用户名: 密码: 验证码:
混晶TiO_2光催化分解水制氢及可见光响应光催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用太阳能光催化分解水制氢是从长远角度解决人类当前严峻的能源问题和环境问题的一条重要途径。TiO_2被认为是最有希望的光催化材料,但是光催化分解水制氢速率较低,可见光响应差的缺点限制了它的大规模应用。本文以提高TiO_2光催化水分解制氢催化效率和研制在可见光下具有更高光催化水分解产氢活性的光催化材料为目的,考察了不同体系中影响TiO_2产氢速率的因素,混晶比的影响和控制,微生物法掺碳改性TiO_2的可见光催化活性,新的可见光制氢材料La_2O_2(CO_3)-基CoO/Ni制备和光催化性能研究,得到以下研究结果:
     1、在分别以Na_2S和甲醛为牺牲剂体系下光催化分解水制氢中反应温度对Pt/TiO_2催化剂产氢速率有显著影响:提高反应温度大大提高产氢速率,其机理分析表明,提高温度促进了Na_2S水解进而促进了光化学产氢,而甲醛为牺牲剂时主要是由于抑制了逆反应的进行。
     2、通过控制焙烧温度制备不同金红石含量的混晶TiO_2,考察了金红石含量的影响,并进行了机理分析。为了解决粒径变化的影响,对溶胶凝胶法进行了改进,首次采用TiCl_4和钛酸四正丁酯混合物作前驱体的方法获得了粒径均匀混晶比可控的纳米TiO_2,对其光催化分解水制氢活性评价后发现其规律证实了提出的机理。
     3、为了获得高活性可见光响应的分解水制氢光催化剂,采用Fe对TiO_2进行了掺杂,并对其特性及其氙灯照射下的光催化活性进行了考察。结果发现,Fe提高了TiO_2对可见光的吸收,提高了TiO_2可见光分解水制氢活性,掺Fe 2(wt)%的TiO_2活性最佳,可达到3.67μmol/(gcat·h)。
     4、首次采用菌粉浸出液改性的方法成功制备了掺C-TiO_2,对其结构进行了表征分析,对其氙灯照射下光催化分解水制氢活性考察。结果发现,C掺杂促进了TiO_2对波长大于400nm的光的吸收,当菌液浓度为6.33g/L时,引入了5.657%(原子比)的C,其可见光下光催化分解水制氢速率可达10.29μmol/(gcat·h)。
     5、制备了一系列La_2O_2(CO_3)-基CoO/Ni混晶催化剂并首次将其用于可见光催化分解水制氢,结果发现,氙灯照射下La_2O_2(CO_3)-CoO-3h样品产氢活性高达31.62μmol/(gcat·h),与Ni的混晶获得了更高的可见光催化分解水制氢活性,La_2O_2(CO_3)-Ni-3h样品产氢活性高达84.90μmol/(gcat·h)。对其结构进行了表征,对其机理进行了初步分析。
Photocatalytic water splitting using solar energy has received a great deal of attention since it has been considered as one of the potential ways to provide clean and renewable energy of H_2.Among the photocatalytic materials being studied,TiO_2 is one of the most promising photocatalyst.While its application was limited for its poor efficiency of photocatalytic water splitting to H_2 and it cannot be excited by visible light.To get a higher efficiency of photocatalytic H_2 evolution over TiO_2 and find proper visible light responding water splitting photocatalytic materials,this thesis investigated the factors affect the photocatalytic activity of TiO_2,the influence of rutile phase content in nano-TiO_2,the photocatalytic H_2 evolution over C doped-TiO_2 prepared by bacillus licheniformis(R08) leaching solution modifying,the preparation and photocatalytic activity of new type visible light responding photocatalytic water splitting material La_2O_2(CO_3)-based CoO/Ni,which are as follows,
     1.Photocatalytic H_2 evolution over Pt/TiO_2 by water splitting as Na_2S or formaldehyde being present as sacrificial reagents were influence markedly by reaction temperature:the rate of H_2 evolution increased quickly with reaction temperature.The possible reaction mechanism shows that increasing of temperature accelerated the hydrolysis of Na_2S and thus accelerated the photochemical H_2 evolution,while it inhibited the reverse reaction as formaldehyde was used.
     2.Nano-TiO_2 samples with various content of rutile were prepared by adjusting the baking temperature.The effect of rutile content was investigated and possible mechanism was suggested.To avoid the influence of particle size,a novel method which take the mixture of TiCl_4 and Ti(OC_4H_9)_4 as precursor was applied and rutile content-controllable nano-TiO_2 samples with even particle size were synthesized.Their photocatalytic activity confirmed the mechanism.
     3.To get higher photocatalytic activity under visible light irradiation for water splitting,Fe doped TiO_2 were synthesized and characterized,and their activity were determined.The results show that,Fe improve the absorption of TiO_2 on visible light markedly,and promote the H_2 evolution.As 2(wt)%Fe was doped,the optimal activity got which is 3.67μmol/(gcat·h).
     4.C doped-TiO_2 samples were successfully synthesized by R08 leaching solution modifying and their structures were characterized.As xenon lamp was used,the activity of C doped-TiO_2 samples were determined.The results show that doping of C enhanced the absorption on the light with wavelength>400nm of TiO_2.As 6.33 g/L R08 leaching solution was used,5.657%(atom) of C was introduced,and the rate of H_2 evolution over the modified TiO_2 under irradiation of xenon lamp reached to 10.29μmol/(gcat·h).
     5.A series of La_2O_2(CO_3)-based CoO/Ni catalysts were prepared and their photocatalytic activities of water splitting to H_2 under visible light irradiation were determined.The rate of H_2 evolution over La_2O_2(CO_3)-CoO-3h under xenon lamp irradiation reached to 31.62μmol/(gcat·h).The composite photocatalyst with Ni showed higher activity,the rate of H_2 evolution over La_2O_2(CO3)-Ni-3h reached to 84.90μmol/(gcat·h).The structures of La_2O_2(CO_3)-based CoO/Ni catalysts were characterized and the mechanism was analyzed.
引文
[1]王亚辉,吴志纯,徐联仓,罗登.走向21世纪的生物学--未来生物学(1991∽2020年)预测[M].北京:华夏出版社发行,1992:208-218.
    [2]张无敌,董锦艳,宋洪川,孙世中.生物质能利用[J].太阳能,2000,1:6-7.
    [3]Hart D.The Hydrogen Economy.Imperial college center for energy policy and technology,UK hydrogen energy network,2000.
    [4]毛宗强.氢能-我国未来的清洁能源[J].化工学报(增刊),2004,55:296-302.
    [5]陈长聘.氢能未来与储氢金属材料技术[J].氯碱工业,2003,5:1-3.
    [6]赵永丰,鲍德佑.制氢方法[J].太阳能,1999,04:14-15.
    [7]袁传敏,颜涌捷,曹建勤.生物质制氢气的研究[J].煤炭转化,2002,25(1):18-22.
    [8]杨洁,高伟民,孙雅贤.热化学法分解水制氢[J].吉林工学院学报,1994(4):41-47.
    [9]Fujishima A,Honda K.Eectrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
    [10]XIE QUAN,SHAOGUI YANG,XIULI RUAN,HUIMING ZHA.Preparation of Titania Nanotubes and Their Environmental Applications as Electrode Environ[J].Sci.Technol.2005,39,3770-3775.
    [11]Takeo Arai,Shin-ichiro Senda,Yoshinori Sato,et al.Cu-Doped ZnS Hollow Particle with High Activity for Hydrogen Generation from Alkaline Sulfide Solution under Visible Light[J].Chem.Mater.,2008,20:1997-2000.
    [12]Yungi Lee,Hiroaki Terashima,Yoshiki Shimodaira,et al.Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light[J].J.Phys.Chem.C,2007,111:1042-1048.
    [13]Daisuke Yamasita,Tsuyoshi Takata,Michikazu Hara,et al.Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting[J].Solid State Ionics,2004,172:591-595.
    [14]Zhigang Zou,Jinhua Ye,Kazuhiro Sayama,Hironori Arakawa.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,2001,414:625-627.
    [15]Asahi R,Ohwaki T,Aoki K,Taga Y.Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides.Science,2001,293:269-271.
    [16]Shahed UMK,Mofareh AS,William BIJ.Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2.Science,2002,297:2243-2245.
    [17]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006:273.
    [18]许家胜,薛冬峰.利用可见光催化分解水制氢的研究进展[J].材料导报,2006,20(10):1-4.
    [19]印会鸣.铋基氧化物材料的制备及其光催化性能研究[D].山东大学.2007:10.
    [20]刘守新,陈孝云,陈曦.酸催化水解法制备可见光响应N掺杂纳米TiO_2催化剂[J].催化学报,2006,27(8):697-702.
    [21]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社.2004:14.
    [22]姜勇,张平,刘祖武.高活性多孔纳米TiO_2的制备及协同光催化作用机理的探讨[J].材料科学与工程学报,2004,22(4):584-587.
    [23]Maocheng Yah,Feng Chen,et al.Preparation of controllable crystalline titania and study on the photocatalytic properties[J].J.Phys.Chem.B,2005,109(18):8673.
    [24]Serpone N.,Lawless D.,et al.Subnanosecond relaxation dynamics in TiO_2 colloidal sols relevance to heterogeous photocatalysis[J].J.Phys.Chem.,1995,99:16655.
    [25]Lawless D.,Serpone N.,Meisel D..Role of hydroxyl radicals and trapped holes in photocatalysis.A pulse radiolysis study[J].J.Phys.Chem.,1991,95:5166.
    [26]L.Kavan,M.Graltzel,S.E.Gilbert,et al.Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase[J].J.Am.Chem.Soc.,1996,118:6716-6723.
    [27]郝晶玉,刘宗怀.纳米二氧化钛光催化剂的研究进展[J].钛工业进展,2007,24(1):36-41.
    [28]张青红,高濂,郭景坤.四氯化钛水解法制备二氧化钛纳米晶的影响因素[J].无机材料学报,2000,15:992-998.
    [29]Addamo M,Augugliaro V,Paola A D,et al.Preparation,Characterization,and Photoactivity of Polycrystalline Nanostructured TiO_2 Catalysts[J],J.Phys.Chem.B,2004,108:3303-3310.
    [30]吴树新,尹燕华,马智等.超声水解法制备的纳米二氧化钛光催化性能的研究[J].分子催化,2005,19(3):167-171.
    [31]赵敬哲,王子忱,刘艳华等.液相一步合成金红石型超细TiO_2[J].高等学校化学学报,1999,20(3):467-469.
    [32]高桂兰,段学臣.纳米金红石型二氧化钛粉末的制备及表征[J].硅酸盐通报,2004,1:88-90.
    [33]孙家跃,肖昂,夏志国,杜海燕.均相沉淀-发泡法制备纳米氧化钛及其表征分析[J].化学世界,2005,(8):449-452.
    [34]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京:化学工业出版,2002:87.
    [35]吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化[J].无机化学学报,2002,18(4):399-403.
    [36]Su C,Hong B Y,Tseng C M.Sol-gel preparation and photocatalysis of titanium dioxide[J].Catalysis Today.2004,96(3):119-126.
    [37]Boujday S,W(u丨¨)nsch F,Portes P,et al.Photocatalytic and electronic properties of TiO_2powders elaborated by sol -gel route and supercritical drying[J].Solar Energy Materials and Solar Cells[J],2004,83(4):421-433.
    [38]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京:化学工业出版,2002:91.
    [39]余家国,熊建锋,程蓓.高活性二氧化钛光催化剂的低温水热合成[J].催化学报,2005,26(9):745.
    [40]Su C,Tseng C M,Chen L F,et al.Sol-hydrothermal preparation and photocatalysis of titanium dioxide[J].Thin Solid Films,2006,498(1-2):259-265.
    [41]Vadivel MuruganA,Samuel V,Ravi V.Synthesis of nanocrystalline anatase TiO_2 by microwave hydrothermal method[J].Mater Lett,2006,60(4):479-480.
    [42]郑燕青,施尔畏,元如林等.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学(E辑),1999,29(3):206-213.
    [43]Lin J,Lin Y,Liu P et al.Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension[J].J Am Chem Soc.2002,124(38):11514-11518.
    [44]牛新书,许亚杰,张学治等.微乳液法制备纳米二氧化钛及其光催化活性[J].功能材料,2003,5(34):548-550.
    [45]张朝平,黄毅,申德君等.凝胶-微乳液化学剪裁制备TiO_2纳米颗粒[J].稀有金属,2002,26(4):257-261.
    [46]William E.Stallings,H.Henry Lamb H.Synthesis of Nanostructured Titania Powders via Hydrolysis of Titanium Isopropoxide in Supercritical Carbon Dioxide[J].Langmuir,2003,19(7):2989-2994.
    [47]Jean-Marie Herrmann.Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants[J].Catal.Today,1999,53(1):115-129.
    [48]Lee S H,Kang M,Cho S M,et al.Synthesis of TiO_2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance[J].Journal of Photochemistry and Photobiology A:Chemistry,2001,146:121-128.
    [49]Rufus B.I.,et al.Indian Journal of Technology,1989,27(3):171-173.
    [50]Jean-Marie Herrmann,Pierre Pichat.Metal-support interactions:An in situ electrical conductivity study of Pt/TiO_2 catalysts[J].Journal of Catalysis,1982,78(2):425-435.
    [51]Liu V L,Guo L J,Yah W,et al.A composite visible-light photocatalyst for hydrogen production[J].Journal of Power Sources,2006,159(2):1300-1304.
    [52]Luo H,Takata T,Lee Y,et al.Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine[J].Chem Mater,2004,16(5):846-850.
    [53]杨鸿辉,延卫,张耀君,等.PtTiO_(2-x)N_x光催化剂的制备及其产氢活性研究[J].西安交通大学学报,2005,39(5):514-516.
    [54]Takata T,Ikeda S,Tanaka A,et al.Mechano-catalytic overall water splitting on some oxides (Ⅱ)[J].Appl Catal A:Gen,2000,200:255-262.
    [55]Peng S Q,Li Y X,Jiang F Y,et al.Effect of Be~(2+) doping TiO_2 on its photocatalytic activity[J].Chem Phy Lett,2004,398:235-239.
    [56]Yang Y,Li X J,Chen J T.Effect of doping mode on the photocatalytic activities of Mo/TiO_2[J].J Photochem Photobiol A:Chem,2004,163:517-522.
    [57]Bae E,Choi W,Park J,Shin H S,Kim S B,Lee J.S.Effects of Surface Anchoring Groups (Carboxylate vs Phosphonate) in Ruthenium-Complex-Sensitized TiO_2 on Visible Light Reactivity in Aqueous Suspensions[J].J.Phys.Chem.B.,2004,108(37):14093-14101.
    [58]K.B.Dhanalakshmi,S.Latha,S.Anandan,P.Maruthamuthu.Dye sensitized hydrogen evolution from water[J].International Journal of Hydrogen Energy,2001(26):669-674.
    [59]Kazuhiro Sayama,Shingo Tsukagoshi,Yoshimoto Abe,et al.Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO_2 Film[J].J.Phys.Chem.B,2002,106:1363-1371.
    [60]Hara K,Miyamoto K,Abe Y,Yanagida M.Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO_2 Electrodes[J].J.Phys.Chem.B.,2005,109(50):23776-23778.
    [61]Yanagida M,Miyamoto K,Abe Y,et al.Reverse Electron Transfer from TiO_2 to I_2 in Nanocrystalline TiO_2 Film Electrodes with Coadsorbed Bipyridine and Biquinoline Ruthenium Complexes[J].J.Phys.Chem.C.,2007,111(1):201-209.
    [62]Li Q,Jin Z,Peng Z,Li Y,Li S,Lu G.High-Efficient Photocatalytic Hydrogen Evolution on Eosin Y-Sensitized Ti-MCM41 Zeolite under Visible-Light Irradiation[J].J.Phys.Chem.C.,2007,111(23):8237-8241.
    [63]Li Q,Chert L,Lu G.Visible-Light-Induced Photocatalytic Hydrogen Generation on Dye-Sensitized Multiwalled Carbon Nanotube/Pt Catalyst[J].J.Phys.Chem.C.,2007,111(30):11494-11499.
    [64]Konta,R.;Ishii,T.;Kato,H.;Kudo,A.Photocatalytic Activities of Noble Metal Ion Doped SrTiO_3 under Visible Light Irradiation[J].J.Phys.Chem.B.,2004,108(26):8992-8995.
    [65]Kato,H.;Kudo,A.Visible-Light-Response and Photocatalytic Activities of TiO_2 and SrTiO_3Photocatalysts Codoped with Antimony and Chromium[J].J.Phys.Chem.B.,2002,106(19):5029-5034.
    [66]Kasahara A,Nukumizu N,Takata T,et al.LaTiO_2N as a visible light(600 nm) driven photocatalyst(2)[J].J Phys Chem B,2003(107):791-797.
    [67]Asako Kasahara,Kota Nukumizu,Kazunari Domen,et al.Photoreactions on LaTiO_2N under Visible Light Irradiation[J].J.Phys.Chem.A,2002(106):6750-6753.
    [68]Ishikawa,A.;Takata,T.;Kondo,J.N.;Hara,M.;Domen,K.Electrochemical Behavior of Thin Ta_3N_5 Semiconductor Film[J].J.Phys.Chem.B.,2004,108(30):11049-11053.
    [69]董庆华.半导体光催化[J].感光材料与光化学,1993,11(2):76-81.
    [70]D.Curcó,J.Giménez,A.Addardak,S.Cervera-March,S.Esplugas.Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants[J].Catalysis Today,2002,76(2-4):177-188.
    [71]尹忠环,李越湘,等.污染物乙醇胺Pt/TiO_2 光催化制氢[J].分子催化,2007,2l(2):155-161.
    [72]Alexia Patsoura,Dimitris I.Kondarides,Xenophon E.Verykios.Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen[J].Catalysis Today,2007,124(3-4):94-102.
    [73]Yuexiang Li,Gongxuan Lu,Shuben Li.Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO_2 in the presence of electron donors[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,152(2002):219-228.
    [74]Okamoto Keniehi.Heterogeneous photocatalytic decomposition of phenol over TiO_2 powder[J].Bull.Chem.Soe.Jpn,1985,58(7):2015-2022.
    [75]C.Kormann,D.W.Bahnemann,M.R.Hoffmann.Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions[J].Environ.Sci.Teehnol.,1991,25:494-500.
    [76]Heyduk AF,NoceraDG.Hydrogen Produced from Hydrohalic Acid Solutions by a Two-Electron Mixed-Valence Photocatalyst.Science 2001;293:1639-1641.
    [77]Hideki K,Kiyotaka A,hkihiko K.Highly Efficient Water Splitting into H,and O_2 over Lanthanum-Doped NaTaO_3 Photocatalysts with High Crystallinityand Surface Nanostructure.J Am Chem Soc,2003,125:3082-3089.
    [78]Weiwei Zhang,Shougang Chen,et al.Experimental and theoretical investigation of the pH effect on the titania phase transformation during the sol-gel process[J].Journal of Crystal Growth,2007,308:122-129.
    [79]章福祥,张秀,等.Ag/TiO_2复合纳米催化剂的制备和表征及其光催化活性[J].催化学报,2003,24(11):877-880.
    [80]杨秋华,傅希贤,王晓东.LaFe_(1-x)Cu_xO_3光催化还原性能与正电子湮没的研究[J].硅酸盐学报,2004,32(4):512-514.
    [81]黄胜涛.固体X射线学[M].北京:高等教育出版社,1985.
    [82]周公度,郭可信.晶体和准晶体的衍射[M].北京:北京大学出版社,1999.
    [83]宓锦校,吴伯麟等.无机材料晶体结构[M].武汉:武汉工业大学出版社,2001.
    [84]熊兆贤.无机材料研究方法-合成制备、分析表征和性能检测[M].厦门:厦门大学出版社,2001.
    [85]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [86]江琦,黄仲涛,等.漫反射红外光谱法在催化研究中的应用[J].化学通报,1996(6):38.
    [87]陈绮丽,唐超群,肖循.纳米微粒的溶胶-凝胶制备法及XRD分析[J].材料科学与工程,2002,20(2):225-227.
    [88]Ryoko Konta,Tatsuya Ishii,Hideki Kato,Akihiko Kudo.Photocatalytic Activities of Noble Metal Ion Doped SrTiO_3 under Visible Light Irradiation[J].J.Phys.Chem.B,2004,108:8992-8995
    [89]Gobinda CD,Anadi MR,Sitansu SB.Effect of n-Si on the Photocatalytic Production of Hydrogen by Pt-Loaded CdS and CdS/ZnS Catalyst[J].Int J Hydrogen Energy,1996,21(1):19-23.
    [90]Jang JS,Kim HG,Borse PH,Lee JS,et al.Simultaneous hydrogen production and decomposition of H_2S dissolved in alkaline water over CdS-TiO_2 composite photocatalysts under visible light irradiation[J].International Journal of Hydrogen Energy,2007,32(18):4786-4791.
    [91]Liu H,Yuan J,Shangguan WF.Photochemical Reduction and Oxidation of Water Including Sacrificial Reagents and Pt/TiO_2 Catalyst.Energy & Fuels 2006;20(6):2289-2292.
    [92]Okabe H.Photochemistry of small molecules.USA,PA:John Wiley & Sons,Inc.,1978.
    [93]李越湘,吕功煊,等.污染物甲醛为电子给体Pt/TiO_2光催化制氢[J].分子催化,2002,16(4):241-246.
    [94]Beata Z.,Ewa Borowiak-Palen,Ryszard J.Kalenczuk.Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors[J].International Journal of Hydrogen Energy,2008,33:1797-1802.
    [95]Anna Galin' ska,Jerzy Walendziewski.Photocatalytic Water Splitting over Pt-TiO_2 in the Presence of Sacrificial Reagents[J].Energy & Fuels,2005,19:1143-1147.
    [96]Beata Z.,Ewa Borowiak-Palen,Ryszard J.Kalenzuk.Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation[J].Journal of Physics and Chemistry of Solids,2008,69:236-242.
    [97]Tsukasa T,Nao N,Shigeru I,Bunsho O.Discrimination of the active crystalline phases in anatase-rutile mixed titanium(Ⅳ) oxide photocatalysts through action spectrum analyses.Phys Chem Chem Phys 2002;4:5910-5914.
    [98]Park JW,Kang M.Synthesis and characterization of Ag_xO,and hydrogen production from methanol photodecomposition over the mixture of Ag_xO and TiO_2.Int J Hydrogen Energy,2007,doi:10.1016/j.ijhydene.2007.07.045.
    [99]黄建彬.工业气体手册[M].北京:化学工业出版社,2002.
    [100]Loa CC,Hungb CH,Yuana CS,Wu JF.Photoreduction of carbon dioxide with H_2 and H_2O over TiO_2 and ZrO_2 in a circulated photocatalytic reactor.Solar Energy Materials & Solar Cells,2007,91:1765-1774.
    [101]Henri Courbon,Jean Marie Herrmann,Pierre Pichat.Effect of platinum deposits on oxygen adsorptiou and oxygen isotope exchange over variously pretreated,ultraviolet-illuminated powder titanium dioxide[J].J.Phys.Chem.,1984,88(22):5210-5214.
    [102]C.Kormann,D.W.Bahnemann,M.R.Hoffmann.Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO_2 Suspensions[J].Environ.Sci.Technol.,1991,25:494-500.
    [103]施利毅,戴清,袁春伟.SnO_2-TiO_2复合颗粒的形态结构及其光催化降解染料溶液的研究[J].高校化学工程学报,2000,14(6):548-551.
    [104]Siffert B.Study on the interaction of titanium dioxide with cellulose fibers in aqueous medium[J].Colloid Surf,1991,53:79.
    [105]Akira Fujishima,Tata N.Rao,Donald A.Tryk.Titanium dioxide photocatalysis[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1:1-21.
    [106]Riegel G,Bolton J R.Photocatalytic efficiency variability in TiO_2 paticles[J].J Phys Chem,1995,99:4215-4224.
    [107]Zhao L,Han M,Lian J.Photocatalytic activity of TiO_2 films with mixed anatase and rutile structures prepared by pulsed laser deposition[J].Thin Solid Films,2008,516:3394-3398.
    [108]Ohno T,Sarukawa K,Tolieda K,et al.Morphology of a TiO_2 photocatalyst(Degussa,P-25)consisting of anatase and rutile crystalline phases[J].Journal of Catalysis,2001,203:82-86.
    [109]姜勇,张平,刘祖武.高活性多孔纳米TiO_2的制备及协同光催化作用机理的探讨[J].材料科学与工程学报,2004,22(4):584-587.
    [110]张慧,陈建华,陈鸿博,林昌健.纳米TiO_2混晶的形成及其对光催化性能的影响[J].分子催化,2006,20(3):249-254.
    [111]周磊,刘昌,等.液相沉积法制备光催化活性掺铁TiO_2薄膜[J].催化学报,2003,24(5):359-363.
    [112]沈星灿,郭为民,郭艳芳,梁宏.掺铁纳米TiO_2的制备及其光催化性能[J].应用化学,2005,22(10):1070-1074.
    [113]Ping Yang,Cheng Lu,Nanping Hua,Yukou Du.Titanium dioxide nanoparticles co-doped with Fe~(3+) and Eu~(3+) ions for hotocatalysis[J].Materials Letters,2007,57:794-801.
    [114]赵德明,金宁人.过金属Fe~(3+)离子掺杂改性TiO_2的光催化性能研究进展[J].浙}Z3-_业大学学报,2005,33(2):165-169.
    [115]J.Arana,O.Gonzālez DiazM,et al.Maleic acid photocatalytic degradation using Fe-TiO_2Catalysts Dependence of the degradation mechanism on the Fe catalysts content[J].Applied Catalysis B:Environmental,2002,36:113-124.
    [116]Germa'n Sierra Gallego,Fanor Mondrago'n,et al.Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor-Characterization of carbon deposition[J].Catalysis Today,2008,133-135:200-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700