4):315-320.
    [49] Steen B. A systematic approach to Environmental Priority Strategies in product development (EPS) [M]-Version 2000-general system characteristics-CPM report.Goteborg:Chalmers University,1999.
    [50] Goedkoop M, Spriensma R. The Eco-indicator 99: A damage oriented method for life cycle assessment-Methodology report [C]. Netherlands: PRe Consultants, 1999.
    [51] Wenzel H, Hauschild M, Alting L. Environmental assessment of products [J], vol. 1. London UK: Chapman&Hall, 1997.
    [52] Reinout practice Heijungs, Tom Ligthart. Improvement of LCA characterization factors and LCA for metals [C]. Institute of Environmental Sciences-Leiden University, 2004.
    [53] Nico W. van den Berg, Gjalt Huppes, Erwin W. Lindeijer, et al. Quality Assessment for LCA [C].Institute of Environmental Sciences-Leiden University, 2001.
    [54] Arnold Tinker, Rene Kleijn, Lauran van Oers, et al. Combining SFA and LCA: The Swedish PVC Analysis[J]. Journal of Industrial Ecology, 1997, 4(1): 93-116.
    [55]刘钢.机电产品全生命周期环境经济性能评估理论与方法研究[D].清华大学,2003.
    [56]万举勇.机电产品全生命周期环境管理体系及关键技术研究[D].合肥工业大学,2005.
    [57]张晓阳.面向复杂系统生命周期的故障诊断技术研究[D].南京理工大学,2005.
    [58]余卓民.基于可靠性的机车车辆全生命周期结构安全管理体系研究[D].同济大学,2006.
    [59]吴杰民.基于生命周期的产品价值研究[D].武汉理工大学,2007.
    [60]苏新梅,王仁人.产品全生命周期绿色评价体系的研究[J].现代制造工程,2008(7):113-115.
    [61]王冲.绿色材料镁合金的生命周期评价[D].吉林大学,2008.
    [62] Huijbregts J. Application of parameter uncertainty and variability in LCA: Part 1 A general framework for the analysis of uncertainty and variability in life cycle assessment [J]. International Journal of LCA, 1998, 3(5): 273-280.
    [63] Owens JW. LCA impact assessment categories technical feasibility and accuracy [J]. International Journal of LCA, 1996, 1(3):151-158.
    [64] Stuart Ross, David Evans, Michael Webber. How LCA Study deal with uncertainty [J]. International Journal of LCA, 2002, 7(1): 47-52.
    [65] Andreas Ciroth. Uncertainty in life cycle assessment [J]. International Journal of LCA, 2004, 9(3): 141-142.
    [66]刘红旗,陈世兴.绿色产品设计的评价方法和评价体系[J].工业设计,1999(4):1-4.
    [67] Clark J, Fujimato To. Product Development Performance: Strategy [C].Organization and Management in the World Auto Industry. Boston: Harvard Business School Press, 1991.
    [68] Boothroyn G., Dewhurst P, Knight W. Product Design for Manufacture and Assembly [C]. New York: Marcel Dekker,1994.
    [69] Fava J A. Life cycle thinking: application to product design [C]. Proceeding of the IEEE international Symposium on Electronic and the Environment, Arlington, VA, 1993 : 69-73.
    [70] Cattanach RE, Holodreith J M, Reinke D P, Sibik L K. The Handbook of Environmentally Conscious Manufacturing from Design and Production to Labellingand Recycling [M]. Irwin: Professional Publishing, 1995.
    [71] O’Rourke D, Connelly L, Koshland C. Industrial Ecology: a Vritical Review [M]. International Methodology Environmental Pollution, 1996.
    [72] Hui I K, He L, Dang C. Environmental impact assessment in an uncertain environment [J]. International Journal of Production Resarech, 2002,40 (2): 375-388.
    [73] Golden B L, Harker P T, Wesil E E. The Analytic Hierarchy Process: Application and Study [M]. Berlin: Springer,1989.
    [74] Ahbe S, Braunschweig A, Müller-wenk, R. Methodik für oekoblianzen auf basisükologischer optimierung [J]. Schriftenreihe Umwelt No.133, 1990 (Bern: Bundesamt for Umwel, Wald und Landschaft (BUWAL)).
    [75] Sage J. Industrielle Abfallvermeidung und deren Bwertung am Beipiel der Leiterplattenherstellung (Graz:dbv/Technische Universtitat Graz).
    [76] Srinivasan M T Wu, Sheng P. Development of a Scoring Index for the Evaluation of Environmental Factors in Machining Processes: Part 1 - Health Hazards Score Formulation [J]. Transactions of NAMRI, 1995(23): 115-122.
    [77] Munoz, A.A., and P. Sheng. An Analytical Approach for Determining the Environmental Impact of Machining Processes [J]. Journal of Materials Processing Technology, 1995(53): 736-758.
    [78] Melngk S A, Smith R T. Green Manufacturing [J]. Dearborn, USA: Society of manufacturing Engineers, 1996: 2-5.
    [79]曹华军等编译.绿色制造蓝皮书[EB/OL](2004). http://www.eworks.net.cn/ ewkArticles/Category90/Article16646.htm
    [80] Mayer L. Assembly and disassembly Models in Electronics Manufacturing [D]. Northeastern University, 1996.
    [81] Gungor A, Gupta S M. An Evaluation Methodology for Disassembly Processes [J]. Computers and Industrial Engineering, 2002, 33 (1): 329-332.
    [82] Gupta S M, Veerakamolmal P. Profitability Measure for Product Disassembly and Recycling [J]. Proceeding of the 1998 POMS-Cape Town Meeting, Cape Town, South Africa, 1998(29): 139-147.
    [83]蔡建国,郭茂,童劲松.绿色产品设计现状及其发展趋势. [EB/OL](2004). http://kcxf.xh.sh.cn/zjlt_xxnr.asp?newsid=150
    [84] Choi C K, Kaebernick H, Lai W H. Manufacturing Processes Modelling for Environmental Impact Assessment [J]. Journal of Materials Processing Technology, 1997 (70): 231-238.
    [85] Yeo S H, Tan H C. New. Assessment of Waste Streams in Electric-Discharge Machining for Environmental Impact Analysis [J]. Proceedings of the IMECHE Part B Journal of Engineering Manufacture, 1998(212): 393-401.
    [86]宋江敏,陈庄,韩逢庆.基于产品多生命周期工程的产品环境评价指标体系探讨[J].重庆工学院学报,1999,13(3):43-47.
    [87]向东,张根保,汪永超.绿色产品及其评价指标体系研究[J].计算机集成制造系统-CIMS,1999,5(4):14-19.
    [88]刘飞,张华,陈晓慧.绿色制造的决策框架模型及其应用[J].机械工程学报,1999, 35(5):11-15.
    [89]曹华军,刘飞,何乃军.绿色产品的综合效益协调度模型及其评价方法[J].现代制造工程, 2002(1):7-10.
    [90]汪波,杨尊淼,刘凌云.基于生命周期的绿色产品开发设计及绿色性评价[J].研究与发展管理,2000,12(5):1-4.
    [91]曹华军,陈晓慧,刘飞.产品生命周期评估的体系结构及其与绿色制造的集成关系[J].航空工程与维修,2000(6):10-12.
    [92]李爱平.基于知识面向环境的产品全生命周期模型[J].中国机械工程,2003,14(4):295-299.
    [93]张华,刘飞,李友如.绿色工艺规划的决策模型及应用案例研究[J].中国机械工程,2000,11(9):979-982.
    [94]向东,段广洪,汪劲松.公理性设计在绿色工艺选择中的应用[J].中国机械工程, 2000,11(9):972-974.
    [95]孙建国,葛培琪,刘镇昌.绿色切削液研究开发的生命周期分析与评价[J].工具技术,2000,34(12):13-14.
    [96]张弘,郭卫.模糊综合评判法在绿色工艺方案决策中的应用研究[J].制造业自动化,2000,24(4):40-43.
    [97]李刚,廖兰,曹华军.面向绿色制造的工艺种类选择[J].机械工艺师,2001(6): 32-34.
    [98]王西彬.绿色切削加工技术的研究[J].机械工程学报,2000,36(8):6-9.
    [99]曹杰,易红,倪中华.绿色产品制造工艺决策技术的研究[J].制造业自动化,2002, 24(3):33-37.
    [100]曹杰,易红.绿色产品制造工艺方案的研究[J].机械工程学报,2002,38(7): 126-130.
    [101]李智勇,曹华军,刘飞.面向绿色制造的滚切工艺规划决策问题研究[J].现代制造工程,2003(1):6-8.
    [102]李智勇,曹华军,刘飞.面向绿色制造的滚切加工工艺规划中的决策问题研究[J].机械,2003,30(1):7-10.
    [103]刘志峰,林巨广,刘光复.废旧产品回收工艺流程评价决策支持系统研究与开发[J].中国机械工程,2002,13(20):1773-1776.
    [104]高建刚,姚丽英,段广洪.机电产品拆卸序列的生成与评价[J].机械科学与技术, 2003,32(3):358-360.
    [105]谢家平,孔令丞,陈荣秋.绿色产品设计的成本分析模型研究[J].外国经济与管理,2003,25(2):44-50.
    [106]魏明侠,司林胜,孙淑生.绿色营销的基本范畴分析[J].江西社会科学,2001(6):88-90.
    [107]魏明霞.绿色营销的机理与绩效评价研究[D].武汉理工大学,2002.
    [108]周胜.基于模糊层次分析法的机电产品绿色度综合评价的研究与实现[D].浙江大学,2002.
    [109]苏庆华.面向机电产品设计的产品绿色度评价系统的研究与实现[D].浙江大学,2003.
    [110]楼上游.机械制造业环境绿色技术评价体系[D].合肥工业大学,2007.
    [111]李洪伟.绿色产品评价理论方法研究及其在地面仿生机械中的应用[D].吉林大学,2004.
    [112]戴恩贤.火电机组绿色成本核算及环境效益评价[D].重庆大学,2007.
    [113]王桂萍.加工中心可靠性及绿色性评价体系与增长技术研究[D].吉林大学,2008.
    [114]刘志峰.绿色产品综合评价及模糊物元分析方法研究[D].合肥工业大学,2004.
    [115]刘华.绿色产品评价理论和方法及其在粉末冶金中的应用[D].华南理工大学,2005.
    [116]沈德聪.绿色制造系统的判定和评价方法研究[D].北京工业大学,2006.
    [117]薛兵.基于多生命周期的制造业绿色产品竞争力评价[D].沈阳工业大学,2007.
    [118]杨茂生.于生命周期评价的绿色产品工业设计评价体系研究[D].山东大学,2008.
    [119]刘江龙.材料的环境影响评价[M].北京:科学出版社,2002.
    [120]苏启棠.液压系统的绿色设计探讨[J].现代机械,2001(1):94-95.
    [121]沈敏德,王仁人,宫涛.柴油机绿色设计与制造技术[J].车用发动机,2002(8): 6-9.
    [122]黄春江.齿轮油泵的“绿色设计”[J].机械工程师,2002(8):70-74.
    [123]孙奎洲.机床包装的绿色设计[J].包装工程,2002,22(5):57-59.
    [124]黄德中.农业机械的绿色设计[J].中国农机化,2002,(6):37-38.
    [125]肖茜,郑惠强.绿色设计在汽车工业中的应用展望[J].北京汽车,2002(4):21-23.
    [126]谢继红,张秀棉.轻工机械的绿色设计分析[J].轻工机械,2002(2):1-3.
    [127]董晓英.机械工业中的绿色设计与制造[J].机床与液压,2002(6):27-29.
    [128]周寿增.稀土铁系永磁材料[M].北京:冶金工业出版社,1999.
    [129]梁昌勇.我国车用永磁发电机的发展前景及现状[J].微电机,1998,31(2):34-36.
    [130]李钟明,刘卫国,刘景林.稀土永磁电机[M].北京:国防工业出版社,1999.
    [131]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [132]张学义,高明玲,康保江.农用车用离心式永磁直流发电机的设计开发[J].农业工程学报,2002(6):74-76.
    [133]史立伟,张学义,耿松亮,王亚林,李爱军,李贤温.具有开发前途的车用永磁发电机[J].农机化研究,2004(2),47-49.
    [134]杜钦君.车用永磁发电机的现状及其发展[J].山东农机,2005(3),15-16.
    [135]刘振闻,陈幼平.汽车电器与电子技术[M].北京:人民交通出版社,1998.
    [136]张学义.农用车用离心式直流发电机的设计开发[J].农业工程学报,2002 (6):74-76.
    [137]胡明义.汽车、拖拉机、摩托车交流发电机结构原理与检修[M].北京:北京理工大学出版社,1998.
    [138]张学义.农用运输车用张紧轮式永磁恒压发电机[J].农业机械学报,2000(6):98-100.
    [139]许实章.电机学(下册)[M].北京:机械工业出版社,1981.
    [140]刘振闻,陈幼平.汽车电器与电子技术[M].北京:人民交通出版社,1998.
    [141]王承煦,张源.风力发电[M].北京:中国电力出版社.2002.
    [142]张学义,杜钦君,谭德荣.农用运输车用张紧轮式永磁恒压发电机[J].农业机械学报,2000(6):98-100.
    [143]邴冰,刘长良,耿松亮.汽车用稀土永磁发电机电枢反应电抗的研究[J].电机技术,2006(3),39-41.
    [144]李新华,李郎如.钕铁硼永磁同步电动机电枢反应电抗的计算[J].湖北工学院学报,1994(4),43-45.
    [145]梁昌勇.我国车用永磁发电机的发展前景及现状[J].微电机,1998,31(2):34-36.
    [146] Gander W,Hrebicek J.Solving problems in scientific computing using Maple and MATLAB[M].Beijing: Higher Education Press,1999.
    [147]史立伟,张学义,耿松亮.具有开发前途的车用永磁发电机[J].农机化研究,2004(2):47-49.
    [148]肖云东.新型车用永磁发电装置性能优化与仿真[D].山东大学,2002.
    [149]张学义.车辆用钕铁硼永磁发电装置的电子稳压研究[J].农业机械学报,2005(1):131-133.
    [150]崔苗华.永磁同步发电机非线性电感及车用永磁发电机系统仿真研究[D].哈尔滨:哈尔滨工业大学,1998:80-92.
    [151]于先平.永磁发电机的研制[J].电机技术,2003(4):23-25.
    [152]马永责,冯海.永磁材料在永磁发电机上的应用[J].大电机技术,2002(1):37-40.
    [153]杜钦君,张学义.永磁发电装置的结构设计及电磁计[J].拖拉机与农用运输车,2005(2):30-32.
    [154]陈沛芝.改善永磁交流发电机输出特性的新方法[J].汽车电器,1998(11):28-31.
    [155]周晓燕,王金平,唐任远.新型车用永磁发电机的研制[J].微电机,2004,37(6);51-53.
    [156] Zhang Xueyi. Controlled Rectification and Steady Voltage Technology of Nd-Fe-B Permanent Magnet Generating Set on the Vehicle[C].Worid Engineers’Convention,2004.
    [157]史立伟,张学义.车辆用永磁发电机电子稳压器的设计与仿真[J].农机化研究,2006(9):83-86.
    [158]江春冬,刘文生,刘洪林.基于MATLAB/SIMULINK交流电机系统的建模与仿真[J].大连铁道学院学报,200l(3):69-73.
    [159]张学义,王亚林,王建设.车用永磁发电机的发展展望[J].微电机,2005,38(5):70-72.
    [160] Pekarek S.D,Wasynczuk O,Hegner H J.An Efficient and Accurate Mode1 for the Simu1ation and Analysis of Synchr0n0us Machine/Converter Systems [J].IEEE Transact ions on Energy Convention, 1998(3): 42-48.
    [161]潘湘高.基于MATLAB的电力电子电路建模仿真方法的研究[J].计算机仿真,2003(5):113-117.
    [162]史立伟,张学义,王亚林,冯仁水.基于SIMULINK的双相半波车辆用永磁发电机设计与仿真[J].拖拉机与农用运输车,2006,33(4):42-44.
    [163]于亚丽,伍青生,绿色产品的生命周期评价模型研究[J].上海交通大学学报(农业科学版),2007,25(5):502-506.
    [164]刘志峰,王淑旺,刘光复.产品绿色特性分析与评价模型研究[J].日用电器,2006(10):39-43.
    [165]李建平,基于产品全生命周期的绿色设计一般理论和方法[J].重庆职业技术学院学报,2005,15(3):137-140.
    [166] http://www.sharp-world.com/corporate/eco/data/eco.html
    [167]李洪伟.绿色产品评价理论方法研究及其在地面仿生机械中的应用[D],吉林大学,2004.
    [168]陈庄,刘飞,陈晓慧.基于绿色制造的产品多生命期工程[J].中国机械工程,1999,10(2):233-235.
    [169]张明君.核武器产品绿色制造评价模型[J].现代制造工程,2005(11):96-99.
    [170]卫江,机电产品绿色设计的关键技术[J].机电产品开发与创新,2005,18(6):38-40.
    [171]李洪伟,杨印生,周德群.绿色汽车的制造与管理技术体系研究[J].绿色中国,2006(1):74-76.
    [172]陈东,徐爱莉,丁代存,于奎刚.绿色设计及其在石油机械中的应用[J].石油矿场机械,2007,36(7):28-30.
    [173]汪波,杨尊淼,刘凌云.基于生命周期的绿色产品开发设计及绿色性评价[J].研究与发展管理,2000,12(5):1-5.
    [174] 1李洪伟,杨印生.基于DEMATEL方法的地面仿生机械绿色属性影响因素分析[J].吉林大学学报(工学版).2006,36(2):274-279.
    [175]郝吉,霍小龙.中国能源企业绿色评价体系[J].中国石油和化工经济分析,2007(23),25-30.
    [176]孙向东.磨削工艺绿色评价指标体系的AHP灰关联分析[J].金刚石与磨料磨具工程,2008(1):64-67.
    [177]张华,王西彬.用数据包络分析方法进行绿色制造过程评价[J].兵工学报,2005,26(4):623-527.
    [178]杨印生,李洪伟.基于数据包络分析模型的绿色产品非均一评价[J].中国机械工程,2003,14(11):39-42.
    [179]林岗,钱阳.基于遗传神经网络的机电产品绿色度评价[J].机械设计与制造,2006(5):151-153.
    [180]孙国梓,吴志军,郁鼎文,刘嘉.基于粗糙集的供应商绿色评价体系研究[J].计算机工程与应用,2004(32):190-192.
    [181]刘志峰,刘红,宋守许,陈言东.基于模糊AHP方法的供应商绿色评价研究[J].机械科学与技术,2007,26(10):1249-1252.
    [182] T.R. Sexton. Measuring Efficiency: An Assessment of Data Envelopment Analysis [M], ed. R.H. Silkman (Jossey-Bass Inc Pub, San Francisco, December 1986): 156-243.
    [183] Lidia Angulo-meza, Marcos Pereira Estellitalins. Review of Methods for Increasing Discrimination in Data Envelopment Analysis [J]. Annals of Operations Research, 2002(116):225–242.
    [184] Rodney H. Green, John R. Doyle, Wade D. Cook. Preference voting and projectranking using DEA and cross-evaluation [J]. European Journal of Operational Research, 1996(90): 461-472.
    [185] Tser-yieth Chen. An assessment of technical efficiency and cross efficiency in Taiwan’s electricity distribution sector [J]. European Journal of Operational Research, 2002(137): 421-433.
    [186] Pamela L. Spath, Margaret K. Mann, Dawn R. Kerr. Life Cycle Assessment of Coal-fired Power Production [M]. National Renewable Energy Laboratory, 1999.
    [187] Yupeng Luo, David R. Riley and Michael J. Horman. Lean principles for prefabrication in green design-build (GDB) projects [C]. Proceedings IGLC-13, July 2005, Sydney, Australia: 539-549.
    [188]黄春林,张建强,沈淞涛.生命周期评价综论[J].环境技术,2004,29(1):29-32.
    [189]王汉玉.产品的生命周期评价浅析[J].环境与可持续发展,2007(5):57-58.
    [190] http://baike.baidu.com/view/543515.htm?func=retitle.
    [191]曹利军.可持续发展评价理论与方法[M].北京:科学出版社,1999.
    [192]曹华林.产品生命周期评价(LCA)的理论及方法研究[J].西南民族大学学报(人文社科版), 2004,25(2):281-284.
    [193]楚丽明,汤传毅.汽车能源生命周期评价[J].节能与环保,2003(11):27-29.
    [194]樊庆锌,敖红光,孟超.生命周期评价[J].环境科学与管理,2007,.32(6):177-180.
    [195]郑彬,赵绪新,马晓茜,张凌.生命周期评价方法及其应用[J].中国资源综合利用,2004(3):9-13.
    [196]霍李江.生命周期评价LCA综述[J].中国包装,2003(1):43-48.
    [197]孙柏铭,严瑞碹.生命周期评价方法及在汽车代用燃料中的应用[J].技术经济,1998(7):34-39.
    [198]李晓娜,史占国,张国方.汽车产品生命周期评价(LCA)研究[J].北京汽车,2007(1):1-4.
    [199]刘宏,王贺武,罗茜,王瑛,欧阳明高.纯电动汽车生命周期3E评价及微型化发展[J].交通科技与经济,2007(6):45-49.
    [200]陈迅,刘小利.生命周期评价及其在汽车代用燃料经济分析中的应用[J].系统工程理论方法应用,2002,11(4):340-344.
    [201]李立希,杨春燕,李铧汶.可拓策略生成系统[M].北京:科学出版社,2006.
    [202]杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.
    [203]杨春燕,张拥军.可拓策划[M].北京:科学出版社,2002.
    [204] Junjie Wu, Bruce A. Babcoke. Optimal design of a voluntary green payment program under asymmetric information [J]. Journal of agricultural and resources economics,20(2): 316-317.
    [205] Stuart L. Hart. Beyond Greening: Strategies for a Sustainable World, Harvard Business Review [M]. President and Fellows of Harvard College: 1996.
    [206] Chris Hendri, Arpad Horvath, Satish Joshi, Lester Lave. Economic Input-Output Models for Environmental Life-Cycle Assessment [J]. Policy Analysis, 1998, 32(7): 184-191.
    [207] Yang Yinsheng, Li Hongwei, Tong Jin. Analysis of Factors Impacting on Greenness of Products [J]. Proceedings of 2003 International Conference on Management Science & Engineering, 2003(8): 937-941.
    [208] Zust R, Gaduff G. Life-cycle modeling as an instrument for life-cycle engineering [J].Annals of the CIRP, 1997, 46(1): 351-354.
    [209] Leo Ahing. Life cycle engineering and design [J]. Annals of the CIRP, 1993, 42(2):456-462.
    [210] Kosuke I. Life—cycle engineering design: design for manufacturability[J]. ASME,1997, 20(1-2): 21-24.
    [211] Harjula T, Rapola B, Knight W A. Design for disassembly and the environmengt[J]..CIRP,1995, 45(1):109-114.
    [212] Veikko J,Pohjola,Paivi Rousou.Using holistic product models to describe industrial production[J].Resources,Conservation and Recycling,2002, 35(7):31-43.
    [213] Lars Hvam. A procedure for building product models[J]. Robotics and Computer-Integrated Manufacturing,1999, 15(5):77-87.
    [214] Xu X Y, Wang Y Y. Multi-model technology and its application in the integration of CAD/CAM/CAE [J].Journal of Materials Processing Technology,2002, 129(2): 563-567.
    [215]徐剑,温馨,邹华.制造业绿色产品属性的演变及规律.管理现代化,2005(4):4-6.
    [216]李西秦.“十五”展望农用车市场[J].农机市场,2001(5):8-11.
    [217]刘志峰,王淑旺,刘光复.产品绿色特性分析与评价模型研究[J].日用电器,2006(10),39-43.
    [218]刘英平,林志贵,沈祖诒.基于改进的数据包络分析模型的绿色产品评价研究[J].中国机械工程,2005,16(20):1809-1813.
    [219]张学东.基于绿色产品的开放性设计[J].中国包装,2008(3):28-30.
    [220]李洪伟.绿色产品开发的关键因素分析[J].生态经济,2007(5):78-81.
    [221]莫兴波,刘志峰,刘光复.绿色产品配置方法研究.机械工程与自动化,2007(6):75-77.
    [222]王真.我国绿色产品开发的思考[J].生态经济,2001(10):48-50.
    [223]张新国,杨梅论绿色产品市场的监控和管理[J].财贸经济,2001(9):78-81.
    [224]李方义,李剑峰,汪劲松等.产品绿色设计研究现状及展望——一般理论及方法[J].航空制造技术,2004(10):73-78.
    [225] Toivonen H.Product document management with SGM Land relation database[D].Master Thesis: Jyvaskyla Univ, 2000.
    [226]李伟.基于约束的产品配置方法和产品优化配置研究[D].合肥工业大学,2005.
    [227]刘光复,刘志峰,李钢.绿色设计与绿色制造[M].北京:机械工业出版社,1999.
    [228] E Tsang.Foundations of constraint satisfaction[M ].London: Academic Press,1993.
    [229]邢西哲,朱雅萍,郑军华,李凌.绿色产品评价的系统边界问题研究.现代制造工程,2007(2):85-88.
    [230]邓南圣,王小兵.生命周期评价[M].北京:化学工业出版社,2003:14-16.
    [231]徐滨士等.产品再制造工程学科的建设和发展[J].中国表面工程,2003(3):l-6.
    [232]王海军.面向大规模定制的产品模块化若干设计方法研究[D].大连理工大学,2005.
    [233]杜伟.绿色产品设计核心内容分析[J].机械设计与制造,2006(2),173-174.
    [234]周长春,殷国富,胡晓兵,刘丽.面向绿色设计的材料选择多目标优化决策[J].计算机集成制造系统,2008,14(5):1023-1028.
    [235]赵又群,郭孔辉.农用车闭环操纵系统主动安全性评价指标[J].农业工程学报,1997,13(4):113-116.
    [236]朱剑中等.影响农用运输车变车道行驶中的几个因素[J].农业机械学报,1996.27(1):74-79.
    [237]张孝祖.三轮农用运输车非线性系统的行驶稳定性分析[J].农业机槭学报.1996,27(2):81-86.
    [238]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版杜,1991.
    [239]郭孔辉.人-车闭环操纵系统主动安全性的综台评价与优化设计[J].汽车技术.1993(4):1-8.
    [240]寇学智.农用车辆对道路交通环境的影响分析与思考[J].交通标准化,2004(2):85-87.
    [241]王银芝,朱思洪,邵瑛.农用车辆整车振动特性的试验研究[J].轻型汽车技术,2003(10):39-41.
    [242]何渝生,魏克严,洪宗林等.汽车振动学[M].北京:人民交通出版社,1990.
    [243]周一鸣,毛恩荣.车辆人机工程学[M].北京:北京理工大学出版社,1997.
    [244]张洪欣,宋传学等.汽车行驶平顾性的计算机预测[J].汽车工程,1986(2):21-30.
    [245]鲍晓峰.汽车试验与检测[M].北京:机械工业出版社,1995.
    [246]苏继龙.农用车性能测评的模糊综合评价法[J].河南农业大学学报,1998,32(1):28-32.
    [247]顾殿平.工程农机产品可靠性考核指标的确定[J].机械设计与制造,1996(6):6-9.
    [248]黄宗福.模糊信息优化处理技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [249]雪红.钕铁硼磁悬浮风力发电机入选“世界十大绿色发明”[J].稀土工业,2007(1):14.
    [250]王旭,杨明,代应.汽车回收企业绿色度评价应用研究[J].现代制造工程,2008(6):35-39.
    [251]刘飞,曹华军.绿色制造的理论体系框架[J].中国机械工程,2000,l1(9):961-964.
    [252]祝爱民,徐明波,薛兵,等.绿色制造的战略环境评价研究及实证分析[J].现代制造工程,2007(12):23-26.
    [253]岳辉,钟学燕,叶怀珍.第三方逆向物流企业的模糊评价研究[J].中国软科学,2005,26(5):39-42.
    [254]周胜.基于模糊层次分析法的机电产品绿色度综合评价的研究与实现[D].杭州:浙江大学,2002:22-32.
    [255]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社,2005.
    [256]刘长未,易树平,杨先露等.模糊综合评判在物流系统评价中的应用[J].中国机械工程,2004,15(14):1309-1311.
    [257]孙相军,李鹏林.基于“标杆管理”的海南远景经济指标预测[J].技术经济,2007,26(2):85—87.
    [258]刘光岭.信息不对称对绿色产品市场的影响[J].山西财经大学学报,2007,29(8):69-71.
    [259]祝爱民,于丽娟,张青山,夏冬.制造业绿色产品评价流程设计研究[J].机械制造,2006,44(11):47-49.
    [260]陈庄,刘永梅.产品多生命周期工程――背景、现状和展望[J].重庆工学院学报,2001,14(1):1-6.
    [261]王宏,曹岩,赵汝嘉.面向总体方案决策的产品评价[J].制造业自动化,2000,22(5):17-19.
    [262]苗瑞,王东鹏,姚英学.关于ISO 9000.IS0 14000绿色产品质量保证体系研究[J].计算机集成制造系统—CIMS,2002,8(2):166-168.
    [263]徐剑,温馨,张青山.制造业绿色产品生命周期结构模型研究[J].工业工程,2006,9(5):86-91.
    [264]江吉彬,林志广,刘志峰等.面向生命周期的绿色产品集成模型研究[J].机械设计,2002,13(5):4-7.
    [265]陈荣秋,周水银.生产运作管理的理论与实践[M].北京:中国人民大学出版社,2002.
    [266]李爱平.基于知识面向环境的产品全生命周期模型[J].中国机械工程,2003,14(4):295-98.
    [267]董军旗.西安市交通问题的结构模型研究与应用[D].长安大学,2000.
    [268]刘志峰.绿色产品综合评价及模糊物元分析方法研究[D].合肥工业大学,2003.
    [269]冯珍.绿色产品制造策略研究[D].西安电子科技大学机械学院,2001.
    [270]刘红旗,陈世兴.产品绿色度的综合评价模型和方法体系[J].中国机械工程,2000,11(9):1013-1016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700