用户名: 密码: 验证码:
基于基因功能模块解析癌基因及其功能协同
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物系统中,基因编码的蛋白质通过相互作用以模块化的方式执行功能。基于基因功能模块研究癌基因以及癌机制,使我们能够从一个更全局、系统的角度解析癌基因及其功能协同关系,进而探索癌症发生与发展的复杂机制。
     本文主要包括以下三部分内容:
     1.基于共进化基因功能模块研究癌基因的保守模式。功能相关的蛋白质通过相互作用以模块化的方式发挥功能。这种发挥功能的方式可能对蛋白质进化的速度和模式产生影响。本论文中,我们首先在人类蛋白互作网络中搜索共进化的蛋白互作子网。在一个给定的共进化水平下,我们选择具有非随机大小的蛋白互作子网,定义为共进化基因功能模块。结果显示,模块内蛋白倾向于保守,起源于更加古老的物种,富集在各种组织中广泛表达的管家基因编码的蛋白。而模块外蛋白质保守性较差,起源于较年轻的物种,并富集在特定组织中表达的基因编码的蛋白。基于共进化基因功能模块进一步研究癌基因的保守模式,我们发现癌基因整体上的保守性主要是由编码富集在模块内的蛋白的癌基因导致的,而编码模块外蛋白的癌基因保守性相对较弱。因此,模块内外的癌基因编码蛋白在癌症发生过程中可能发挥不同的作用,为我们进一步研究癌机制提供了重要线索。
     2.在癌基因组中发现共突变基因以及候选癌基因。基因在癌症样本中发生共突变的非随机性为基因突变的功能协同提供了重要信息。在目前的癌基因组体细胞突变扫查研究中,检测的样本量较小而假设检验的规模极大,使得发现共突变基因对的统计效能很低。基于两套癌基因组体细胞突变扫查数据,我们提出基于分层错误发现率控制策略发现共突变基因与候选癌基因的方法。与通过预筛选突变频率较高的基因的方法相比,该方法可以更加有效地发现共突变基因对与候选癌基因。
     3.基于细胞定位信息发现癌症相关功能模块及其相互作用。Gene Ontology(GO)的一个生物学过程结点包含的基因可能涉及到发生在不同细胞位置的子生物学过程,即使参与同一个过程中的基因也可能由于位于不同的细胞位置而显示出不同的表达模式。因此,在本论文中,我们应用我们提出的结合生物学过程和细胞定位信息的方法,发现癌相关功能模块。对两套癌症表达数据的应用结果显示,控制相同的错误发现率,结合细胞定位信息可以发现更多并且更加细致的癌症相关生物学过程。基于蛋白互作和基因表达数据构建的癌症相关功能模块网络,为我们进一步理解癌症发生过程中模块化的协同机制提供了线索。
     综上,本论文基于基因功能模块从序列保守性、体细胞突变和基因表达水平三个层面解析了癌基因及其功能协同关系
In biological system, proteins encoded by genes perform functions by interacting with each other in a modular fashion. Studying cancer genes and cancer mechanism based on gene functional modules provides us with the opportunity to dissect the cancer genes and their functional cooperation and explore cancer mechanism from a more global and systematical perspective.
     The main contributions are as follows:
     1. Studying the evolutionary conservation of cancer genes based on co-evolving gene functional modules. Functionally related proteins tend to perform functions by interacting with each other in a modular fashion, which may affect both the mode and tempo of their evolution. In this dissertation, we firstly searched for co-evolving protein protein interacting (PPI) subnetworks in the human PPI network. Identified at a given co-evolving level, we selected the subnetworks with non-randomly large sizes and defined them as co-evolving gene functional modules. Our results showed that proteins within modules tend to be conserved, evolutionarily old and enriched with proteins encoded by housekeeping genes expressed in all tissues, while proteins outside modules tend to be less-conserved, evolutionarily younger and enriched with proteins encoded by genes expressed in specific tissues. Further studying the evolutionary conservation of cancer genes based on co-evolving gene functional modules, we found that the overall conservation of cancer genes should be mainly attributed to the cancer genes encoding proteins enriched in the conserved modules. The cancer genes encoding proteins outside modules are relatively less conserved. Thus, cancer genes encoding proteins within and outside modules might play different roles in carcinogenesis, providing a new hint for studying the mechanism of cancer.
     2. Find co-mutated genes and candidate cancer genes in cancer genomes. The non-randomness of the co-mutation of genes in cancer samples can provide important information on the functional cooperation of gene mutations. In the current high-throughput somatic mutation screening studies, due to the relatively small sample sizes used and the extraordinary large-scale hypothesis tests, the statistical power of finding co-mutated gene pairs is very low. Based on two datasets of somatic mutations in cancer genomes, we proposed a stratified false discovery rate control approach for identifying significantly co-mutated gene pairs and candidate cancer genes. Compared with the approach of pre-selecting genes with higher mutation frequencies, many more co-mutated gene pairs and candidate cancer genes could be found by a stratified false discovery rate control strategy.
     3. Identifying cancer related functional modules and their interactions based on cellular location information. A Gene Ontology (GO) biological process category may encompass the genes involved in distinct processes occurring in different cellular compartments. Furthermore, the genes even within a same process may show a clear expression distinction with respect to their cellular localizations. Therefore, in this dissertation, we identified cancer related functional modules by the approach proposed by us that integrating both biological process and cellular component information. Applying this method to two cancer expression datasets, the results showed that controlling the same false discovery rate level, more and specific cancer related processes could be found by using the cellular location information. The modular network constructed by connecting pairs of cancer related signature functional modules based on PPI and gene expression data suggests a clue for further exploring the synergic action of the signature functional modules during tumorigenesis.
     In conclusion, based on gene functional modules, we dissected cancer genes and their functional cooperation from the aspects of sequence conservation, somatic mutation and gene expression in this dissertation.
引文
[1] L. Ding, G. Getz, D. A. Wheeler et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216):1069-1075.
    [2] S. Jones, X. Zhang, D. W. Parsons et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008, 321(5897):1801-1806.
    [3] D. W. Parsons, S. Jones, X. Zhang et al. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897):1807-1812.
    [4] TCGA-Consortium. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216):1061-1068.
    [5] L. D. Wood, D. W. Parsons, S. Jones et al. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853):1108-1113.
    [6] P. A. Futreal, L. Coin, M. Marshall et al. A census of human cancer genes. Nat Rev Cancer, 2004, 4(3):177-183.
    [7] B. Vogelstein, K. W. Kinzler. Cancer genes and the pathways they control. Nat Med, 2004, 10(8):789-799.
    [8] D. Hanahan, R. A. Weinberg. The hallmarks of cancer. Cell, 2000, 100(1):57-70.
    [9] C. Greenman, P. Stephens, R. Smith et al. Patterns of somatic mutation in human cancer genomes. Nature, 2007, 446(7132):153-158.
    [10] T. Sjoblom, S. Jones, L. D. Wood et al. The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314(5797):268-274.
    [11] A. Torkamani, N. J. Schork. Identification of rare cancer driver mutations by network reconstruction. Genome Res, 2009.
    [12] M. Classon, E. Harlow. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer, 2002, 2(12):910-917.
    [13] Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216):1061-1068.
    [14] C. Klijn, J. Bot, D. J. Adams et al. Identification of networks of co-occurring, tumor-related DNA copy number changes using a genome-wide scoring approach. PLoS Comput Biol,2010, 6(1):e1000631.
    [15] M. Bredel, D. M. Scholtens, G. R. Harsh et al. A network model of a cooperative genetic landscape in brain tumors. Jama, 2009, 302(3):261-275.
    [16] C. H. Yeang, F. McCormick, A. Levine. Combinatorial patterns of somatic gene mutations in cancer. Faseb J, 2008, 22(8):2605-2622.
    [17] Q. Cui, Y. Ma, M. Jaramillo et al. A map of human cancer signaling. Mol Syst Biol, 2007, 3:152.
    [18] H. Carter, S. Chen, L. Isik et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer research, 2009, 69(16):6660-6667.
    [19] H. Y. Chuang, E. Lee, Y. T. Liu et al. Network-based classification of breast cancer metastasis. Mol Syst Biol, 2007, 3:140.
    [20] L. H. Hartwell, J. J. Hopfield, S. Leibler et al. From molecular to modular cell biology. Nature, 1999, 402(6761 Suppl):C47-52.
    [21] A. L. Barabasi, Z. N. Oltvai. Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004, 5(2):101-113.
    [22] H. B. Fraser. Coevolution, modularity and human disease. Curr Opin Genet Dev, 2006, 16(6):637-644.
    [23] H. B. Fraser. Modularity and evolutionary constraint on proteins. Nat Genet, 2005, 37(4):351-352.
    [24] J. K. Gerhart, M. Cells, Embryos, and Evolution. (Blackwell Science, Malden, Massachusetts; 1997).
    [25] L. Hakes, S. C. Lovell, S. G. Oliver et al. Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc Natl Acad Sci U S A, 2007, 104(19):7999-8004.
    [26] G. Schlosser. Modularity and the units of evolution Theory in Biosciences, 2002, 121:1-80.
    [27] D. Waxman, J. R. Peck. Pleiotropy and the preservation of perfection. Science, 1998, 279(5354):1210-1213.
    [28] K. R. Brown, I. Jurisica. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol, 2007, 8(5):R95.
    [29] F. A. Kondrashov, A. Y. Ogurtsov, A. S. Kondrashov. Bioinformatical assay of human gene morbidity. Nucleic Acids Res, 2004, 32(5):1731-1737.
    [30] R. Blekhman, O. Man, L. Herrmann et al. Natural selection on genes that underlie human disease susceptibility. Curr Biol, 2008, 18(12):883-889.
    [31] Z. Tu, L. Wang, M. Xu et al. Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics, 2006, 7:31.
    [32] M. A. Thomas, B. Weston, M. Joseph et al. Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol Biol Evol, 2003, 20(6):964-968.
    [33] S. J. Furney, D. G. Higgins, C. A. Ouzounis et al. Structural and functional properties of genes involved in human cancer. BMC Genomics, 2006, 7:3.
    [34] N. G. Smith, A. Eyre-Walker. Human disease genes: patterns and predictions. Gene, 2003, 318:169-175.
    [35] H. Huang, E. E. Winter, H. Wang et al. Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol, 2004, 5(7):R47.
    [36] G. Getz, H. Hofling, J. P. Mesirov et al. Comment on "The consensus coding sequences of human breast and colorectal cancers". Science, 2007, 317(5844):1500.
    [37] A. G. Uren, J. Kool, K. Matentzoglu et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell, 2008, 133(4):727-741.
    [38] R. K. Thomas, A. C. Baker, R. M. Debiasi et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet, 2007, 39(3):347-351.
    [39] A. W. Rives, T. Galitski. Modular organization of cellular networks. Proc Natl Acad Sci U S A, 2003, 100(3):1128-1133.
    [40] Z. Guo, T. Zhang, X. Li et al. Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics, 2005, 6(1):58.
    [41] J. Z. Xu, Z. Guo, M. Zhang et al. Peeling off the hidden genetic heterogeneities of cancers based on disease-relevant functional modules. Mol Med, 2006, 12(1-3):25-33.
    [42] X. Zhou, M. C. Kao, W. H. Wong. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A, 2002, 99(20):12783-12788.
    [43] J. L. Jimenez, M. P. Mitchell, J. G. Sgouros. Microarray analysis of orthologous genes: conservation of the translational machinery across species at the sequence and expression level. Genome Biol, 2003, 4(1):R4.
    [44] Z. Dezso, Y. Nikolsky, E. Sviridov et al. A comprehensive functional analysis of tissuespecificity of human gene expression. BMC Biol, 2008, 6:49.
    [45] D. L. Wheeler, T. Barrett, D. A. Benson et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 2007, 35(Database issue):D5-12.
    [46] J. Huerta-Cepas, H. Dopazo, J. Dopazo et al. The human phylome. Genome Biol, 2007, 8(6):R109.
    [47] M. Ashburner, C. A. Ball, J. A. Blake et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25(1):25-29.
    [48] S. E. Lewis. Gene Ontology: looking backwards and forwards. Genome Biol, 2005, 6(1):103.
    [49] G. Thomas R. Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 1995, 43(5-6):907 - 928.
    [50] A. Zanzoni, L. Montecchi-Palazzi, M. Quondam et al. MINT: a Molecular INTeraction database. FEBS Lett, 2002, 513(1):135-140.
    [51] G. D. Bader, I. Donaldson, C. Wolting et al. BIND--The Biomolecular Interaction Network Database. Nucleic Acids Res, 2001, 29(1):242-245.
    [52] H. Hermjakob, L. Montecchi-Palazzi, C. Lewington et al. IntAct: an open source molecular interaction database. Nucleic Acids Res, 2004, 32(Database issue):D452-455.
    [53] S. Peri, J. D. Navarro, T. Z. Kristiansen et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res, 2004, 32(Database issue):D497-501.
    [54] H. W. Mewes, S. Dietmann, D. Frishman et al. MIPS: analysis and annotation of genome information in 2007. Nucleic Acids Res, 2008, 36(Database issue):D196-201.
    [55] L. Salwinski, C. S. Miller, A. J. Smith et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004, 32(Database issue):D449-451.
    [56] M. Kanehisa, S. Goto, M. Hattori et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 2006, 34(Database issue):D354-357.
    [57] G. Joshi-Tope, M. Gillespie, I. Vastrik et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res, 2005, 33(Database issue):D428-432.
    [58] K. Lage, E. O. Karlberg, Z. M. Storling et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol, 2007, 25(3):309-316.
    [59] M. Oti, B. Snel, M. A. Huynen et al. Predicting disease genes using protein-protein interactions. J Med Genet, 2006, 43(8):691-698.
    [60] D. Rambaldi, F. M. Giorgi, F. Capuani et al. Low duplicability and network fragility ofcancer genes. Trends Genet, 2008, 24(9):427-430.
    [61] L. D. Hurst. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet, 2002, 18(9):486.
    [62] D. P. Wall, A. E. Hirsh, H. B. Fraser et al. Functional genomic analysis of the rates of protein evolution. Proc Natl Acad Sci U S A, 2005, 102(15):5483-5488.
    [63] H. Akashi. Gene expression and molecular evolution. Curr Opin Genet Dev, 2001, 11(6):660-666.
    [64] L. Marino-Ramirez, O. Bodenreider, N. Kantz et al. Co-evolutionary Rates of Functionally Related Yeast Genes. Evol Bioinform Online, 2006, 2:295-300.
    [65] I. Ulitsky, R. Shamir. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks. Mol Syst Biol, 2007, 3:104.
    [66] R. Kelley, T. Ideker. Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol, 2005, 23(5):561-566.
    [67] A. Alexa, J. Rahnenfuhrer, T. Lengauer. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics, 2006, 22(13):1600-1607.
    [68] E. Segal, M. Shapira, A. Regev et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 2003, 34(2):166-176.
    [69] T. Ideker, O. Ozier, B. Schwikowski et al. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 2002, 18 Suppl 1:S233-240.
    [70] Z. Guo, Y. Li, X. Gong et al. Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics, 2007, 23(16):2121-2128.
    [71] G. T. Hart, A. K. Ramani, E. M. Marcotte. How complete are current yeast and human protein-interaction networks? Genome Biol, 2006, 7(11):120.
    [72] M. W. Hahn, A. D. Kern. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol, 2005, 22(4):803-806.
    [73] A. J. Greenberg, S. R. Stockwell, A. G. Clark. Evolutionary constraint and adaptation in the metabolic network of Drosophila. Mol Biol Evol, 2008, 25(12):2537-2546.
    [74] R. A. Fisher The Genetical Theory of Natural Selection. (Dover, New York; 1930).
    [75] W. C. Ma, D. Yang, Y. Y. Gu et al. Finding disease-specific coordinated functions bymulti-function genes: insight into the coordination mechanisms in diseases. Genomics, 2009, 94(2):94-100.
    [76] T. A. Chan, S. Glockner, J. M. Yi et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med, 2008, 5(5):e114.
    [77] K. E. Schuebel, W. Chen, L. Cope et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet, 2007, 3(9):1709-1723.
    [78] Y. Benjamini, Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological, 1995, 57(1):289-300
    [79] B. Huang, J. Rangrej, A. D. Paterson et al. The multiplicity problem in linkage analysis of gene expression data - the power of differentiating cis- and trans-acting regulators. BMC Proc, 2007, 1 Suppl 1:S142.
    [80] L. Sun, R. V. Craiu, A. D. Paterson et al. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Genet Epidemiol, 2006, 30(6):519-530.
    [81] B. Efron. Simultaneous inference: when should hypothesis testing problems be combined? Ann. Appl. Statist., 2008, 2(1):197-223.
    [82] X. Gong, R. Wu, Y. Zhang et al. Extracting consistent knowledge from highly inconsistent cancer gene data sources. BMC Bioinformatics, 2010, 11:76.
    [83] W. Ma, D. Yang, Y. Gu et al. Finding disease-specific coordinated functions by multi-function genes: insight into the coordination mechanisms in diseases. Genomics, 2009, 94(2):94-100.
    [84] M. Zhang, L. Zhang, J. Zou et al. Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes. Bioinformatics, 2009, 25(13):1662-1668.
    [85] M. Zhang, C. Yao, Z. Guo et al. Apparently low reproducibility of true differential expression discoveries in microarray studies. Bioinformatics, 2008, 24(18):2057-2063.
    [86] V. K. Mootha, C. M. Lindgren, K. F. Eriksson et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003, 34(3):267-273.
    [87] J. Lamb, S. Ramaswamy, H. L. Ford et al. A mechanism of cyclin D1 action encoded in thepatterns of gene expression in human cancer. Cell, 2003, 114(3):323-334.
    [88] E. Segal, N. Friedman, D. Koller et al. A module map showing conditional activity of expression modules in cancer. Nat Genet, 2004, 36(10):1090-1098.
    [89] S. Draghici, P. Khatri, R. P. Martins et al. Global functional profiling of gene expression. Genomics, 2003, 81(2):98-104.
    [90] F. Al-Shahrour, R. Diaz-Uriarte, J. Dopazo. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 2004, 20(4):578-580.
    [91] B. R. Zeeberg, W. Feng, G. Wang et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol, 2003, 4(4):R28.
    [92] T. Beissbarth, T. P. Speed. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 2004, 20(9):1464-1465.
    [93] M. Zhang, J. Zhu, Z. Guo et al. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks. Chinese Science Bulletin, 2006, 51(15):1848-1856.
    [94] J. Zhu, J. Wang, Z. Guo et al. GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology. BMC Genomics, 2007, 8:30.
    [95] X. Li, S. Rao, Y. Wang et al. Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res, 2004, 32(9):2685-2694.
    [96] H. Kim, G. H. Golub, H. Park. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics, 2005, 21(2):187-198.
    [97] Y. Benjamini, Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 1995, 57(1):289-300.
    [98] Y. Benjamini, D. Drai, G. Elmer et al. Controlling the false discovery rate in behavior genetics research. Behav Brain Res, 2001, 125(1-2):279-284.
    [99] S. Maere, K. Heymans, M. Kuiper. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21(16):3448-3449.
    [100] J. Lapointe, C. Li, J. P. Higgins et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A, 2004, 101(3):811-816.
    [101] S. Dudoit, Fridlyand,J.and Speed,T. Comparison of discrimination methods for the classification of tumors by using gene expression data. Journal of the American Statistical Association, 2002, 97(457):77-87.
    [102] X. Chen, S. T. Cheung, S. So et al. Gene expression patterns in human liver cancers. Mol Biol Cell, 2002, 13(6):1929-1939.
    [103] D. A. Hosack, G. Dennis, Jr., B. T. Sherman et al. Identifying biological themes within lists of genes with EASE. Genome Biol, 2003, 4(10):R70.
    [104] A. Nikitin, S. Egorov, N. Daraselia et al. Pathway studio--the analysis and navigation of molecular networks. Bioinformatics, 2003, 19(16):2155-2157.
    [105] U. M. Braga-Neto, E. R. Dougherty. Is cross-validation valid for small-sample microarray classification? Bioinformatics, 2004, 20(3):374-380.
    [106] R. Simon, M. D. Radmacher, K. Dobbin et al. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst, 2003, 95(1):14-18.
    [107] K. Keledjian, N. Kyprianou. Anoikis induction by quinazoline based alpha 1-adrenoceptor antagonists in prostate cancer cells: antagonistic effect of bcl-2. J Urol, 2003, 169(3):1150-1156.
    [108] K. Keledjian, J. B. Garrison, N. Kyprianou. Doxazosin inhibits human vascular endothelial cell adhesion, migration, and invasion. J Cell Biochem, 2005, 94(2):374-388.
    [109] K. L. Streetz, F. Tacke, L. Leifeld et al. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology, 2003, 38(1):218-229.
    [110] M. V. Osier, H. Zhao, K. H. Cheung. Handling multiple testing while interpreting microarrays with the Gene Ontology Database. BMC Bioinformatics, 2004, 5(1):124.
    [111] Z. Bar-Joseph, G. K. Gerber, T. I. Lee et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol, 2003, 21(11):1337-1342.
    [112] E. Segal, N. Friedman, N. Kaminski et al. From signatures to models: understanding cancer using microarrays. Nat Genet, 2005, 37 Suppl:S38-45.
    [113] D. R. Rhodes, A. M. Chinnaiyan. Integrative analysis of the cancer transcriptome. Nat Genet, 2005, 37 Suppl:S31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700