用户名: 密码: 验证码:
酶法制备天然牛奶风味基料及牛奶香精的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳和乳制品在食品行业中占据重要地位,其不仅有较高的营养价值,口感和香气亦令人十分喜爱,因而乳品香精是香精香料领域中投资最大,开发研究最为活跃的香精之一。利用酶法生产奶类香精,不仅能够产生更加复杂的风味体系,模拟目标产品的天然风味,还能够通过对不同来源脂肪酶的水解特性进行选择,强化酶解产物的某种特征风味,从而使得到的成品香精香气柔和留香持久。此外利用复合风味蛋白酶对乳蛋白进行适当酶解不但可以提高原料利用率,还能显著增强酶解产物中的浓厚感滋味,从而使香精品质得到进一步提高。因此酶技术在乳品增香的研究应用领域中有着非常广阔的前景。
     本论文以奶油为原料,分别利用脂肪酶和复合风味蛋白酶对其进行水解,并对脂肪酶酶解产物中特征挥发性风味物质进行鉴定;同时对复合蛋白酶酶解产物中呈浓厚感的呈味肽进行分离纯化和结构鉴定,并对其呈味特征进行进一步研究。主要研究内容如下:
     分别采用橄榄油和奶油为底物测定脂肪酶酶活,对七种不同商品脂肪酶进行筛选,最终选择脂肪酶Palatase 20,000L作为酶解奶油增香反应用酶。由单因素试验结合响应面分析确定脂肪酶酶解奶油的最佳工艺条件为:底物浓度为92%(w/v),加酶量为2000U/g底物,温度48℃,pH8.3。同时根据不同酶解时间下酶解产物的风味剖面特征分析和偏好性感官评定试验结果,确定获得最佳感官品质奶油酶解产物的酶解时间为4小时。
     利用SPME-GC-MS法对酶解不同时间的酶解产物中主要挥发性风味组分进行分析,共检出118种挥发性风味组分,其中酶解时间为4小时的酶解产物中短碳链的脂肪酸类、甲基酮类、酯类和内酯类化合物含量达到最大,因而其感官品质最佳。同时采用SPME-GC-MS法从酶解4小时的酶解产物中检出55种风味物质,主要是一些长链脂肪酸类化合物,此类化合物对酶解产物挥发性风味贡献较小,主要是呈味方面的贡献。
     分别采用SPME-GC-O法和风味值分析法对具有最佳感官品质的酶解产物中的主要特征挥发性风味组分进行分析和鉴定,其中SPME-GC-O法鉴定得到丁酸乙酯、2-庚酮、柠檬烯、己酸乙酯、辛醛、辛酸乙酯、乙酸、丁酸、癸酸乙酯、δ-己内酯、己酸、δ-辛内酯、辛酸、癸酸等14种化合物为酶解产物中的特征风味组分;而风味值法分析得到的特征风味组分与SPME-GC-O法分析得到的化合物略有差别,按其风味贡献大小依次为:己酸、丁酸、丁酸乙酯、2-十五酮、十一酸、δ-辛内酯、癸酸、δ-十二内酯、己酸乙酯和辛酸等。
     为了得到香气更加柔和的天然牛奶香精,采用SPME-GC-MS法对稀奶油、商品天然牛奶香精样品和合成牛奶香精样品中的挥发性风味物质进行分析,然后根据分析结果将酶解产物进行适当风味修饰得到自制天然牛奶香精。同时利用电子鼻对不同香精样品、不同品种类的奶酪样品和全脂奶粉样品中的挥发性风味组分进行分析,主成分分析结果表明三种商品天然牛奶香精和自制天然牛奶香精的风味最为接近,并且其均与奶酪样品中切达奶酪的风味最为相似。此外为了更好的对自制天然牛奶香精品质进行评定,将自制天然牛奶香精和其它市售牛奶香精一起分别加入复原乳和主食面包中,进行相应的感官评定试验。感官评分结果表明添加自制天然牛奶酶解香精与商品天然牛奶香精的样品同添加合成牛奶香精的样品感官品质有显著差异,而添加自制天然牛奶香精的面包的感官偏好性要高于添加有商品天然牛奶香精和黄油的面包样品。
     选择复合风味蛋白酶酶解奶油中的乳蛋白生成呈浓厚味的滋味组分,采用单因素试验结合响应面优化试验,得到复合酶水解乳蛋白生成呈味肽的最佳工艺条件为:F酶的添加量为3.5% (w/w),N酶的添加量为2.25% (w/w),底物浓度为2.5%(w/v),温度45℃,初始pH8.0,反应时间为7.6h。反应生成肽百分含量为52.7%,并且水解产物感官评价浓厚感滋味浓郁,无苦味。
     使用Sephadex G-15凝胶柱对乳蛋白酶解产物水提物进行分离纯化,得到6个分离峰组分(P1、P2、P3、P4、P5、P6),分别对其进行感官评定,得到三个浓厚感较强的分离峰组分(P3、P4、P5),并分别对其进行阈值测定和电子舌分析,确定浓厚感强度最高的组分为P4。采用RP-HPLC对P4组分进行进一步分离纯化,然后利用MALDI-TOF-MS对其中主要呈味肽组分的氨基酸序列进行鉴定,鉴定得到11种可能呈浓厚感的肽的一级结构,其中大部分肽链来自于β-酪蛋白的酶解产物,并且鉴定得到肽链序列中Glu和Cys的含量较高。然后根据鉴定得到肽的氨基酸序列的呈味特点和Q值分析,选择了其中可能呈浓厚感滋味的8种肽进行合成,并对这8种呈味肽通过感官评定进行阈值分析,得到序列为VPNSAEER的呈味肽阈值较低,浓厚感最强。此外根据评价员对这8种呈味肽的感官描述得到浓厚味与适当强度的苦味或涩味之间具有协同关系。最后对合成得到的呈味肽通过感官评定和电子舌分析,进一步对其呈味特点进行进一步确定。
For their high nutrition value and excellent flavor, dairy products have been more and more popular and taken a great proportion of food manufacture. Therefore, the dairy flavoring has been one of most important flavorings in flavoring and fragrance manufacture. Recently in China the research of enzymatic milk flavoring, which could produce more complicated and ripe flavor and greatly imitate the natural flavor of the aim dairy samples, have gradually earn more attentions. Moreover, the enzymatic production of milk protein of cream hydrolyzed by flavor protease could not only dramatically increase the application ratio of material, but also noticeably increase its kokumi flavor.
     Cream produced from New Zealand which respectively hydrolyzed by lipase and protease was used as raw material. The major volatile compounds and taste composition in lipoyzed production were identified. In addition the structure of kokumi taste-active peptides of hydrolyzed milk protein flavor was identified, and the taste features of these peptides were also studied by sensory analysis and electronic tongue. The main contents of this paper were as following.
     Olive oil and cream were individually conducted as substrates to determine the lipase activity. Based the result of these lipase activities, the optimal lipase was selected from seven kinds of commercial lipases. Then the single factor test and response surface analysis were used to confirm the optimum condition of lipolyzed reactions. Results showed that the optimum condition was reaction temperature 48 oC, starting pH 8.3, the dose of lipase was 2000U/g substrate and the substrate concentration was 92% (w/v). And on the basis of descriptive quantitative analysis and hedonic scale tests, the optimum reaction time of lipolyzed production having the best sensory quality was 4 hours.
     The volatile compounds of lipolyzed production having different reaction time were analyzed by solid-phase micro-extraction (SPME) method, and 118 volatile compounds were identified. The hydrolyzed production with 4 hours reaction time have the most of short and medium chain fatty acids, methyl ketones, esters and lactones, which validate the result of sensory tests. Besides that the solvent extracting method was also conducted to analyze the volatiles of lipolyzed production during 4 hours, and 55 volatiles were determined. Most of them were long chain fatty acids, which may have little contribution to the aroma flavor of lipolyzed production but for its taste flavor.
     The SPME gas chromatograph olfactometry (SPME-GC-O) method and the odor unit value (OUV) analysis method were applied to identify major characteristic volatile compounds of hydrolyzed production having best sensory characteristic. The result of SPME-GC-O indicate the most important volatiles are as following: ethyl butyrate, 2-heptanone, limonene, ethyl caproate, octanal, ethyl caprylate, acetic acid, butanoic acid, hexanoic acid, octanoic acid, decanoic acid, ethyl decanoate,δ-hexalactone andδ-octalactone. While the result of OUV have a little different with the result of SPME-GC-O, the order of these main volatiles were arranged with their flavor contribution as following, hexanoic acid, butanoic acid, ethyl butyrate, 2-pentadecanone, undecanoic acid,δ-octalactone, decanoic acid,δ-dodecalactone, ethyl caproate and octanoic acid.
     For the purpose of getting the self-made natural milk flavoring which could be directly applied in foods, the SPME-GC-MS analysis was selected to analyze different samples, such as cream, three kinds of commercial natural milk flavorings and commercial synthetic milk flavoring. Based on the result of SPME-GC-MS the flavor treating process was conducted. The electronic nose and its relating statistical analysis were used to evaluate the similarities of different samples, such as self-made natural milk flavoring, different commercial natural milk flavorings, cheeses and whole fat milk powders. The results of electronic nose indicate that the aroma flavor of self-made natural milk flavoring is similar with the three commercial natural milk flavorings which were clustered on the PCA figure. And all of these nature flavorings were having the similar flavor with the Cheddar cheese. Moreover, aiming at better assessing the flavor characteristic of self-made natural milk flavoring, the self-made natural milk flavoring and other commercial natural milk flavorings were added in skim milk and bread. The sensory statistic results show that the sample added with self-made natural milk flavoring didn’t have the significant difference with the sample added with natural milk flavoring, but have significant difference with the sample added with synthetic milk flavoring.
     The single factor test and response surface analysis was used to hydrolyze the milk protein separated form cream to get the kokumi composition. The statistic results showed that the optimum conditions were the dose of Flavorzyme 3.5% (w/w) and Neutrase 2.25% (w/w), reaction temperature 45 oC, starting pH 8.0, the substrate content was 2.5% (w/v), and the reaction time was 7.6 hours. Moreover, the rough peptide content of hydrolyzed product was 52.7%, and the hydrolysate had the highest scores in the taste of sensory evaluation without any bitterness.
     Based on the sensory characteristic of 6 gel permeation chromatography (GPC) fractions (named P1, P2, P3, P4, P5 and P6) separated from the milk protein hydrolyzed compounds, there are three GPC fractions (P3, P4, P5) have clear“kokumi”flavor compared with the skimmed fresh milk. Moreover, according to the sensory thresholds and electronic tongue analysis, P4 fraction was identified as the composition which has the strongest kokumi flavor. Then the P4 fraction was further separated by semi-preparation reverse phase high performance liquid chromatography (RP-HPLC). The identified results of the matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) on P4 fraction separated by RP-HPLC show that there are 11 peptides existing in the P4 fraction, most of which have 8 ~ 9 amino acids and originated fromβ-casein. And most of their amino acid sequences have Glu and Cys which were identical with the kokumi peptide researches of other people. Moreover, on the basis of their sequence characteristic and Q value analysis, 8 peptides were selected and synthesized. Then the taste characteristics of these synthesized peptides were evaluated by the sensory analysis and electronic tongue. Finally one of these peptides with the sequence of Val-Pro-Asn-Ser-Ala-Glu- Glu-Arg has the greatest kokumi flavor, and the sensory result also shows that kokumi flavor would have the synergism with the bitterness and astringent flavor.
引文
1.齐军茹,苏景如,彭志英.生物技术在食品风味物质生产中的应用[J].食品科技, 2002, 8: 9-11.
    2.宋焕禄.食用香味料的生化生物制备[M].北京:中国物资出版.2002,6.
    3.李雁群,肖功年.酶在食品加工中的应用(第二版)[M].北京:中国轻工业出版社, 2002.
    4.王璋,许时婴等.食品化学[M].北京:中国轻工业出版社2003,407-413.
    5.张之涤.酶法奶类香精的研制及应用[J].中国食品添加剂,1999,4:51-53.
    6. Balc?o V M, Malcata F X. Lipase catalyzed modification of milk fat [J]. Biotechnology Advances, 1998,16 (2): 309-341
    7.武彦文,欧阳杰,张津凤等.酶法水解奶油制备奶味香精的研究[J].中国调味品, 2003, 12: 39-42.
    8.郭本恒.干酪[M].北京:化学工业出版社,2004, 34-38.
    9. Noronha N, Cronin D A, O’Riordan E D, O’Sullivan M. Flavouring of imitation cheese with enzyme-modified cheeses (EMCs): Sensory impact and measurement of aroma active short chain fatty acids (SCFAs) [J]. Food Chemistry, 2007, 106: 905~913.
    10.代敏.保鲜乳挥发性风味物质的分析与调控[D]:[硕士学位论文].哈尔滨:东北农业大学, 2006.
    11. Nursten H E. The flavour of milk and dairy products [J]. International Journal of DairyTechnology, 1997, 50: 48-55.
    12. Nogueira M C L, Lubachevsky G, Rankin S A. A study of the volatile composition of Minas cheese [J]. LWT-Food Science and Technology, 2005, 38: 555–563.
    13. Vernin G. Chemistry of Heterocyclic Compounds in Flavours and Aromas [M]. New York: Halsted Press, 1982, 109-114.
    14. Forss D A. Mechanisms of formation of aroma compounds in milk and milk products [J]. Journal of Dairy Science, 1979, 46: 691-706.
    15. Chen J Y, Yang B K. Enhancement of release of short-chain fatty acids from milk fat with immobilized microbial lipase [J]. Journal of Food Science, 1992, 57: 781-782.
    16. Adda J. Flavour of dairy products [J]. Journal of Food Flavours. 1986, 23: 151-172.
    17. Keenan T W, Lindsay R C. Evidence for a dimethylsufide precursor in milk [J]. Jouranl of Dairy Science, 1969, 51: 950-957.
    18. Buttery R G, Seifert R M, Turnbaugh J G, et al.. Odour threshold of thiamin odour compound [J]. Journal of Agriculture Food Chemistry, 1981, 29: 183-191.
    19. Nursten H E. Aroma compounds from the Maillard reaction [J]. Food Flavours, 1986, 23: 173-189.
    20. Boekel M V. Effects of heating on Maillard reaction in milk [J]. Food Chemistry, 1998, 62: 403-414.
    21. Lindsay R C, Rippe J K. Enzymic generation of methanethiol in flavor development of Cheddar cheese and other foods [J]. Biogeneration of Aroma. American Chemistry Society, 1986, 317: 286-308.
    22. Dumot J, Padda J. Flavour formation in dairy products [J]. Flavour Research, 1979, 34: 245-262.
    23.李玉发.奶香型香味料的种类及合成方法[J].安徽化工,2002,5:17-19.
    24. King R D, Cheetham P S J. Food Biotechnology [M]. London: Elsevier applied science, 1988, 59-63.
    25. Seitz, E.W. Microbial and enzyme-induced flavors in dairy foods [J]. Journal of Dairy Science, 1900, 73: 3664-3691.
    26.张宁,曹劲松,彭志英.风味物质分离方法研究进展[J]. 1998, 4: 7-11.
    27. Barra A, Baldovini N, Loiseau A M. Chemical analysis of French beans (Phaseolus vulgarisL.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/ extraction (SDE) [J]. Food Chemistry, 2007, 101 (3): 1279-1284.
    28. Etievant P X, Artifacts and contaminants in the analysis of food flavor [J]. CRC Crit Rev Food Sci Nutr, 1996, 36: 733-745.
    29. Reineccius G. Biases in analytical flavor profiles introduced by isolation method [M]. In: Flavor Mesurement, eds. Ho C T, Manley C H. Marcel Dekker, New York, 1993. 61-76.
    30. Parliament T H. Solvent extraction and distillation techniques [M]. In: Techniques for Analyzing Food Aroma, ed. R. Marsili. Marcel Dekker, New York, 1997. 1-26.
    31.于铁妹,王卫飞,杨博等. GC-MS分析天然奶味香精的致香成分[J].现代食品科技, 2008, 24 (1): 80-82.
    32.郭方遒,钟科军,黄建国.烟用香精中风味成分的提取条件的优化与测定[J].分析实验室,2006,25 (7):18-22.
    33.钟科军,魏万之,郭方遒等.GC-MS及主成分分析法用于咖啡香精的指纹图谱分析和微差样品的识别[J].分析实验室, 2006, 25 (8): 119-122.
    34.胡燕霞. SPME在香精香料行业中的应用[J].化工时刊, 2004, 18(4): 14-16.
    35. Pawliszyn J, Weber M F, Dignam M J, Park S M. Selective observation of concentration gradients by the laser beam deflection sensor applied to in situ electrochemical studies. A novel approach [J]. Analysis of Chemistry, 1986, 58 (1): 239–242.
    36. Hiroyuki Kataka, Heather L Lord, Janusz Pawlisyzn. Applications of solid-phase microextraction in food analysis [J]. Journal of Chromatography A, 2000, 880: 35-62.
    37. Yang X G. Peppard T. Solid Phase Microextraction for Flavour Analysis [J]. Journal of Agriculture and Food Chemistry, 1994, 42: 1925~1930.
    38. Gianelli M P, Flores M, Toldra F. Optimisation of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham [J]. Journal of Science and Food Agriculture, 2002, 82: 1703-1709.
    39. Bellesia F, Pinetti A, Pagnoni U M. Volatile components of Grana Parmigiano- Reggiano type hard cheese [J]. Food Chemistry, 2003, 83: 55–61.
    40. Dietz,C.,Sanz J.;Camara,C.,Recent developments in solid-phase microextraction coatings and related techniques [J].Journal of Chromatography A 2006,1103,(2),183-192.
    41.刘亚琼,朱运平,乔支红.食品风味物质分离技术研究进展.[J].食品研究与开发, 2006,27(6): 181-183.
    42. Frank D C, Owen C M, Patterson M. Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds [J]. LWT - Food Science and Technology, 2004, 37: 139–154.
    43. Kim T H, Lee S M, Kim Y S.Aroma dilution method using GC injector split ratio for volatile compounds extracted by headspace solid phase microextraction [J]. Food Chemistry 2003, 83: 151–158.
    44. Saskia M, Ruth V. Methods for gas chromatography- olfactometry:a review [J]. Biomolecular Engineering, 2001, 17: 121~128.
    45. Thierry Serot, Carole Prost, Luminita Visan, Mirella Burcea. Identification of the main odor-active compounds in musts from French and Romanian hybrids by three olfactometric methods [J]. Journal of Agriculture and Food Chemistry, 2001, 49: 1909-1914.
    46. Frank D C, Owen C M, Patterson. J. Solid phase microextraction (SPME) combined with gas chromatography and olfactomtry-mass spectrometry for characterization of cheese aroma compounds [J]. LWT - Food Science and Technology, 2004, 37(2):139-154.
    47. Senger-Emonnot P, Rochard S, Pellegrin F, et al. Odor active aroma compounds of sea fig (mirocosmus sulcatus) [J].Food Chemistry, 2006,97 (3):465-471.
    48. VanLoon W A M, Linssen J P H,Legger A,et. al.. Identification and olfactometry of French fries flavor extracted at mouth conditions [J]. Food Chemistry 2005, 90 (3): 417-425.
    49. Grosch W. Determination of potent odourants in foods by aroma extract dilution analysis (AEDA) and calculation of odour activity values (OAVs) [J]. Flavour Fragance Journal, 1994, 9:147-158.
    50. Guth H, Grosch W. Deterioration of soya-bean oil: quantification of primary flavour compounds using a stable isotope dilution assay [J]. LWT - Food Science and Technology, 1990, 23: 513-522.
    51. Rychlik M, Grosch W. Identification and quantification of potent odorants formed by toasting of wheat bread [J]. LWT - Food Science and Technology, 1996, 29: 515-525.
    52. Stephan A, Bücking M, Steinhart H. Novel analytical tools for food flavours, review [J]. Food Research International 2000, 33: 199-209.
    53. Stone H, Sidel J L. Sensory Evaluation Practice [M]. San Deigo: Academic,1993.
    54. Amerine M A, Pangborn R M, Roessler E B. Principles of Sensory Evaluation of Food [M]. New York: Academic.
    55. Helm E, Trolle B. Selection of a taste panel [J]. Wallerstein Laboratory Communications, 1946, 9: 181-194.
    56. Stone H, Sidel J L. Strategic applications for sensory evaluation in a global market [J]. Food Technology, 1995, 49 (2): 80-89.
    57. Szczesniak A S, Loew B J, Skinner E Z. Consumer texture profile technique [J]. Journal of Food Science, 1975, 40: 1253-1257.
    58. Jones L V, Peryam D R, Thurstone L L. Development of a scale for measuring soldier’s food preferences [J]. Food Research, 1946, 20: 512-520.
    59.刘亭利,胡国清.电子鼻的应用综述.[J].传感器世界, 2007, 8: 6-10.
    60. Schaller E, Bosset J O, Escher F.“electronic noses”and their application to food [J]. LWT - Food Science and Technology, 1998, 31: 305-316.
    61. Collier W A, Baird D B, Park-Ng Z A, et. al.. Discrimination among milks and cultured dairy product s using screen-printed electrochemical arrays and an electronic nose [J]. Sensors and Actuators B: Chemical, 2003, 92: 232-239.
    62. Patrick J O, Riordan C, Delahunty M. Characterisation of commercial Cheddar cheese flavour. 2: study of Cheddar cheese discrimination by composition , volatile compounds and descriptive flavour assessment [J]. International Dairy Journal , 2003 , 13 : 371~389.
    63.邓少平,田师一.电子舌技术背景与研究进[J].食品与生物技术学报, 2007,26(4):110-116.
    64. Gallardo J, Alegret S, Valle M D. Application of a potentiometric electronic tongue as a classification tool in food analysis [J]. Talanta, 2005, 66: 1303 - 1309.
    65. Winquist F, Bjorklund C, Rulcker K, et al.. An electronic tongue in the dairy industry [J]. Sensors and Actuators B: Chemical, 2005, 111:299- 304.
    66.滕炯华.基于电子舌技术的果汁饮料识别[J].测控技术, 2004, 23(11): 4- 5.
    67. Getchell T V, Doty R L, Bartoshuk L M, Snow J B. Smell and Taste in Healthy and Disease. [M]. New York: Raven, 1991: 205-203.
    68. Bartoshuk L M, Duffy V B, Miller I J. PTC/PROP tasting: anatomy, psychophysics and sex effects [J]. Physiology and Behavior, 1994, 56: 1165-1171.
    69.张永忠,李铁晶,赵新淮等.乳品化学[M].北京科学出版社, 2007, 210-213.
    70. Ueda Y, Yonemitsu M, Tsubuku T, Sakaguchi M, Miyajima R. Flavor Characteristics of Glutathione in Raw and Cooked Foodstuffs [J]. Biosci. Biotechnol. Biochem., 1997, 61: 1977-1980.
    71.王璋,许时婴,江波等.食品化学[M].北京:中国轻工业出版社,2003:605-614.
    72. Shallenberger R S, Acree T E. Molecular theory of sweet taste [J]. Nature, 1967, 216: 480-482.
    73. Belitz H D, Wieser H. Bitter compounds: Occurrence and structure-activity relationships [J] Food Rev. Int. 1985, 1(2): 271-354.
    74. Teranishi R, Flath R A, Sugisawa H. Flavor Research Recent Advances [M]. New York: Marcel Dekker, 1981, 305-353.
    75.芝哲夫.味とにぉぃの化学.化学综说[J]. NO.日本化学会编,1976:83-168.
    76.并木满夫,松下雪郎.食品の品质と成分间反应[M].东京(日本):讲谈社サンェンティフィク,1990:103-127.
    77. Cagen R H, Kare M R. Biological and Behavioral Aspects of Salt Intake [M]. New York: Academic Press, 1980. 83-114.
    78. Beets M G J. Structure-Activity Relationships in Human Chemoreception [M]. London: Applied Science, 1978. 259-362.
    79. Kawamura Y, Kare M R. Umami: A Basic Taste [M]. New York: Dekker, 1987.
    80. Nagodawithana T W. Savory Flavors [M]. Milwaukee WI: Esteekay Associates, 1995.
    81. Meilgaard M C, Reid D S, Wyborski K A. Reference standards for beer flavor terminology system [J]. Journal of the American Society of Brewing Chemists, 1982, 40: 119-128.
    82. Lawless H T, Heymann H. Sensory Evaluation of Food Principles and Practices [M]. Gaithersburg Maryland, USA: Aspen Publisher, 1998.
    83.程竹青.胜肽对食品鲜味的影响[J].食品工业(台湾), 2002, 9: 3-181.
    84. Kirimura J , Shimitsu A , Kimizuka A, et al.The contribution of peptide and amino acids to the taste of food stuffs [J] . Journal of Agriculture and Food Chemistry, 1969, 17: 689– 695.
    85.周雪松,赵明谋.肽的呈味功能研究[J].中国调味品, 2005, 6: 38-42.
    86. Grenby T H. Intense sweetners for the food industry: an overview [J]. Trends Food Science and Technology, 1991, 2: 2-61.
    87. Umetsu H, Matsuoka H, Ichishima E. Debittering Mechanism of Bitter Peptides from MilkCasein by Wheat Carboxypeptidase [J]. Journal of Agriculture and Food Chemistry, 1983, 31(1): 50-53.
    88. Matoba T, Hayashi R , Hata T . Isolation of bitter peptides from a trypic hydrolysate of casein and their chemical structure [J] . Journal of Agriculture and Food Chemistry, 1970, 34: 1235– 1243.
    89. Mojarro-Guerra S H, Amado R, Arrigoni E, et al . Isolation low - molecular weight taste peptides from Vacherin Mont? Or cheese [J]. Food Science, 1991, 56: 943– 947.
    90. Ney KH. Food taste chemistry [M]. Washington (DC): American Chemical Society, 1979,149–173.
    91. Seki T, Kawasaki Y, Tamura M, et al. Further study on the salty peptide ornithy 1 -β-alanine. Some effects of pH and additive ions on the saltiness [J]. Journal of Agriculture and Food Chemistry, 1990, 38: 25-29.
    92.曹雁平.食品调味技术[M].北京:化学工业出版社, 2002. 63-64.
    93. Yamasaki Y, Maekawa K. A peptide with delicious taste [J]. Agriculture and Biological. Chemistry, 1978, 42:1761-1765.
    94. Spanier, E. Assessment of habitat selection behaviour in macro-organisms on artificial reefs [C]. In: Jensen A, eds. European Artificial Reef Research. Proceedings of the 1st Conference of the European Artificial Reef Research Network (ISEH). Ancona: (ISEH), 1996. 323–336.
    95. Ueda Y, Sakaguchi M, Hirayama K, et al. Characteristic Flavor Constituents in Water Extract of Garlic [J]. Agriculture Biology and Chemistry, 1990, 4: 163~169.
    96. Ueda Y, Tsubuku T, Miyajima R. Composition of Sulfur-Containing Components in Onion and Their Flavor Characters [J]. Bioscience, biotechnology and biochemistry, 1994, 58: 108~110.
    97. Toelstede S, Dunkel A, Hofmanna T. A Series of Kokumi Peptides Impart the Long-Lasting Mouthfulness of Matured Gouda Cheese [J]. Journal of Agriculture and Food Chemistry, 2009, 57: 1440–1448.
    98. Dunkel A, Kster J, Hofmann T. Molecular and Sensory Characterization ofγ-Glutamyl Peptides as KeyContributors to the Kokumi Taste of Edible Beans (Phaseolus vulgaris L.) [J]. Journal of Agriculture and Food Chemistry, 2007, 55: 6712-6719.
    1. Jensen R G, Quinn J G, Carpenter, D L, Sampugna J. Gas-liquid chromatographic analysis of milk fatty acids: A review [J]. Journal of Dairy Science, 1967, 50: 119-125.
    2. Arnold R G, Shahani K M, Dwivedi B K. Application of lipolytic enzymes to flavor development in dairy products [J]. Journal of Dairy Science,1975, 58: 1127- 1143.
    3.陈影,赵征.解脂假丝酵母脂肪酶酶解乳脂肪的研究[J].广州食品工业科技, 2004, 20(1): 42-44.
    4.吴松刚,施巧琴等.碱性脂肪酶催化特性和安全性的研究[J].化工科技市场, 2003, 26(6): 28-30.
    5. Balc?o V M, Malcata F X. Lipase catalyzed modification of milk fat [J]. Biotechnology Advances, 1998,16 (2): 309-341.
    6.赵海珍.脂肪酶催化猪油酸解制备功能性脂的研究[D]: [博士学位论文].南京:南京农业大学, 2005.
    7. Kumar D M. Lipase-Catalyzed Reactions for Modification of fats and other Lipids [J]. Biocatalysis and Biotransformation, 1990, 3(4): 277– 293.
    8.宁正祥主编.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    9.天野脂肪酶酶活测定方法[EB/OL].http://www.amano-enzyme.co.jp/pdf/synthe_c/cat_ synthe_LPSA-IM_c.pdf,1998-09
    10. Box G E P, Behnken D W. Some new three level design for the study of quantitative variables [J].Technometrice,1960,(2):455-476
    11. Kanisawa T, Yamaguchi Y, Hattori S. Production of dairy flavors by microbial lipase [J]. Nippon Shokuhin Kogyo Gakkaishi, 1982, 29: 693-698
    12. Jensen R G, Ferris A M, Lammi-Keefe C J. The composition of milk fat [J]. Journal of Dairy Science, 1991, 74: 3228-3243.
    13.王小芬,张艳红,王俊华等.微生物脂肪酶的研究进展[J].科技导报, 2006, 24(2): 10-12.
    14.彭立凤,赵汝淇,谭天伟.微生物脂肪酶的应用[J].食品与发酵工业,2000, 26(3): 68-72.
    15.李燕,潘运国等.微生物脂肪酶催化及其性质研究进展[J].粮食与油脂, 2005, (10): 15-17.
    16. Hernández I, de Renobales M, Virto M, et al. Assessment of industrial lipases for flavour development in commercial Idiazabal (ewe’s raw milk) cheese [J]. Enzyme and Microbial Technology, 2005, 36: 870–879.
    17.刘晓艳,成坚,徐晓飞.非水体系脂肪酶催化生成奶味香精的研究[J].食品工业科技, 2007,28(4):191-193.
    18.天野脂肪酶MER [EB/OL]. http://www.amano-enzyme.co.jp/cn/productuse/oil_fat.html, 2005-04.
    19.郑毅,叶海梅等.脂肪酶活力测定研究进展[J].工业微生物, 2005, 35(4): 36-40.
    20.脂肪酶Palatse 20000L性质http://www.chinamzj.cn/html/1023/ 20087/bizView_489031_ 9257.asp, 2008-07.
    21. Schrag J D, Yunge L I, Shan W U, et al. A Ser-His-Glu triad form the catalytic site of the lipase from Geotrichum Candium [J]. Nature, 1991, 351: 761-764.
    22.郭诤,张根旺.脂肪酶的结构特征和化学修饰[J].中国油脂,2003,28(7): 6-8.
    23. Malcata F X, Hector R R, Hugo S G, et al. Kinetics and mechanism of reaction catalysed by immobilized lipase [J]. Enzyme Microb Technol, 1992,14: 426-446.
    24. Brady L, Brzozowski A M, Derewenda Z S, et al. Aserine protease trade forms the catalytic center of a triacylglycerol lipase [J]. Nature, 1990,243: 760-770.
    25. Heymann, H, Noble, A C. Comparison of descriptive analysis of vanilla by two independently trained panels [J]. Journal of Sensory Studies, 1994, 9: 21-32.
    26.赵新淮,于国萍等.乳品化学[M].北京:科学出版社. 2007: 73-77.
    1. Westenhoefer J,Pudel V. Pleasure from food: Importance for food choice and consequence of deliberate restricton[J].Appetite 1993,20:246-249.
    2. Pawliszyn, Steffen A. Analysis of flavor volatiles using headspace solid-phase microextraction [J]. Journal of Agriculture and Food Chemistry, 1996, 44:2187- 2193.
    3. Hiroyuki Kataka, Heather L Lord, Janusz Pawlisyzn. Applications of solid-phase microextraction in food analysis. [J]. Journal of Chromatography A, 2000, 880: 35-62.
    4. Zellner B A, Dugo P, Dugo G, Mondello L. Gas chromatography–olfactometry in food flavour analysis: review. [J]. Journal of Chromatography A, 2008, 1186: 123–143.
    5. Guadagni, D. G., Buttery, R. G., & Harris, J. Odour intensities of hop oil constituents. Journal of the Science of Food and Agriculture [J].1966, 17: 142–144.
    6. Luna, G., Morales, M. T., & Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions [J]. Food Chemistry.2006, 98: 243-252.
    7. Miguel P, Laura E G. A 21st century technique for food control: Electronic noses [J]. Analytica Chimica Acta, 2009 638 (1): 1-15.
    8.刘亭利,胡国清.电子鼻的应用综述[J].传感器世界,2007, 8: 6-10.
    9. Jenning W, Shibamoto S, Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography [M]. Academic Press, New York,1980.
    10. Bianchi G, Nuzzi M, Leva A A, Rizzolo A. Development of a headspace-solid phase micro extraction methodto monitor changes in volatile profile of rose (Rosa hybrida, cv David Austin) petals during processing [J]. Journal of Chromatography A, 2007, 1150: 190–197.
    11.李照,邢黎明,云战友,李翠枝,朱丽敏.电子鼻测定牛奶中掺入外来脂肪[J].乳业科学与技术2008,1: 39-41.
    12. Harry T, Lawless, Hildegarde H,著.王栋,李崎,华兆哲译.食品感官评价原理与技术[M].北京:中国轻工业出版社, 2001.
    13.刘源,周光宏,徐幸莲.固相微萃取及其在食品分析中的应用[J].食品与发酵工业.2003.29(17): 83-87.
    14. Elmore J S, Mehmet A E, Donald S. M. Comparison of dynamic headspace concentration on Tenax with solid phase microextraction for the analysis of aroma volatiles [J]. Journal of Agriculture and Food Chemistry, 1997, 45: 2638-2641.
    15. Burdock G. A., Fenaroli’s Handbook of Flavor Ingredients. CRC Press,Boca Raton, FL, 2005.
    16. Kanisawa T, Yamaguchi Y, Hattori S. Production of dairy flavors by microbial lipase [J]. Nippon Shokuhin Kogyo Gakkaishi, 1982, 29: 693-698.
    17.孙宝国,刘玉平.食用香料手册.[M].北京:中国石化出版社,2004, 344-345.
    18. Nogueira M C L,Lubachevsky G, Rankin S A. A study of the volatile composition of Minas cheese [J].Lebensm.-Wissu-Technology 2005,38: 555-563.
    19. Fernádez G E, Carbonell M, Gaya P, et al. Evolution of the volatile components of ewe raw milk Zamorano cheese Sesonal variation [J].International Dairy Journal 2004, 14: 701-711.
    20.王蓓,许时婴.SPME-GC/MS对不同牛奶香精和稀奶油中的挥发性风味物质比较,食品与发酵工业,2008,(34):115-121.
    21.赵心淮,于国萍等.乳品化学[M].北京:科学出版社. 2007, 75-81.
    22.李和,李佩文,于振华.食品香料化学——杂环香味化合物[M].北京:中国轻工业出版社.1992, 116-119.
    23.李益荣,陈桐荣等.市售鲜乳脂肪酸组成特性及其与风味关系初步探讨[J].中国畜牧学会会志(台湾) ,1996,25,(2): 209-219.
    24. Balc?o V M, Malcata F X. Lipase catalyzed modification of milk fat [J]. Biotechnology Advances, 1998,16 (2): 309-341.
    25. Vernin G. Chemistry of Heterocyclic Compounds in Flavours and Aromas [M]. New York: Halsted Press, 1982, 109-114.
    26. Atasoy A F, Türko?lu H.Lipolysis in Urfa cheese produced from raw and pasteurized goats’and cows’milk with mesophilic or thermophilic cultures during ripening [J]. Food Chemistry 2009, 115: 71-78.
    27. Gómez-Míguez M J, Cacho J F, Ferreira V, et al. Volatile components of Zalema white wines [J]. Food Chemistry, 2007, 100: 1464-1473.
    28. Langler. J. E, Day. E. A. Development and Flavor Properties of Methyl Ketones in Milk Fat [J]. Journal of Dairy Science, 1964, 47(12):1291-1296
    29.张和平,张列兵.现代乳品工艺手册.[M].北京:中国轻工业出版社,2005,531-532
    30.汤鲁宏.食品香精的化学与工艺学(第三版).北京:中国轻工业出版社. 2005, 327-365
    31.郭本恒.干酪[M].北京:化学工业出版社, 2004, 34-38
    32.代敏,霍贵成.固相微萃取在乳制品风味分析中的应用[J].中国乳品工业,2006, 3: 39-42
    33.王德峰.食用香味料制备与应用手册[M].中国轻工业出版社,北京: 2000, 395-398.
    34. Huichun Yu, Jun Wang, Hongmei Zhang. Identification of green tea grade using different feature of response signal from E-nose sensors [J]. Sensors and Actuators B, 2008, 128: 455–461.
    35. Pilar M M, Ricard B, Olga B, Josep G, Electronic noses in the quality control of alcoholic beverage [J]. Trends in Analytical chemistry, 2005, 24: 57-66.
    36. Virto M, Chavarri F, Bustamante M A, et al. Lamb rennet paste in ovine cheese manufacture.: Lipolysis and flavour [J]. International Dairy Journal, 2003,13: 391–399.
    37.奶业遭遇复原乳[EB/OL].http://finance.sina.com.cn/focus/nyzyfyr/index. shtml,2005-09-22
    38.盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社2002,441-442.
    1. Noronha N, Cronin D A, O’Riordan E D, O’Sullivan M. Flavouring of imitation cheese with enzyme-modified cheeses (EMCs): Sensory impact and measurement of aroma active short chain fatty acids (SCFAs) [J] Food Chemistry., 2007, 106: 905-913.
    2. Toelstede S, Dunkel A, Hofmanna T. A Series of Kokumi Peptides Impart the Long-Lasting Mouthfulness of Matured Gouda Cheese [J]. Journal of Agriculture and Food Chemistry. 2009, 57: 1440–1448.
    3.宁正祥.食品成分分析手册[M].北京:中国轻工业出版社. 2001.
    4.张树政.酶制剂工业(下册)[M].北京:科学出版社,1984.
    5. Box G E P, Behnken D W. Some new three level design for the study of quantitative variables [J].Technometrice,1960, 2: 455-476.
    6. Brunner J R. Cow milk proteins: Twenty-five years of progress [J]. Journal of Dairy Science. 1981, 64: 1038-1054.
    7. Payens, T A J. casein micelles: The colloid-chemical approach [J]. Journal of Dairy Research. 1979, 46: 291-306.
    8. Thompson M P N P, Tarassuk R, Jenness H A, et al. Nomenclature of the proteins of cow’s milk–second revision [J]. Journal of Dairy Science. 1965,48: 159-169.
    9. Whitney R M. Milk Proteins, in Food Colloids. [M]. AVI, Westport, CT, pp: 66-151.
    10. Ehab E, Kheadr J C, Vuillemard S A, Deeb E. Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening [J]. Food Research International. 2003, 36: 241–252.
    11. Engels W J M, Visser S. Development of cheese flavour from peptides and amino acids by cell-free extracts of lactcoccus lactis sbusp. cremoris B 78 in a model system [J]. Netherland Milk Dairy Journal. 1996, 50:3-17.
    12. Adamson N J, Reynolds E C. Characterization of casein phosphopeptides prepared using Alcalase [J].Enzyme and microbial technology,1996,19: 202-207.
    13.功能食品酶制剂[EB/OL]. http://space.foodmate.net/154201/viewspace-26457. html ,2009-02.
    14.田怀香,王璋,许时婴.酶法提取金华火腿中的风味前体物质. [J].食品与机械, 2005, 21: 1~5.
    15.宋焕禄.食用香味料的生化生物制备[M].北京:中国物资出版社, 2002: 134-137.
    16.马玲,宗学醒,白建. Mozzarella干酪和模拟干酪成熟过程中蛋白水解性的变化[J].当代畜牧, 2005, 8: 47-49.
    17. Grigorov M G, Schlichtherle-Cerny H, Affolter M, Kochhar S. Design of Virtual Libraries of Umami-Tasting Molecules [J]. Journal of Chemistry Information and Computer Science, 2003, 43: 1248-1258.
    18. Schlichtherle-CernyH, Amado R. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten [J]. Journal of Agriculture and Food Chemistry, 2002, 50: 1515-1522.
    19. Jeng-Leun Mau,Hsru-Ching Lin,Jung-Tsun Ma et al. Non-volatile taste components of several speciality mushroom [J].Food Chemistry 2001,73: 461-466.
    20. Solms J. Taste of amino acids, peptides, and proteins [J]. Journal of Agriculture and Food Chemistry, 1969, 17 (4): 686-688.
    1.周雪松,赵谋明.肽的呈味功能研究[J].中国调味品,2005,6: 38-42.
    2. Dunkel A, Kster J, Hofmann T. Molecular and Sensory Characterization ofγ-Glutamyl Peptides as KeyContributors to the Kokumi Taste of Edible Beans (Phaseolus vulgaris L.). [J]. Journal of Agriculture and Food Chemistry, 2007, 55: 6712-6719.
    3. Ciosek P, Brzózka Z, Wróblewski W. Electronic tongue for flow-through analysis of beverages [J]. Sensors and Actuators B, 2006, 118: 454–460.
    4. Soeryapranata E, Powers J R, Fajarrini F, et al. Relationship between MALDI-TOF Analysis ofβ-CN f193?209 Concentration and Sensory Evaluation of Bitterness Intensity of Aged Cheddar Cheese [J]. Journal of Agriculture and Food Chemistry, 2002, 50: 4900-4905.
    5.张玉奎,张维冰.分析化学手册-液相色谱分析[M].北京:化学工业出版社, 2000.19-52.
    6.蔡廓,邱燕翔,黎国志.浓厚味肉类提取物的开发与应用[J]食品科技, 2001, 5: 31-33.
    7. Toelstede S, Dunkel A, Hofmanna T. A Series of Kokumi Peptides Impart the Long-Lasting Mouthfulness of Matured Gouda Cheese [J]. Journal of Agriculture and Food Chemistry 2009, 57: 1440–1448.
    8. Kirimura J, Shimizu A, Kimizuka A, et al. Contribution of peptides and amino acids to thetaste of foods [J]. Journal of Agriculture and Food Chemistry, 1969, 17 (4): 689-695.
    9.王栋,李崎,华兆哲等.食品感官评价原理与技术[M].北京:中国轻工业出版社, 2001: 96-97.
    10. Zhou L, Beuerman R W, Barathi A, Tan D. Analysis of rabbit tear proteins by high-pressure liquid chromatography/electrospray ionization mass spectrometry [J]. Rapid Commun Mass Spectrom., 2003, 17: 40l - 4l2.
    11.卢庄,王彬,代景泉等.基质辅助激光解吸附电离-飞行时间串联质谱研究重组人促红细胞生成素一级结构[J].分析化学, 2006, 34: 591-597.
    12.盛泉虎,汤海旭,解涛等.用于串联质谱鉴定多肽的计量方法[J].生物化学与生物物理学报, 2003, 35(8): 734-740.
    13.赵心淮,于国萍,张永忠等.乳品化学[M].北京:科学出版社,2007.94-97.
    14. Ferranti P, Itolli E, Barone F, Malorni A, et al. Combined high resolution chromatographic techniques (FPLC and HPLC) and mass spectrometry-based identification of peptides and proteins in Grana Padano cheese [J]. Lait, 1997, 77: 683-697.
    15. Toelstede S, Hofmann T. Sensomics Mapping and Identification of the Key Bitter Metabolites in Gouda Cheese [J]. Agriculture and Food Chemistry, 2008, 56: 2795-2804.
    16.曹雁平.食品调味技术[M].北京:化学工业出版社, 2002, 63-64.
    17. Yamasaki Y. Maekawa K. A peptide with delicious taste [J]. Journal of Agriculture and Biological Chemistry, 1978, 42: 1761-1765.
    18. Ueda Y, Yonemitsu M, Tsubuku T, Sakaguchi M, Miyajima R. Flavor Characteristics of Glutathione in Raw and Cooked Foodstuffs [J]. Bioscience Biotechnology Biochemistry, 1997, 61: 1977-1980.
    19. Schlichtherle-CernyH, Amado R. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten [J]. Journal of Agriculture and Food Chemistry , 2002, 50: 1515-1522.
    20. Toelstede S, Hofmann T. Sensomics Mapping and Identification of the Key Bitter Metabolites in Gouda Cheese [J]. Journal of Agriculture and Food Chemistry, 2008, 56: 2795-2804.
    21. Fujimaki M, Arai S, Yamashita M, Kato H, Noguchi M. Taste peptide fractionation from a fish protein hydrolysate [J]. Agriculture and Biological Chemistry, 1973, 37: 2891-2897.
    22. Yamasaki Y, Maekawa K. Synthesis of a peptide with delicious taste [J]. Agricultural and Biological Chemistry, 1980, 44(1): 93-97.
    23. Adier-Nissen ,Jens.Enzymatic hydrolysis of food proteins [M].In a review of food protein hydrolysis-specific areas,Elsevier Applied Science Publisher LTD, New York,1986:57-69.
    24. Ney, K. H. Prediction of bitterness of peptides from their amino acid composition. Lebensm [J]. Forsch, 1971, 147: 64-68.
    25. Clegg, K. M., Lim, C. L., Manson, W. The structure of a bitter peptide derived from casein by digestion with papain [J]. Journal of Dairy Research, 1974, 41: 283–287.
    26. Toelstede S, Hofmann T. Sensomics Mapping and Identification of the Key Bitter Metabolites in Gouda Cheese [J]. Journal of Agriculture and Food Chemistry, 2008, 56 (8): 2795-2804.
    27. Zicarelli L,张沅水译,牛奶的特性,产量及莫兹瑞拉(Mozzarella)奶酪[J].世界农业, 2007, 12: 56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700