用户名: 密码: 验证码:
高效微小通道热沉散热系统设计及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微通道热沉由于结构紧凑,比表面积大,换热能力强,易于集成和工作安全可靠等优点,使其成为高热流密度电子器件散热和飞行器热控领域的有效装置。本文综合介绍和分析了微小通道热沉散热系统的工作原理及其特性,针对几种不同结构的微小通道热沉散热系统进行了一系列实验和理论研究。
     本文针对不同的应用空间场合,设计了微小通道热沉散热系统整体方案和系统各部件结构型式。采用机械加工方式设计和加工了矩形平行直列通道和交错肋片扰流通道结构热沉,实验研究了其在不同结构型式和加热功率下的系统运行特性。实验和数值模拟对比分析表明交错肋片布置结构中由于交错肋对流体的不断扰动,抑制了边界层沿流动方向的充分发展,从而增强了换热效果,较矩形直列热沉结构具有更好的散热性能,其平均换热能力提高了19.4%以上,但在每列的交错肋片的前后端处有流动涡形成,带来了阻力增大的问题。此外,从场协同的角度出发分析了交错肋片结构强化传热和流动阻力增加的机理。流体沿其流动方向在每个肋片的前后端都受到新的扰动,在这些位置上热流和速度矢量之间的β协同角呈周期性地变化,其数值远小于矩形直列通道的场协同角β大小,提高了对流换热强度。但在流体扰动的同时,带来了阻力增加的问题,其速度矢量和速度梯度矢量之间的α协同角较平行直流通道要大。综合考虑两种结构的传热和流动情况,引入温度梯度矢量(?)T和速度梯度矢量(?)υ之间的γ协同角关系,显示交错肋片结构具有相对较优的综合性能。
     结合增大微小通道散热器比表面积和削弱热边界层发展以强化传热的目的,本文设计了一种新型多层交错蜂窝板叠合微小通道热沉结构。采用光化学刻蚀方法加工的蜂窝微小通道板通过层层叠加的方式,在热沉内部形成微肋交错扰动的流体通道。该方法通过层叠方式在有限的封装空间内形成较单层流道更大的比表面积,构建了交错扰流的三维立体结构,解决了整体加工难度大及制造成本高等问题。针对该新型结构微小通道热沉设计,在不同流量,不同加热功率,不同工质,不同热沉设计尺寸等实验情况下对其散热系统进行了性能测试实验,对影响该系统性能的因素进行了分析和讨论。实验发现流量对系统性能影响很大,为得到较大的系统流量,在微泵泵功受限的情况下,必须对系统结构进行优化以减少系统阻力,为此改进了系统结构方案,采用了系统管路与微泵管路大小匹配,加大热沉进出口管径,设置热沉多进出口布置等方式进行系统减阻,并对此做了对比实验。单进单出热沉进出口管尺寸为φ4mm的热沉结构较进出管尺寸为φ2mm的热沉结构,在同样加热140W情况下,基板壁面温度下降了14.9℃。实验发现工质对系统的运行特性也有一定的影响,本文实验对比了多层交错蜂窝板叠合微小通道热沉结构分别以水和无水乙醇为工质的运行特性,由于水的比热容较大,其系统性能较无水乙醇系统要好。
     通过将多层交错蜂窝板叠合微小通道热沉结构抽象成多孔介质模型,利用修正的达西方程和双能量方程模型对其进行了整体模拟和性能分析,数值计算结果和实验结果相一致。并针对各种不同的进出口布置方式,对热沉基板温度分布和压降情况进行了对比分析。分析结果指出多进出口设计方式在一定流量条件下由于减小了内部流速,从而降低了热沉压降,其流动与换热的综合效果较好。而交叉进出布置方式由于流体从距离较近的出口直接流出,减少了流动距离,其进出口压差最小,但中心区域由于流量的减少出现了局部高温情况。该数值模型为系统的设计和优化提供了指导,为微小通道热沉散热系统的应用奠定了基础。
The microchannel heatsink has been widely used in the field of thermal control of spacecraft and cooling of electronics with high heat flux because of the advantages of compact structures, high surface-to-volume ratio in limited space, strong cooling abilities, easily implementation and safe working. The thesis introduced the operating principles and analyzed the working characteristics of the minichannel heatsink cooling systems. A series of experimental and numerical works are conduced to several different minichannel heatsink structures.
     According to different application requirements, the overall designs of the cooling system and the components structures are proposed in the thesis. Using the wire-cut method, the parallel rectangular-shaped minichannel array and the offset-fin minichannel structure heatsinks are fabricated. An experimental investigation is conducted to determine the heat transfer characteristics and cooling performance of the two kinds of minichannel structures machined into brass plates. The influence of minichannel in/outlet configuration, input heating power and property variations on the heat transfer behavior are analyzed experimentally. The experimental and numerical results show that the offset-fin structure obtains better cooling performance because the fluid flow disturbance restricts the development of the thermal boundary. The cooling fins are arranged into a staggered construction, when fluid flows in these alternating minichannels, the thermal boundary layer up-and downstream from the cooling fins. A new thermal boundary layer is restarted along the small pieces, resulting in a thinner thermal boundary layer. A high heat transfer coefficient is therefore obtained. The analytical results indicate that cooling performance increases to up 19.4% compared with the conventional straight ones. However, the vortex flow regions are found near the front and the rear edges of cooling fins, bringing the problem of larger pressure loss than the conventional straight ones. From the field synergy point, the heat transfer enhancement and flow resistance increment mechanisms of the offset-fin structures are also analyzed. The intersection angle between velocity and temperature gradient periodically changes along the up-and downstream from the cooling fins, and its value is far less than the conventional straight ones, improving heat transfer intensity. However, disturbances in the fluid simultaneously bring the issue of increased resistance, the intersection angle between velocity and velocity gradient is larger than the conventional straight ones. Both considering the heat transfer and flow conditions, the synergy relationship between temperature gradient and velocity gradient shows that staggered fin structure has a relatively optimum overall performance.
     Combined the purposes of extending the surface-to-volume ratio in heatsink and restricts the development of the thermal boundary for heat transfer enhancement. A novel multilayer staggered honeycomb minichannel heatsink is designed in the cost-effective way in the thesis. Multilayered metal plates each with rows of etched honeycomb cells in are stacked to form the well-designed staggered minichannels in the heatsink. Better cooling performance is obtains based on the fluid hydrodynamic mixing improvement for periodic breakup of the thermal boundary layer. At the same time, the stacking structure design is also an easily implemental way to obtain higher surface-to-volume ratio in limited space simultaneously reducing the fabrication difficulty for 3D structure. Experimental investigation is conducted to determine the heat transfer characteristics and cooling performance of the honeycomb minichannel cooling system. The system heat transfer performance is evaluated under various operation situations, which includes different flow rate, input heating power, working fluid medium, minichannel heatsink parameters and test system configurations. The influence factors for the system performance are analyzed and discussed experimentally. It finds the flow rate has a large influence for the system performance from the experiments. In order to obtain larger flow rate for better cooling performance under the limited pumping power condition, the system configurations and structures must be optimized to reduce flow resistance. Several improvements such the agreement of the connection pipe size between micropump and heat sink, increasing the pipe size of heatsink in/outlet entrance holes and the multi-inlets and outlets arrangement are taken to reduce the system resistance for the comparison experiments. It finds that the substrate temperature of the singleφ4mm inner diameter in/outlet heatsink design decreases 14.9℃compared to the 02mm inner diameter in/outlet ones under the same 140W input heating power. The effects of working fluid to the cooling system are also studied by comparing water and ethanol as working fluid. It shows that the fluid with high specific heat is more suited for the heat transfer application.
     By modeling the multilayer staggered honeycomb minichannel structures as porous media, the coupled heat transfer and flow characteristics of the heatsink are simulated and analyzed with the extended Darcy equation and the two-energy equation. The numerical results are in good accordance with the experimental ones. For the different in/outlet arrangements, the heatsink substrate temperature distribution and pressure drop are compared using the porous media model. The results show that the multi-inlets and outlets arrangement gets better cooling performance because the lower flow velocity under the constant flow rate reduces the pressure drop through the heatsink. However, although the cross multi-inlets and outlets design obtains the least pressure drop because of the reduction of flow length in the minichannels, there is found a local high temperature region in the center of the substrate also as the reduction of the flow rate through the minichannels. The experimental and numerical work is the fundament of developing the minichannel heatsink cooling system for high heat flux removal applications.
引文
[1]过增元,当前国际传热界的热点——微电子器件的冷却,中国科学基金,1988(2):20-25.
    [2]齐永强,何雅玲,张伟等,电子设备热设计的初步研究,现代电子技术,2003,1(4):73-76.
    [3]D.B. Tuckerman and R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett.,1981(2):126-129.
    [4]D.B. Tuckerman and R.F.W. Pease, Ultra high thermal conductance microstructures for cooling integrated circuits, in:Proceedings of the 32nd Electronics Components Conference,1982:145-149.
    [5]M.M. Rahman, F.J. Gui, Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate, in:Advances in Electronic Packaging, in:ASME EEP,1993 (199):685-692.
    [6]M.M. Rahman, J.F. Gui, Design fabrication and testing of microchannel heat sink for aircraft avionics cooling, in:Proceedings of the 28th Intersociety Energy Conversion Eng. Conf.,1993 (1):1-6.
    [7]X.F. Peng, GP. Peterson, B.X. Wang. Frictional flow characteristics of water flowing through rectangular microchannels. J. Exp. Heat Transfer,1995(7):249-264.
    [8]X.F. Peng, GP. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer,1996(39):2599-2608.
    [9]X.N. Jiang, Z.Y. Zhou, J. Yao, Y. Li, X.Y. Ye, Micro-fluid flow in microchannel, in: Proceedings of Transducers'95, Stockolm, Sweden,1995:317-320.
    [10]Wilding P., Shoffner M.A. and Kircka L.J., Manipulation and flow of biological fluids in straight channels micromachined in silicon, Clin. Chem,1994(40): 1815-1818.
    [11]Papautsky I., Brazzle J., Ameel T. and Frazier A. B., Laminar fluid behavior in microchannels using micropolar fluid theory, Sensors and Actuators A,1999,73 (2):101-108.
    [12]R.L. Webb, M. Zhang, Heat transfer and friction in small diameters channels, Microscale Thermophysical Engineering,1998(2):189-202.
    [13]Gale B.K., Scaling effects in a microfabricated electric field flow fractionation system with integrated detector, Ph.D. thesis,2000, University of Utah, Salt Lake City, USA.
    [14]D.A. Pfund, A. Shekarriz, A. Popescu, J.R. Welty, Pressure drops measurements in microchannels, in:Proceedings of MEMS, in:ASME DSC,1998(66):193-198.
    [15]GM. Mala, D. Li, Flow characteristics of water in microtubes, Int. J. Heat Fluid Flow,1999(20):142-148.
    [16]B. Xu, K.T. Ooi, N.T. Wong, C.Y. Liu, W.K. Choi, Liquid flow in microchannels, in: Proceedings of the 5th ASME/JSME Joint Thermal Engrgy Conference, San Diego, CA,1999:150-158.
    [17]W. Qu, M. Mala, D. Li, Pressure-driven water flows in trapezoidal silicon microchannels, Int. J. Heat Mass Transfer,2000(43):353-364.
    [18]B. Xu, K.T. Ooi, N.T. Wong, W.K. Choi, Experimental investigation of flow friction for liquid flow in microchannels, Int. Comm. Heat Mass Transfer, 2000(27):1165-1176.
    [19]L.S. Ding, H. Sun, X.L. Sheng, B.D. Lee, Measurement of friction factors for R134a and R12 through microchannels, in:Proceedings of Symposium on Energy Engrg. in the 21st Century,2000(2):650-657.
    [20]Z.X. Li, D.X. Du, Z.Y. Guo, Experimental study on flow characteristics of liquid in circular microtubes, in:GP. Celata, et al. (Eds.), Proceedings of International Conference on Heat Transfer and Transport Phenomena in Microscale, Begell House, New York, USA,2000:162-168.
    [21]P.X. Jiang, M.H. Fan, G.S. Si, Z.P. Ren, Thermal-hydraulic performance of small scale micro-channel and porous-media heatexchangers, Int. J. Heat Mass Transfer, 2001(44):1039-1051.
    [22]S.G Kandlikar, S. Joshi, S. Tian, Effect of channel roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes, in:Proc. of 35th National Heat Transfer Conference, Anaheim CA, USA,2001.
    [23]J. Judy, D. Maynes, B.W.Webb, Characterization of frictional pressure drop for liquid flows through microchannels, Int. J. Heat Mass Transfer,2002(45): 3477-3489.
    [24]W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Int. J. Heat Mass Transfer, 2002(45):2549-2565.
    [25]H.Y. Wu, P. Cheng, Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios, Int. J. Heat Mass Transfer,2003(46):2519-2525.
    [26]Z.X. Li, D.X. Du, Z. Y. Guo, Experimental study on flow characteristics of liquid in circular microtubes, Microscale Thermophysical Engineering,2003 (7):253-265.
    [27]B.X. Wang, X.F. Peng, Experimental investigation on liquid forcedconvection heat transfer through microchannels, Int. J. Heat Mass Transfer,1994, Suppl.37 (1): 73-82.
    [28]X.F. Peng, GP. Peterson, The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels, Int. J. Heat Mass Transfer, 1995(38):755-758.
    [29]X.F. Peng, GP. Peterson, Forced convection heat transfer of singlephase binary mixtures through microchannels, Exp. Thermal Fluid Sci.,1996(12):98-104.
    [30]N.T. Nguyen, D. Bochnia, R. Kiehnscherrf, W. Dozel, Investigation of forced convection in microfluid systems, Sensors Actuators A,1996(55):49-55.
    [31]J.M. Cuta, C.E. McDonald, A. Shekarriz, Forced convection heat transfer in parallel channel array microchannel heat exchanger, in:Advances in Energy Efficiency, Heat/Mass Transfer Enhancement, in:ASME-PID,2/HTD,1996 (338):17-23.
    [32]T.S. Ravigururajan, J.M. Cuta, C.E. McDonald, M.K. Dorst, Singlephase thermal performance characteristics of a parallel micro-channel heat exchanger, in:Proc. of US National Heat Transfer Conference, in:ASME-HTD,1996(329):157-166.
    [33]W. Qu, GM. Mala, D. Li, Heat transfer for water flow in trapezoidal silicon microchannels, Int. J. Heat Mass Transfer,2000(43):3925-3936.
    [34]GR. Warrier, V.K. Dhir, L.A. Momoda, Heat transfer and pressure drop in narrow rectangular channels, Exp. Thermal Fluid Sci.,2002(26):53-64.
    [35]辛明道,师晋升,微矩形槽道内的受迫对流换热性能实验,重庆大学学报,1994,17(3):117-122.
    [36]朱恂,辛明道,微小槽道散热器流动与换热实验研究,重庆大学学报,2003,26(6):70-72.
    [37]俞坚,马重芳,John Lawer,陶瓷微通道内的传热和压降特性,工程热物理学报,2004,25(1):142-144.
    [38]周继军,申盛,徐进良等,微槽道内单相流动阻力与传热特性,化工学报,2005,56(10):1849-1854.
    [39]蒋洁,郝英立,施明恒,矩形微通道中流体流动阻力和换热特性实验研究,热科学与技术,2006,5(3):189-194.
    [40]甘云华,徐进良,水和甲醇在硅基微通道中换热特性的实验研究,自然科学进展,2006,15(12):1498-1503.
    [41]Palm, R., Heat transfer in microchannels, Microscale Thermophysical Engineering, 2001,5(3):155-175.
    [42]Z.Y. Guo, Z.X. Li, Size effect on single-phase channel flow and heat transfer at microscale, Int. J. Heat and Fluid Flow,2003(24):284-298.
    [43]Z.Y. Guo, Z.X. Li, Size effect on microscale single-phase flow and heat transfer, Int. J. Heat Mass Transfer,2003(46):149-159.
    [44]D.B. Tuckerman, Heat transfer microstructures for integrated circuits, Ph.D. thesis, Stanford University,1984, USA.
    [45]L. T. Hwang, I. Turlik, and A. Reisman, A thermal module design for advancing packaging, J. Electron. Mater.,1987,16(5):347-355.
    [46]R. J. Phillips, Microchannel heat sinks, in:Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds. New York: ASME,1990(2):109-184.
    [47]K. Kawano, K. Minakami, H. Iwasaki, and M. Ishizuka, Application of heat transfer in equipment, systems, and education," in:Development of Micro Channels Heat Exchanging, R. A. Nelson Jr, L. W. Swanson, M. V. A. Bianchi, and C. Camci, Eds. New York:ASME,1998, vol.HTD-361-3/PID-3:173-180.
    [48]C. Gillot, L. Meysenc, and C. Schaeffer, Integrated single and two-phase micro heat sinks under IGBT chips, IEEE Trans. Compon. Packag. Technol.,1999, 22(3):384-389.
    [49]F.P Incropera, Convection heat transfer in electronic equipment cooling, J. Heat Transfer,1988(110):1097-1111.
    [50]G.P. Peterson, A. Ortega, Thermal control of electronic equipment and devices, Advances in Heat transfer,1990(20):181-314.
    [51]A. Bar-Cohen, State-of-the-Art and trends in thermal packaging of electronic equipment, J. Electronic Packaging,1992(114):257-270.
    [52]A. Bar-Cohen, A.D. Kraus, Advances in thermal modeling of electronic components and systems, ASME Press, New York, NY,1990(2).
    [53]R.K. Shah, A.L. London, Laminar Flow Forced Convection in Ducts, Academic Press, NY,1978:78-283.
    [54]R.K. Shah, D. Sekulic, Fundamentals of Heat Exchanger Design, Wiley, NY, 2003:473-508.
    [55]S. Bhattacharjee, W.L. Grosshandler, The formation of a wall jet near a high temperature wall under microgravity environment, ASME HTD 96,1988:711-716.
    [56]K. Kawano, K. Minakami, H. Iwasaki, M. Ishizuka, Development of microchannels heat exchanging, in:R.A. Nelson Jr., L.W. Swansin, M.V.A. Bianchi, C. Camci (Eds.), Application of Heat Transfer in Equipment, Systems, and Education, HTD-vol.361-3/PID-vol.3, ASME, New York,1998:173-180.
    [57]V.K. Samalam, Convective heat transfer in microchannels, J. Electron. Mater., 1989(18):611-617.
    [58]F. Incorpera, Liquid Cooling of Electronic Devices by Single-Phase Convection, Wiley,1999.
    [59]H. Y. Wu and P. Cheng, Friction factors in smooth trapezoidal silicon micro channels with different aspect ratios, Int. J. Heat Mass Transf.,2003,46(14):2519-2525.
    [60]H. Y. Wu and P. Cheng, An experimental study of convective heat transfer in silicon micro channels with different surface conditions, Int. J. Heat Mass Transf., vol.46, no.14, pp.2547-2556, Jul.2003.
    [61]S. V. Garimella and C. B. Sobhan, Transport in micro channels-A critical review, Annu. Rev. Heat Transf.,2003(13):1-50.
    [62]H. B. Ma and G P. Peterson, Laminar friction factor in microscale ducts of irregular cross section, Microscale Thermophys. Eng.,1997, 1(3):253-265.
    [63]G Tunc and Y. Bayazitoglu, Heat transfer in rectangular micro channels, Int. J. Heat Mass Transf.,2002,45(4):765-773.
    [64]M. Choi and K. Cho, Effect of the aspect ratio of rectangular channels on the heat transfer and hydrodynamics of paraffin slurry flow, Int. J. Heat Mass Transf.,2001, 44(1):55-61.
    [65]J. Li and G P. "Bud" Peterson, Geometric optimization of a micro heat sink with liquid flow, IEEE Trans. Compon. Packag. Technol.,2006,29(1):145-154.
    [66]A. Bejan, E. Sciubba, The optimal spacing of parallel plates cooled by forced convection, Int. J. Heat Mass Transfer,1999(35):3259-3264.
    [67]A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, K,2000:35-37.
    [68]A. Bejan, Convection Heat Transfer, Wiley, New York, NY,2004:136-141.
    [69]A. Yilmaz, O. Buyukalaca, T. Yilmaz, Optimum shape and dimensions of ducts for convective heat transfer in laminar flow at constant wall temperature, Int. J. Heat Mass Transfer,2000(43):767-775.
    [70]T.S. Fisher, K.E. Torrance, Constrained optimal duct shapes for conjugate laminar forced convection, Int. J. Heat Mass Transfer,2000(43):113-126.
    [71]M. Favre-Marinet, S. Le Person, A. Bejan, Maximum heat transfer rate density in two dimensional minichannels and microchannels, First International Conference on Microchannels and Minichannels, Rochester, NY,21-23 April,2003:765-772.
    [72]Y.S. Muzychka, M.M. Yovanovich, Laminar forced convection heat transfer in combined entrance region of noncircular ducts, J. Heat Transfer,2004(126):54-61.
    [73]Y.S. Muzychka, M.M. Yovanovich, Laminar flow friction and heat transfer in non-circular ducts—Part Ⅰ Hydrodynamic problem, in:GP. Celata, B. Thonon, A. Bontemps, S. Kandlikar (Eds.), Compact Heat Exchangers—A Festschrift on the 60th Birthday of Ramesh K. Shah, Edizioni ETS,2002:123-130.
    [74]Y.S. Muzychka, M.M. Yovanovich, Laminar flow friction and heat transfer in non-cicular ducts—Part Ⅱ Thermal problem, in:GP. Celata, B. Thonon, A. Bontemps, S. Kandlikar (Eds.), Compact Heat Exchangers—A Festschrift on the 60th Birthday of Ramesh K. Shah, Edizioni ETS,2002:131-139.
    [75]Y.S. Muzychka, Constructal design of forced convection cooled microchannel heat sinks and heat exchangers, Int. J. Heat Mass Transfer,2005(48):3119-3127.
    [76]A. Bejan, Constructal-theory network of conducting paths for cooling a heat generating volume, Int. J. Heat Mass Transfer,1997(40):799-816.
    [77]A. Bejan, Constructal tree network for fluid flow between a finite-size volume and one source or sink, Rev. Gen. Thermique,1997(36):592-604.
    [78]A. Bejan, Advanced Engineering Thermodynamics,2nd ed., Wiley, New York,1997.
    [79]A. Bejan, M. R. Errera, Convective trees of fluid channels for volumetric cooling, Int. J. Heat Mass Transfer,2000(43):3105-3118.
    [80]W. Wechsatol, S. Lorente, A. Bejan, Optimal tree-shaped networks for fluid flow in a disc-shaped body, Int. J. Heat Mass Transfer,2002(45):4911-4924.
    [81]A.K. da Silva, S. Lorente, A Bejan, Constructal multi-scale tree-shaped heat exchangers, J. Appl. Phys.,2004,96(3):1709-1718.
    [82]Y.P. Chen, P. Cheng, Heat transfer and pressure drop in fractal tree-like microchannel nets, Int. J. Heat Mass Transfer,2002(45):2648-2743.
    [83]陈永平,郑平,新型分形树状微通道散热器的实验研究,工程热物理学报,2006,27(5):853-855.
    [84]D.V. Pence, Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks, Microscale Thermophys. Engrg., 2002(6):319-330.
    [85]A.Y. Alharbi, D.V. Pence, R.N. Cullion, Fluid flow through microscale fractal-like branching channel networks, J. Fluids Engrg.,2003(125):1051-1057.
    [86]A.Y. Alharbi, D.V. Pence, R.N. Cullion, Thermal characteristics in microscale fractal-like branching channels, J. Heat Transfer,2004,126 (5):744-752.
    [87]S.M. Senn, D. Poulikakos, Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells, J. Power Sources,2004(130):178-191.
    [88]陈志,施明恒,新型分形树状冷却通道流动特性的研究,热科学与技术,2006,5(1):13-16.
    [89]X.Q. Wang, A.S. Mujumdar, C. Yap, Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink, Int. J. Thermal Sciences, 2006(45):1103-1112.
    [90]董涛,陈运生,杨朝初等,仿蜂巢分形微管道网络中的流动与换热,化工学报,2005,56(9):1618-1625.
    [91]董涛,微管道换热器内微流体的流动与换热,南京理工大学博士学位论文,2003.
    [92]Bergles A E., Heat transfer enhancement-the encouragement and accommodation of high heat fluxes, J. Heat Transfer,1997,119 (2):8-19.
    [93]Bergles A E., Application of Heat Transfer Augmentation, Heat Exchangers: Thermal Hydraulic Fundamentals and Design, Hemisphere Pub. Co.,1981.
    [94]Webb R L, Bergles A E., Heat Transfer Enhancement:Second Generation Technology, Mechanical Engineering,1983,115 (6):60-67.
    [95]Bergles A E., Techniques to Augment Heat Transfer, Chap.3 in Handbook of Heat Transfer Applications, New York:McGraw-Hill,1985:3-80.
    [96]Bergles A E., Some Perspectives on Enhanced Heat Transfer Second Generation Heat Transfer Technology, ASME J. Heat Transfer,1988 (110):1082-1096.
    [97]Constantinos A Balaras. Review of Augmentation Techniques for Heat Transfer Surfaces in Single-phase Heat Exchangers. Energy,1990,15 (10):899-906
    [98]Eckels S J, Doerr T M, Pate M B, In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube:part Ⅰ evaporation, ASHRAE Transactions,1994,100(2):265-282.
    [99]Eckels S J, Doerr T M, Pate M B, Heat transfer coefficients and pressure drops for R-134a and an ester lubricant mixture in a smooth tube and a micro-fin tube. ASHRAE Transactions,1998(104):366-375.
    [100]Ciofalo M, Collins M W. Predictions of heat transfer for turbulent flow in plane and rib-roughened channels using large eddy simulation, in:Proceedings of the Seventh National Congress on Heat Transfer, Bologna, Italy,1989:57-72.
    [101]Fiebig M, Sanchez M A., Enhancement of heat transfer and pressure loss by winglet vortex generators in a fin-tube element, Compact Heat Exchangers for Power and Process Industries, ASME, New York, NY,1992(201):7-14.
    [102]X Hu, Y Zhang, Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries:laminar flow in a circular tube with constant heat flux, Int. J. Heat Mass Transfer,2002, 45(15):3163-3172.
    [103]W.Q. Tao, Y.L. He, Q.W. Wang, et. al., A unified analysis on enhancing single phase convective heat transfer with field synergy principle, Int. J. Heat Mass Transfer, 2002,45(24):4871-4879.
    [104]M. E. Steinke, S. G Kandlikar, Single-phase heat transfer enhancement techniques in microchannel and minichannel flows, in:Proc.2nd Int. Conf. Microch. Minich., 2004:141-148.
    [105]M. E. Steinke, S. G Kandlikar, Review of single-phase heat transfer enhancement techniques for application in microchannels, minichannels and microdevices, Int. J. Heat Technology,2004,22(2):3-11.
    [106]T. Kishimoto, S. Sasaki, Cooling characteristics of diamond-shaped interrupted cooling fins for high power LSI devices, Electron. Lett.,1987,23(9):456-457.
    [107]S. Sasaki, T. Kishimoto, Optimal structure for microgrooved cooling fin for high-power LSI devices, Electron. Lett.,1986(22):1332-1334.
    [108]邹江,彭晓峰,颜维谋,微小交错流道散热块传热性能,航空动力学报,2008,23(5):845-850.
    [109]S. G Kandlikar, W. J. Grande, Evaluation of Single Phase Flow in Microchannels for High Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology, Heat Transfer Engineering,2004,25(8):5-16.
    [110]S. G Kandlikar, H. R. Upadhye, Extending the heat flux limit with enhanced microchannels in direct single-phase cooling of computer chips, Invited paper presented at IEEE Semi-Therm 21, San Jose,2005, March 15-17:8-15.
    [111]E. G Colgan, B. Furman, M. Gaynes, et, al., A practical implementation of silicon microchannel coolers for high power chips, IEEE Trans. Compon. Packag. Technol., 2007,30(2):218-225.
    [112]F. J. Hong, P. Cheng, Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks, Int. Comm. Heat Mass Transfer,2009(36): 651-656.
    [113]甘云华,徐进良,新型结构硅基微通道中层流换热的实验研究,中国科学院研究生院学报,2005,22(2):157-163.
    [114]J.L. Xu, Y.H. Gan, D.C. Zhang, X.H. Li, Microscale heat transfer enhancement using thermal boundary layer redeveloping concept, Int. J. Heat Mass Transfer, 2005(48):1662-1674.
    [115]D.A. Aliaga, J.P. Lamb, E.E. Klein, Convection heat transfer distributions over plates with square ribs from infrared thermography measurement, Int. J. Heat Mass Transfer,1994,37(3):363-374.
    [116]J. Davalath, Y. Bayazitoglu, Forced convection cooling across rectangular blocks, J. Heat Transfer,1987(109):321-328.
    [117]R.C. Henry, R.J. Hansman Jr., K.S. Breuer, Heat transfer variation on protuberances and surface roughness elements, J. Thermophys. Heat Transf.1995,9 (1):175-180.
    [118]C.D. Meinhart, S.T. Wereley, Fluid mechanics issues at the microscale, in:39th AIAA Aerospace Sciences Meeting and Exhibition, AIAA 2001-0720, Reno, NV, January 2001.
    [119]K. Vafai, L. Zhu, Analysis of two-layered micro-channel heat sink concept in electronic cooling, Int. J. Heat Mass Transfer,1999(42):2287-2297.
    [120]X. Wei, Y. Joshi, Stacked microchannel heat sinks for liquid cooling of microelectronic components, J. Electronic Packaging,2004(126):60-66.
    [121]X. Wei, Y. Joshi, Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling, IEEE Trans. Compon. Packag. Technol.,2003,26(1): 55-61.
    [122]X. Wei, Y. Joshi, M. K. Patterson, Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices, J. Heat Transfer,2007,129 (10):1432-1444.
    [123]Bower, C., Ortega, A., Skandakumaran, P., Vaidyanathan, R., Phillips, T., Heat transfer in water-cooled silicon carbide milli-channel heat sinks for high power electronic applications", in:Proceedings of IMECE 2003, Washington, D.C., USA, 2003.
    [124]P. Skandakumaran, A. Ortega, T. Jamal-Eddine, R.Vaidyanathan, Multi-layered sic microchannel heat sinks-modeling and experiment, in:2004 International Society Conference on Thermal Phenomena, Las Vegas, NV, USA,2004:352-60.
    [125]刘云,廖新胜,秦丽等,大功率半导体激光器叠层无氧铜微通道热沉,发光学报,2003,26(1):109-113.
    [126]吕文强,涂波,魏彬等,高功率二极管激光器模块式微通道冷却器研制,强激光与粒子束,2005,17(S0):83-86.
    [127]李奇峰,吕文强,武德勇等,V形槽硅微通道冷却器研制,强激光与粒子束,2005,17(S0):114-116.
    [128]P.A. Eibeck, J.K. Eaton, Heat transfer effects of a longitudinal vortex embedded in a turbulent boundary layer, J. Heat Transf.,1987(109):16-24.
    [129]C. Liu, T. Tsao, Y.-C. Tai, Out-of-plane permalloy magnetic actuators for delta-wing control, in:Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS'95),1995:7-12.
    [130]S.M. Kumar, W.C. Reynolds, T.W. Kenny, MEMS based transducers for boundary layer control, in:Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (MEMS'99),1999:135-140.
    [131]Jeung Sang Go, Sung Jin Kim, Geunbae Lim, et. al., Heat transfer enhancement using flow-induced vibration of a microfin array, Sensors and Actuators A, 2001(90):232-239.
    [132]Jeung Sang Go, Design of a microfin array heat sink using flow-induced vibration to enhance the heat transfer in the laminar flow regime, Sensors and Actuators A, 2003(105):201-210.
    [133]X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer,1999 (13):474-480.
    [134]S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer,1999 (121):280-289.
    [135]B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer,2003 (46):2665-2672.
    [136]李强,宣益民,纳米流体对流换热的实验研究,工程热物理学报,2002,23(6):721-723.
    [137]R. Y. Chein, G M. Huang, Analysis of microchannel heat sink performance using nanofluids, Applied Thermal Engineering,2005(25):3104-3114.
    [138]R.W. Knight, J.S. Goodling, D.J. Hall, Optimal thermal design of forced convection heat sinks-analytical, ASME J. Electron. Packaging,1991 (113):313-321.
    [139]J.C.Y. Koh, R. Colony, Heat transfer of microstructures for integrated circuits, Int. Comm. Heat Mass Transfer,1986 (13):89-98.
    [140]C.L. Tien, S.M. Kuo, Analysis of forced convection in microstructures for electronic system cooling, in:Proc. Int. Symp. Cooling Technology for Electronic Equipment, Honolulu, HI,1987:217-226.
    [141]S.J. Kim, D. Kim, Forced convection in microstructures for electronic equipment cooling, ASME J. Heat Transfer,1999 (121):635-645.
    [142]S.J. Kim, D. Kim, D.Y. Lee, On the local thermal equilibrium in micro channel heat sinks, Int. J. Heat Mass Transfer,2000 (43):1735-1748.
    [143]M. Kaviany, Laminar flow through a porous channel bounded by isothermal parallel plates, Int. J. Heat Mass Transfer,1985 (28):851-858.
    [144]K. Vafai, S.J. Kim, Forced convection in a channel filled with a porous medium:an exact solution, ASME J. Heat Transfer 1989 (111):1103-1106.
    [145]C.Y. Zhao, T.J. Lu, Analysis of microchannel heat sinks for electronics cooling, Int. J. Heat and Mass Transfer,2002 (45):4857-4869.
    [146]D. Liu, S.V. Garimella, Analysis and optimization of the thermal performance of microchannel heat sinks, J. Numerical Methods for Heat & Fluid Flow,2005,15 (1): 7-26.
    [147]Z.Y. Guo, Mechainsm and control of convective heat transfer-coordination of velocity and heat flow fields, Chinese Science Bulletin,2001,46(7):596-599.
    [148]Z.Y. Guo, D.Y. Li, B.X. Wang, A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transfer,1998,41(14):2221-2225.
    [149]刘伟,刘志春,过增元,对流换热层流流场的物理量协同与传热强化分析,科学通报,2009,54:1779-1785.
    [150]刘伟,刘志春,黄素逸,湍流换热的场物理量协同与传热强化分析,科学通报,2010,55:281-288.
    [151]J.P. Holman, Heat Transfer, McGraw-Hill Book Company, New York,1989.
    [152]杨世铭,陶文铨,传热学(第四版),北京:高等教育出版社,2006.
    [153]刘伟,范爱武,黄晓明,多孔介质传热传质理论与应用,北京:科学出版社,2006.
    [154]K. Vafai, C.L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer 24 (1981) 195-203.
    [155]闵桂荣主编,卫星热控制技术,北京:宇航出版社,1991.
    [156]张学学,张超,刘静,微重力条件下管肋式空间辐射器的传热分析,清华大学学报,1997,37(2):55-58.
    [157]张学学,刘静,张超,管肋式空间辐射器强化传热分析与优化设计,清华大学学报,1998,38(5):32-34.
    [158]李明海,任建勋,梁新刚等,管肋式辐射器排热特性的数值分析与优化设计,工程热物理学报,2002,23(1):88-90.
    [159]向艳超,曹剑峰,张加迅,并联冷凝管辐射器实验研究,航天器工程,2007,16 (4):99-102.
    [160]李亭寒,华诚生等编著,热管设计与应用,北京:化学工业出版社,1987.
    [161]庄骏,张红,热管技术及其工程应用(第一版),北京:化工工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700