用户名: 密码: 验证码:
认知无线网络中导频信道设计和自组织关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工作、学习和生活节奏的日益加快,人们对能够提供丰富应用体验、无处不在的高性能无线通信网络的需求与日俱增。在不同地区和国家已经形成了多种无线接入技术共存的局面,使得无线网络发展趋于异构化,也使得异构网络之间的资源管控变得更加复杂,同时也对异构网络之间的互融与互通提出了新的挑战。无线电频谱资源的紧缺性同业务需求不断增长之间的矛盾也日趋激烈,如何提高频谱资源的利用效率已成为亟待解决的重要问题之一。此外,无线网络的异构化和复杂化也对传统以人工为主的网络规划、设计、管理和维护提出了新的挑战,如何增强无线网络设计、管理与维护的自主化,从而降低网络管控的复杂度并减少网络运营维护的成本,实现网络的自动配置、自动优化、自主管理和自动维护,己成为工程实践中关注的热点问题。
     面对无线网络异构融合的新趋势、业务宽带化和多样化的新需求、频谱利用效率和网络容量进一步提升的新目标,已有的静态频谱管理方式和传统以人工为主的网络规划与优化手段无法满足无线网络环境复杂多变和无线业务需求不断增长的新趋势。所以,未来无线网络发展所面临的挑战可归结为:支持异构网络融合的信息有效互通新方法挑战、降低网络资源管控复杂度新技术挑战、提升网络频谱利用效率和网络容量新技术挑战等。
     针对未来无线网络发展所面临的新需求和新挑战,具有无线网络认知性、异构网络适变性和网络管控自主性的认知无线网络技术应运而生。认知无线网络能够通过对网络环境的认知,进行智能的决策,通过参数、协议和网络模式的重构实现对无线网络环境变化的自主适变,并通过自主学习实现网络自主适变的智能化。同时,认知无线网络技术还可以有效支持异构网络融合、降低异构网络资源管控的复杂度,达到频谱利用效率提升、网络容量提高和网络覆盖优化等目标。因此,本文重点针对未来无线网络面临的异构网络信息互通不畅、资源管控复杂化、频谱利用效率低下和网络容量有待提高等问题与挑战展开深入研究,提出基于认知导频信道技术进行异构网络信息准确、高效传输方案,并基于此进行自组织网络技术方案的优化设计,以实现降低网络管控复杂度、提高频谱利用效率、提高网络容量、优化网络覆盖的目标。已在相关领域取得理论和技术创新成果。归纳来说,本文研究的内容主要包括以下四个部分:
     第一部分,首先阐述未来无线网络发展趋势和面临的两大挑战:无线网络异构化和资源管控复杂化。其次,通过对认知无线网络技术的起源和关键技术的分析,提出采用认知导频信道技术可以有效异构网络之间信息互通的问题,并提出采用自组织网络技术可以有效降低异构网络资源管控的复杂度、提升网络性能。最后,通过认知无线网络中认知导频信道技术和自组织网络技术研究现状的全面分析,明确本文的研究重点在于认知导频信道的优化设计、并基于此进行认知无线网络中自组织方案设计,两方面研究内容相互关联、层层递进。
     第二部分,针对异构网络信息有效互通的挑战,本文提出了支持异构网络信息准确和有效传输的认知导频信道理论及关键技术,包括两个创新点。第一,首先,基于已有认知导频信道技术中带外和带内两种部署方式的优点和不足进行比较分析。其次,明确影响异构网络信息准确传输的两大关键因素:终端定位偏移误差因素和栅格划分尺寸因素。针对终端定位偏移误差下的信息错误概率和信息丢失率进行理论建模并通过数学推导获得闭式解。然后,分析栅格划分尺寸大小对异构网络信息准确传输的影响,提出基于层次分析法和灰度关联分析理论的认知导频信道最优栅格划分准则和方案,实现基于认知导频信道的异构网络信息准确传输的目标,填补了本领域理论研究的空白。第二,首先,分析认知导频信道广播和点播两种典型发送方式的优点和不足,明确影响认知导频信道发送效率的关键因素。其次,针对邻近栅格中网络信息存在冗余的问题,提出差异量化的栅格信息编码理论,以提高异构网络信息的编码效率。然后,通过设计基于相同性质栅格信息的群组化改进广播方案,进一步提升异构网络信息发送的效率。总之,第二部分通过基于栅格最优划分准则、栅格信息差异量化编码、同性质栅格群组化发送等认知导频信道改进方案的设计,实现了异构网络信息准确、高效的传输,并为认知无线网络资源管控和有效利用的决策与执行提供了必要的信息有效传输技术手段。
     第三部分,针对异构网络资源管控复杂化挑战、频谱利用效率和网络容量提升的新需求,本文重点针对具有容量提升、覆盖优化、自主管控特性的新型家庭基站网络技术和认知协作中继网络技术展开深入研究,分别提出具有自组织功能的家庭基站网络频率自部署、覆盖自优化理论与技术、认知协作中继网络容量自优化理论与技术,包括三个创新点。第一,首先,运用理论分析和数学推导相结合的方法重点研究不同频率部署方式(异频、同频和混频)对家庭基站与宏蜂窝网络共存下层叠网络的下行容量的影响因素,并通过数学建模进行量化表征。其次,研究基于地理位置信息的宏蜂窝基站频谱占用信息的主动认知方法,并设计基于认知导频信道的层叠网络信息有效传输方案,实现层叠网络内频谱占用信息的有效互通。然后,研究基于最优地理区域划分的家庭基站频率自部署理论及技术,降低层叠网络的干扰,从而提高层叠网络下行容量的目标。第二,首先,依据理论模型的定量分析结果,明确采用静态和动态功率分配两种方案对家庭基站覆盖优化的影响。其次,针对三种典型家庭基站室内部署场景(中心、角落和内墙中点位置),通过数学建模与推导获得在室内空洞和室外干扰之和最小化目标下家庭基站最优覆盖半径的闭式解。然后,采用认知导频信道技术进行层叠网络地理位置信息的有效传输,使得家庭基站获得室内位置信息、与宏蜂窝基站相对距离等关键参量值。最后,依据家庭基站部署位置信息,并结合多覆盖天线类型的选取、动态功率分配策略,通过采用人工神经网络对家庭基站典型场景覆盖自优化方案的训练和学习,获得普遍适用于家庭基站随机部署场景的覆盖自优化方案模型,实现家庭基站网络覆盖优化的自主化目标。第三,首先,针对认知协作中继网络三种典型场景运用图论理论进行网络容量模型的构建与定量表示。其次,针对两跳协作中继网络中不同链路可用频谱资源和可达容量存在的差异性,以中继链路传输容量最大化为目标设计动态时隙分配比例方案,并从理论上证明所提动态时隙方案相对固定时隙方案在容量提升方面的突出效果。然后,依据对网络空闲频谱信息认知的结果,基于最优化理论和图论理论,设计中继节点选择、信道分配和动态时隙比例划分的认知协作中继网络容量联合自优化方案。通过与传统固定时隙分配方案相比较,证明所提方案对容量提升的有效性,并进一步体现所提方案对链路容量存在差异性一般情况的自主适变能力。总之,第三部分通过对典型家庭基站网络频率自部署、覆盖自优化、认知中继网络容量自优化等自组织理论及关键技术的研究,提高了异构网络资源管控的自主化,大大降低了异构网络资源管控的复杂度,达到频谱利用效率提高、网络容量提升和网络覆盖优化等目标。
     第四部分,对论文所述研究内容进行全面总结。依据对本领域研究现状的分析和归纳,指出本领域未来研究工作的难点与热点,供后续研究人员参考。
Driven by the demands for better user experience and various types of service, wireless network technologies are developing rapidly recently with the capabilities of providing high data rate services with good quality of service (QoS). However, challenges still exist as different kinds of heterogeneous radio access technologies (RATs) are coexisting with each other, which make the network convergence a complex problem. Moreover, fixed spectrum allocation and management schemes are not efficiently adapt to the dynamically changing radio environment and user demands. So the challenges for future wireless network development are summarized as:how to design an efficient technique for heterogeneous network information delivery, how to decrease the complexity of heterogeneous network radio resource management, how to improve the spectrum efficiency and increase network capacity.
     In order to solve these challenges and improve radio resource usage efficiency, cognitive wireless networks (CWNs) technologies are considered as candidate solutions, which are based on the software defined radio (SDR) technology and cognitive radio (CR) technology. The CWNs should have the abilities to reconfigurate the parameters, protocol stacks and working modes, which are based on the sensing techniques and learning ability of existing knowledge in database, in order to adapt to the changing radio environment. The CWNs should also have the abilities to obtain the radio environment information, self-optimize radio resource and dynamically tune the parameters and protocols to adapt to the changing environment.
     This thesis focuses on novel theories and techniques for efficient heterogeneous network information delivery, simple heterogeneous network radio resource management, improved spectrum usage and increased network capacity in CWNs.
     Facing to the challenge of efficient heterogeneous network information delivery, the cognitive pilot channel (CPC) design theory and techniques are proposed in this thesis, which is regarded as a common pilot channel for accurate and efficient heterogeneous network information delivery. The key contributions include two parts.
     First, both the out-band CPC and in-band CPC modes are introduced briefly, and both the pros and cons between them are analyzed thoroughly. Next, key parameters for heterogeneous network information delivery using CPC are summarized as terminal position shift error and multi-RAT overlapped effects. The close-form theoretical analyses are achieved based on the mathematics model for the probability calculation of information error caused by the GPS based terminal shifting effect. Then, based on the Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRC) algorithms, novel mesh division schemes are proposed by considering both the terminal position shift error effect and heterogeneous network information, which is an achievement in this field as nobody has proposed complete solutions with proofs before.
     Second, to further improve the efficiency of traditional broadcast CPC, the differential mesh information coding (DIC) scheme is proposed in order to reduce the redundancy of network information between adjacent meshes by using image processing techniques. Then, to optimize the traditional broadcast CPC delivery mode, a homogeneous meshes grouping (HoMG) scheme has also been proposed which can reduce duplicate network information delivery in adjacent meshes, assuring an efficient and accurate network information delivery with novel CPC design. Therefore, the proposed optimal mesh division scheme and novel broadcast CPC flow are the fundamental basis for the accurate and efficient heterogeneous network information delivery in CWNs.
     Due to the increase of heterogeneity and complexity for the operation and maintenance in CWNs, the traditional techniques for network planning, operation and maintenance are not efficient and applicable in CWNs, which are human interaction dependent, time consuming and cost inefficient. Therefore, self-organizing networks (SON) techniques, including self-planning, self-configuration, self-optimization, self-management and self-healing, are analyzed in this thesis for efficiently autonomous network parameter configuration, optimization and maintenance in CWNs, to improve the radio resource usage efficiency and decrease the CAPEX and OPEX. To improve the network capacity, coverage and spectrum efficiency for indoors and hotspots, self-configuration and self-optimization techniques for femtocell networks and cognitive cooperative relay networks are taken into account in this thesis. The key contributions include three parts.
     First, both the downlink capacity model and key parameters of three frequency allocation schemes for femtocells deployment in the hierarchical network are designed and analyzed with close-form solutions. Next, a novel location-based frequency information acquisition scheme is proposed which includes the technique to obtain geo-location based macrocell resource occupancy information, the efficient delivery process using CPC to femtocells. Then, the frequency self-deployment scheme for femtocells is designed with the optimal grid zone size selection for femtocells by leveraging the spatial reuse of macrocell resource to improve system capacity.
     Second, to improve the coverage indoors and increase hierarchical network capacity, the joint antenna pattern selection and dynamic power allocation scheme for coverage self-optimization scheme in femtocells is proposed. The effects of both the static power allocation and dynamic power allocation schemes to coverage holes indoors and interference outdoors are analyzed theoretically. Next, the optimal coverage radius for femtocell indoors is analyzed in three scenarios with close-form solutions, such as the center position, corner position and midpoint of side wall. Then, the geo-location information of femtocell is obtained via CPC channel, in order to locate the indoor femtocell position and the distance to macro base station. Thus, the joint antenna pattern selection and dynamic power allocation scheme is modeled by using the artificial neural network (ANN) training the learning techniques, to fulfill the femtocell coverage self-optimization object.
     Third, to further extend the coverage and improve network capacity, the dynamic time slot allocation scheme based cognitive cooperative relay network capacity self-optimization scheme is designed. The capacity model for two hop cooperative relay networks is modeled in three different scenarios. Next, considering the difference of channel capacity on various links due to the randomness and time-variant effects, the optimal dynamic time slot allocation scheme is proposed and proved theoretically with close-form solutions, which can improve the relay link capacity by self-tuning transmission time slot between two relay links. Then, based on the vacant spectrum information via CPC, the joint relay node selection, channel allocation and dynamic transmission time slot allocation scheme is designed which is regarded as the capacity self-optimization solution in CWNs by using the optimization theory and graph theory. In summary, the proposed frequency self-deployment, coverage self-optimization in femtocells and capacity self-optimization in cognitive cooperative relay networks prove the efficiency of SON techniques to decrease the complexity of CWNs management and improve the spectrum usage, capacity and coverage.
     Finally, the summary is given at the end of this thesis and future research directions in related fields are also pointed out.
引文
[1-1]吴伟陵,牛凯编著,移动通信原理,第2版,电子工业出版社,2009年,1-7.
    [1-2]ITU-R M.1645, "Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000 (Question ITU-R 229/8)",8 October,2003.
    [1-3]沈嘉,索士强,全海洋等编著,3GPP长期演进(LTE)技术原理与系统设计,人民邮电出版社,2008年,1-42.
    [1-4]《 中 华 人 民 共 和 国 无 线 电 管 理 条 例 》,http://baike.baidu.com/view/70811.htm
    [1-5]《中华人民共和国无线电频率划分规定》http://www.miit.gov.cn/n11293472/nl 1293847/n11301510/n11503651.files/nl 15 03636.pdf
    [1-6]United State Department of Commerce National Telecommunications and Information Administration, "United State Frequency Allocation Chart," October 2003.
    [1-7]粟欣,许希斌编著,软件无线电原理与技术,人民邮电出版社,2010年,373-404.
    [1-8]McHenry M. A., "NSF Spectrum Occupancy Measurements Project Summary," Tech. Rep., Shared Spectrum Company,2005.
    [1-9]McHenry M.A., Tenhula P. A. and McCloskey D., "Chicago spectrum occupancy measurements & analysis and a long-term studies proposal,' Proceedings of the first international workshop on Technology and policy for accessing spectrum (TAPAS'06),2006.
    [1-10](英)张杰,(法)纪尧拉罗什著;彭木根,李楠译,Femtocell技术与应用,人民邮电出版社,2010年,1-11.
    [1-11]Zhang J. and de la Roche G., "Femtocells:Technologies and Deployment," John Wiley & Sons Ltd,2010,1-13.
    [1-12]Demestichas P., Dimitrakopoulos G., Strassner J. et al., "Introducing reconfigurability and cognitive networks concepts in the wireless world", IEEE Vehicular Technology Magazine,1(2), June 2006, pp.32-39.
    [1-13]Mitola J., "Cognitive Radio Architecture Evolution," Proceedings of the IEEE,97(4), April 2009, pp.626-641.
    [1-14]Mitola J., "Cognitive radio architecture evolution:annals of telecommunications," Ann. Telecommun.,64(7-8),5 May 2009, pp.419-441.
    [1-15]张平,冯志勇著,认知无线网络,科学出版社,2010年,1-12,
    [1-16]冯志勇,张平,郎保真等编著,认知无线网络理论与关键技术,人民邮电出版社,2011年,1-6.
    [1-17]Mitola J., "The Software Radio Architecture," IEEE Communication Magazine,17(4), May 1995, pp.26-38.
    [1-18]Mitola J., "Software radios:wireless architecture for the 21st Century," New York:Wiley,2000.
    [1-19]SDR Forum, http://www.sdrforum.org
    [1-20]Moessner K., Gultchev S., Tafazolli R., "Managing Reconfiguration in Software Defined Communication Systems," in Proc. ISCTA'01, pp.15-19. Jul. 2001.
    [1-21]Tsao S.-L., Lin C.-C., Chou H.-L. et al., "Design and Implementation of Software Framework for Software Defined Radio System," in Proc. IEEE VTC Fall 2002, vol.4, pp.2395-2399.
    [1-22]Dillinger M., Madani K. and Alonistioti N., Software Defined Radio Architecture, Systems and Functions, John Wiley & Sons Ltd., May 2003.
    [1-23]ITU-R Report SM.2152, "Definitions of Software Defined Radio (SDR) and Cognitive Radio System (CRS)," Sept.2009.
    [1-24]Mitola J., Maguire G. Q., Jr., "Cognitive radio:Making software radios more personal," IEEE Personal Communications,6(4), Aug.1999, pp.13-18.
    [1-25]Mitola J., "Cognitive radio [D]," Stockholms, Sweden:Royal Institute of Technology (KTH),2000.
    [1-26]Mitola J., "Cognitive radio for flexible mobile multimedia communications," Sixth International Workshop on Mobile Multimedia Communications (MoMuC'99), San Diego, CA, Nov.1999.
    [1-27]FCC, "Notice of proposed rule making and order", Rep. ET Docket no. 03-322,2003.
    [1-28]FCC, "Spectrum Policy Task Force," Rep. ET Docket no.02-135, Nov.2002.
    [1-29]FCC, "Facilitating opportunities for flexible, efficient and reliable spectrum use employing cognitive radio technologies:notice of proposed rule making and order." FCC Document ET Docket No.03-108. Dec.2003.
    [1-30]Haykin S., "Cognitive Radio:Brain-Empowered Wireless Communications [J]," IEEE Journal on Selected Areas in Communications.23(2),2005, pp. 201-220.
    [1-31]Thomas R. W., Friend D. H., Dasilva L. A. et al., "Cognitive networks: adaptation and learning to achieve end-to-end performance objectives," IEEE Communications Magazine, vol.44,2006, pp.51-57.
    [1-32]Thomas R. W., Dasilva L. A. and Mackenzie A. B., "Cognitive networks," First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Nov.2005, pp.352-360.
    [1-33]王金龙,吴启晖,龚玉萍等著,认知无线网络,机械工业出版社,2010年.
    [1-34]ITU-R Document 5A/513-E, "Annex 19-Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 5th Meeting of Working Party 5A, Geneva, May 10-19, 2010.
    [1-35]ITU-R Document 5A/601-E, "Annex 12-Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 6th Meeting of Working Party 5A, Geneva, Nov.8-17, 2010.
    [1-36]ITU-R WP5A 5A/377-E, "Proposed contribution to working document towards a preliminary draft new report-Cognitive radio systems in the land mobile service-multi-dimension cognitive database for cognitive radio system," Geneva, Nov.18,2009.
    [1-37]Fette B.A. (ed.), Cognitive Radio Technology, Newnes of Elsevier,2006, 337-360.
    [1-38](美)Fette B.A等著,赵知劲,郑仕链,尚俊娜译,认知无线电技术,科学出版社,2008年,247-265.
    [1-39]IST-2003-507995 E2R (End-to-End Reconfigurability) Project, http://e2r.motlabs.com/.
    [1-40]ICT-2007-216248 E3 (End-to-End Efficiency) Project, http://www.ict-e3.eu/.
    [1-41]Demestichas P., Saatsakis A., Koenig W., "An Approach for Realizing Future Internet with Cognitive Technologies," In the Proceedings of the 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CROWNCOM2009, Hannover, Germany,22-24 June 2009.
    [1-42]Cordier P., Houze P., Jemaa S. B. et al., "E2R Cognitive Pilot Channel concept," IST Summit, Mykonos, June 2006.
    [1-43]Zhang Y., Jiang Y., Ji Y., "Network Selection Process Based on In-band and Out-band Cognitive Pilot Channel in the end-to-end Reconfigurable Systems,' WWRF16,Apr.2006.
    [1-44]Sallent O., Perez-Romero J., Goria P. et al., "Cognitive Pilot Channel:A Radio Enabler for Spectrum Awareness and Optimized Radio Resource Management," In the Proceedings of ICT Mobile Summit 2009, Santander, Spain, 10-12 June 2009.
    [1-45]E2R Ⅱ White Paper, "The E2R Ⅱ Flexible Spectrum Management (FSM) Framework and Cognitive Pilot Channel (CPC) Concept-Technical and Business Analysis and Recommendations," Nov.2007. https://ict-e3.eu/project/white_papers/e2r/7.E2RII_FSM_CPC_UBM_White_Pap er_Final%5B1%5D.pdf
    [1-46]E3 D5.1, "Overview of Support for Heterogeneous Standards Research Approaches and Plans," May 2008.
    [1-47]Perez-Romero J., Salient O., Agusti R. et al., "A Novel On-Demand Cognitive Pilot Channel enabling Dynamic Spectrum Allocation," 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, April 2007, pp.46-54.
    [1-48]Salient O., Perez-Romero J., Agusti R. et al., "Cognitive Pilot Channel Enabling Spectrum Awareness," IEEE International Conference on Communications Workshops, ICC Workshops 2009,14-18 June 2009.
    [1-49]Salient O., Agusti R., Perez-Romero J. et al., "Decentralized Spectrum and Radio Resource Management Enabled by an On-demand Cognitive Pilot Channel," Annales de Telecommunication, Springer, April 2008, pp.281-294.
    [1-50]ITU-R Document 5A/470-E, "Proposal for Section 6 of working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," Geneva, May 3,2010.
    [1-51]苗丹,“认知无线网络中的动态频谱分配技术研究”,博士学位论文,北京邮电大学.
    [1-52]张永靖,“端到端可重配置系统中的联合无线资源管理研究”,博士学位论文,北京邮电大学.
    [1-53]Mahmoud Q., "Cognitive Networks:Towards Self-Aware Networks", John Wiley & Sons Ltd.,2007.
    [1-54]Bogenfeld E., Gaspard I., "Self-x in Radio Access Networks," White Paper of FP7 E3 Project v1.0,22 Dec,2008.
    [1-55]3GPP TS 32.500 v8.0.0, "Telecommunication management; Self-Organizing Networks (SON); Concepts and requirements (Release 8)", December 2008.
    [1-56]钟义信,潘新安,杨义先著,智能理论与技术:人工智能与神经网络,人民邮电出版社,1992年.
    [1-57]张乃尧,阎平凡.神经网络与模糊控制,清华大学出版社,1998年10月.
    [1-58]Haykin S., Neural Networks and Learning Machines,3rd ed., Prentice Hall, 2009.
    [2-1]张平,冯志勇著,认知无线网络,科学出版社,2010年,1-12.
    [2-2]张永靖,“端到端可重配置系统中的联合无线资源管理研究”,博士学位论文,北京邮电大学.
    [2-3](英)张杰,(法)纪尧拉罗什著;彭木根,李楠译,Femtocell技术与应用,人民邮电出版社,2010年,1-11.
    [2-4]沈嘉,索士强,全海洋等编著,3GPP长期演进(LTE)技术原理与系统设计,人民邮电出版社,2008年,418-424.
    [2-5]Feng Z. Y., Liang L., Tan L., Zhang P., "Q-learning based heterogeneous network self-optimization for reconfigurable network with CPC assistance,' Science in China Series F:Information Science,53(12),2009, pp.2360-2368.
    [2-6]Nolte K., Kaloxylos A., Tsagkaris K. et al., "The E3 architecture:enabling future cellular networks with cognitive and self-x capabilities," International Journal of Network Management,15 Sept.2010, pp.1-24.
    [2-7]ITU-R (International Telecommunication Union-Radiocommunication Sector),http://www.itu.int/ITU-R/index.asp?category=information&rlink=rhome &lang=en.
    [2-8]3GPP (The 3rd Generation Partnership Project), http://www.3gpp.org/.
    [2-9]IST-2003-507995 E2R (End-to-End Reconfigurability) Project, http://e2r.motlabs.com/.
    [2-10]ICT-2007-216248 E3 (End-to-End Efficiency) Project, http://www.ict-e3.eu/.
    [2-11]Demestichas P., Saatsakis A., Koenig W., "An Approach for Realizing Future Internet with Cognitive Technologies," In the Proceedings of the 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CROWNCOM2009, Hannover, Germany,22-24 June 2009.
    [2-12]Cordier P., Houze P., Jemaa S. B. et al., "E2R Cognitive Pilot Channel concept," IST Summit, Mykonos, June 2006.
    [2-13]Zhang Y., Jiang Y., Ji Y., "Network Selection Process Based on In-band and Out-band Cognitive Pilot Channel in the end-to-end Reconfigurable Systems,' WWRF16, Apr.2006.
    [2-14]Salient O., Perez-Romero J., Goria P. et al., "Cognitive Pilot Channel:A Radio Enabler for Spectrum Awareness and Optimized Radio Resource Management," In the Proceedings of ICT Mobile Summit 2009, Santander, Spain. 10-12 June 2009.
    [2-15]E2R Ⅱ White Paper, "The E2R Ⅱ Flexible Spectrum Management (FSM) Framework and Cognitive Pilot Channel (CPC) Concept-Technical and Business Analysis and Recommendations," Nov.2007. https://ict-e3.eu/project/whitejpapers/e2r/7.E2RII_FSM_CPC_UBM_White_Pap er_Final%5B1%5D.pdf
    [2-16]E3 D5.1, "Overview of Support for Heterogeneous Standards Research Approaches and Plans," May 2008.
    [2-17]Perez-Romero J., Sallent O., Agusti R.'et al., "A Novel On-Demand Cognitive Pilot Channel enabling Dynamic Spectrum Allocation," 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, April 2007, pp.46-54.
    [2-18]Galani A., Tsagkaris K., Demestichas P., "Information Flow for Optimized Management of Spectrum and Radio Resources in Cognitive B3G wireless networks," Journal of Network and Systems Management, Springer, Nov.2009.
    [2-19]Galani A., Tsagkaris K., Koutsouris N. et al., "Design and Assessment of Functional Architecture for Optimized. Spectrum and Radio Resource Management in Heterogeneous Wireless Networks," International Journal of Network Management, Feb.2010.
    [2-20]Fette B.A. (ed.), Cognitive Radio Technology, Newnes of Elsevier,2006. 270-275.
    [2-21]Filjar R., Kos T., Markezic I., "GPS Ionospheric Error Correction Models," Multimedia Signal Processing and Communications,48th International Symposium ELMAR-2006, June 2006, pp.215-217.
    [2-22]Bishop G., Mazzella A., Holland E. et al., "Algorithms that use the ionosphere to control GPS errors," IEEE Position Location and Navigation Symposium, Apr.1996, pp.145-152.
    [2-23]Gao X., Dai Y., Wang K., "A study on the self-difference GPS positioning by dynamic and fictitious datum station," Proceedings of the IEEE International Vehicle Electronics Conference, vol.1, Sep.1999, pp.16-18.
    [2-24]Sallent O., Perez-Romero J., Agusti R. et al., "Cognitive Pilot Channel Enabling Spectrum Awareness," IEEE International Conference on Communications Workshops, ICC Workshops 2009,14-18 June 2009.
    [2-25]Salient O., Agusti R., Perez-Romero J. et al., "Decentralized Spectrum and Radio Resource Management Enabled by an On-demand Cognitive Pilot Channel," Annales de Telecommunication, Springer, April 2008, pp.281-294.
    [2-26]Delaere S., Ballon P., "Multi-Level Standardization and Business Models for Cognitive Radio:The Case of the Cognitive Pilot Channel," New Frontiers in Dynamic Spectrum Access Networks,3rd IEEE Symposium on DySPAN,14-17 Oct.2008.
    [2-27]ETSI SDR/CR ad-hoc group, Report on potential for standardization of Software Defined Radio (SDR) and Cognitive Radio (CR) at ETSI, September 2007.
    [2-28]ETSI TR 102682 V1.1.1, "Reconfigurable Radio Systems (RRS); Functional Architecture (FA) for the Management and Control of Reconfigurable Radio Systems," July 2009.
    [2-29]ETSI TR 102683 V1.1.1, "Reconfigurable Radio Systems (RRS); Cognitive Pilot Channel (CPC)," Sept.2009.
    [2-30]Stevenson C. R., Chouinard G., Lei Z. et al., "IEEE 802.22:The First Cognitive Radio Wireless Regional Area Networks Standard," IEEE Communications Magazine,47(1), Jan.2009, pp.130-138.
    [2-31]Cordeiro C., Challapali K., Birru D. et al., "IEEE 802.22:the first worldwide wireless standard based on cognitive radios," First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2005, pp.328-337.
    [2-32]Carlos C., Challapali K., Birru D., "IEEE 802.22:An Introduction to the First Wireless Standard based on Cognitive Radios," Journal of Communications 1(1), April 2006, pp.38-47.
    [2-33]冯志勇,张平,郎保真等编著,认知无线网络理论与关键技术,人民邮电出版社,2011年,211-225.
    [2-34]IEEE SCC411900 Group, http://grouper.ieee.Org/groups/scc41/1/index.htm.
    [2-35]IEEE 1900.4 standard "Architectural building blocks enabling network-device distributed decision making for optimized radio resource usage in heterogeneous wireless access networks," 27 Feb.2009.
    [2-36]ITU-R WP1B 1B/158-E, "Annex 5-Working document towards draft CPM text on WRC-12 Agenda item 1.19",3rd Meeting of Working Party 1B, Geneva, Sept.17-23,2009.
    [2-37]ITU-R WP5A 5A/305-E, "Annex 15-Working document towards a preliminary draft new report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 3rd Meeting of Working Party 5A, Geneva, May 18-27, 2009.
    [2-38]ITU-R WP5A 5A/375-E, "Proposed contribution to working document towards a preliminary draft new report-Cognitive radio systems in the land mobile service-Multicast CPC mode in cognitive radio environment," Geneva, Nov.19,2009.
    [2-39]ITU-R WP5A 5A/378-E, "Proposed contribution to working document towards a preliminary draft new report-Cognitive radio systems in the land mobile service-Mesh division based on Cognitive Pilot Channel in cognitive radio environment," Geneva, Nov.19,2009.
    [2-40]ITU-R WP5A 5A/383-E, "Proposed modifications to working document towards a preliminary draft new report-Cognitive radio systems in the land mobile service," Geneva, Nov.18,2009.
    [2-41]ITU-R WP5A 5A/411-E, "Annex 21-Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service,"4th Meeting of Working Party 5A, Geneva. Nov.23-Dec.2. 2009.
    [2-42]ITU-R Document 5A/470-E, "Proposal for Section 6 of working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," Geneva, May 3,2010.
    [2-43]ITU-R Document 5A/513-E, "Annex 19-Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 5th Meeting of Working Party 5A, Geneva, May 10-19, 2010.
    [2-44]ITU-R Document 5A/601-E, "Annex 12-Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 6th Meeting of Working Party 5A, Geneva, Nov.8-17, 2010.
    [2-45]ITU-R WP5D 5D/597-E, "Chapter 06:Meeting Report of Working Group Technology Aspects," 6th meeting of Working Party 5D, Dresden, Oct.14-21, 2009.
    [2-46]ITU-R WP5D 5D/679-E, "Chapter 05-Meeting Report of Working Group Technology Aspects," 7th meeting of Working Party 5D, Turin, Feb.17-24,2010.
    [2-47]CCSA TC5-WG8-2008-097B, "WRC11 CR立项建议R1”,工业信息部电信研究院、华为技术有限公司、国家无线电监测中心、中国移动,CCSATC5-WG8第27次会议,2008年11月25日。
    [2-48]CCSA TC5-WG8-2008-120Br2, "WRC11 1.19议题研究报告研究计划和大纲”,国家无线电监测中心、电信研究院、华为技术有限公司、中国移动,CCSATC5-WG8第28次会议,2008年12月29日。
    [2-49]CCSA TC5-WG8-2009-010B, "WRC11 1.19议题研究综述”,中国三星通信研究院、中兴通讯股份有限公司,CCSA TC5-WG8第29次会议,2009年4月14日。
    [2-50]CCSA TC5-WG8-2009-043B, "WRC11 1.19议题研究综述”,中国三星通信研究院、中兴通讯股份有限公司,CCSA TC5-WG8第31次会议,2009年6月3日。
    [2-51]CCSA TC5-WG8-2009-077B, "WRC11 1.19议题研究综述”,华为技术有限公司,CCSA TC5 WG8第32次,2009年8月5日。
    [2-52]CCSA TC5-WG8-2009-095B, "WRC11 1.19议题研究关键技术介绍”,中国三星通信研究院、中兴通讯股份有限公司,CCSA TC5 WG8第33次会议,2009年9月2日。
    [2-53]CCSA TC5-WG8-2009-104B, "WRC11 1.19议题研究关键技术介绍补充”,中国三星通信研究院、中兴通讯股份有限公司,CCSA TC5 WG8第34次会议,2009年10月20日。
    [2-54]FUTURE FORUM提案,“认知导频信道概述”,FUTURE FORUM未来移动通信论坛2008年第二次会议WG6组,2008年7月16日-18日。
    [2-55]FUTURE FORUM提案,“认知无线网络中基于栅格划分策略的认知导频信道设计”,FUTURE FORUM未来移动通信论坛2009年第三次会议WG6组,2009年9月28-29日。
    [2-56]E. Bogenfeld, I. Gaspard, "Self-x in Radio Access Networks," White Paper of FP7 E3 Project v1.0, Dec.22,2008.
    [2-57]3GPP TS 32.500 v8.0.0, "Telecommunication management; Self-Organizing Networks (SON); Concepts and requirements (Release 8)", December 2008.
    [2-58]AN (Ambient Networks) project, http://www.ambient-networks.org/.
    [2-59]Gandalf Project, http://www.celtic-gandalf.org/.
    [2-60]Altman Z., Skehill R., Barco R. et al., "The Celtic Gandalf framework" IEEE Mediterranean Electrotechnical Conference (MELECON 2006),16-19 May 2006, pp.595-598.
    [2-61]SOCRATES Project (Self-Optimisation and self-ConfiguRATion in wirelEss networkS), http://www.fp7-socrates.eu/.
    [2-62]3GPP TR 36.300 v9.2.0, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 9)", December 2009.
    [2-63]3GPP TR 36.902 v1.2.0, "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-configuring and self-optimizing network use cases and solutions (Release 9)", May 2009.
    [2-64]3GPP TS 32.521 v1.0.0, "Telecommunications Management; Self-Optimization OAM; Concepts and Requirements (Release 9)", May 2009.
    [2-65]3GPP TR 32.823, v1.0.0, "Telecommunication management; Self-Organizing Networks (SON); Study on Self-healing (Release 9)", May 2009.
    [2-66]ITU-RWP5A,http://www.itu.int/ITU-R/index.asp?category=information&rlin k=rhome&lang=en
    [2-67]ITU-R WP5A Doc.5A/411-E, "Annex 21-Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service",10 December 2009.
    [2-68]IEEE 802.16 Task Group m (TGm), http://wirelessman.org/tgm/.
    [2-69]IEEE 802.16m, IEEE 802.16m-07/002r9, "IEEE 802.16m System Requirements (SRD)",24 September 2009.
    [2-70]IEEE 802.16m, IEEE 802.16m-08/004r5, "IEEE 802.16m Evaluation Methodology Document (EMD)",15 January 2009.
    [2-71]IEEE 802.16m, IEEE 802.16m-09/0034r2, "IEEE 802.16M System Description Document (SDD)",24 September 2009.
    [2-72]NGMN, White Paper, "Next Generation Mobile Networks Beyond HSPA & EVDO", Release 3.0, December 2006, http://www.ngmn.org/.
    [2-73]Feng Z., Zhang Q., Tian F. et al., "Novel Research on Cognitive Pilot Channel in Cognitive Wireless Network," Wireless Personal Communications,1 Jul.2010.
    [2-74]Zhang Q., Feng Z., Zhang G. et al., "Efficient Mesh Division and Differential Information Coding Schemes in Broadcast Cognitive Pilot Channel," Wireless Personal Communications,3 Sept.2010.
    [3-1]IST-2003-507995 E2R (End-to-End Reconfigurability) Project, http://e2r.motlabs.com/.
    [3-2]ICT-2007-216248 E3 (End-to-End Efficiency) Project, http://www.ict-e3.eu/.
    [3-3]ITU-R WP5A 5A/305-E, "Annex 15-Working document towards a preliminary draft new report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 3rd Meeting of Working Party 5A, Geneva, May 18-27, 2009.
    [3-4]ITU-R WP5D 5D/597-E, "Chapter 06:Meeting Report of Working Group Technology Aspects," 6th meeting of Working Party 5D, Dresden, Oct.14-21, 2009.
    [3-5]ITU-R WP5D 5D/679-E, "Chapter 05-Meeting Report of Working Group Technology Aspects," 7th meeting of Working Party 5D, Turin, Feb.17-24,2010.
    [3-6]Demestichas P., Saatsakis A., Koenig W., "An Approach for Realizing Future Internet with Cognitive Technologies," In the Proceedings of the 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CROWNCOM2009, Hannover, Germany,22-24 June 2009.
    [3-7]Cordier P., Houze P., Jemaa S. B. et al., "E2R Cognitive Pilot Channel concept," IST Summit, Mykonos, June 2006.
    [3-8]Zhang Y., Jiang Y., Ji Y., "Network Selection Process Based on In-band and Out-band Cognitive Pilot Channel in the end-to-end Reconfigurable Systems," WWRF16, Apr.2006.
    [3-9]Salient O., Perez-Romero J., Goria P. et al., "Cognitive Pilot Channel:A Radio Enabler for Spectrum Awareness and Optimized Radio Resource Management," In the Proceedings of ICT Mobile Summit 2009, Santander, Spain, 10-12 June 2009.
    [3-10]E2R Ⅱ White Paper, "The E2R Ⅱ Flexible Spectrum Management (FSM) Framework and Cognitive Pilot Channel (CPC) Concept-Technical and Business Analysis and Recommendations," Nov.2007. https://ict-e3.eu/project/white_papers/e2r/7.E2RII_FSM_CPC_UBM_White_Pap er_Final%5B1%5D.pdf
    [3-11]E3 D5.1, "Overview of Support for Heterogeneous Standards Research Approaches and Plans," May 2008.
    [3-12]Perez-Romero J., Salient O., Agusti R. et al., "A Novel On-Demand Cognitive Pilot Channel enabling Dynamic Spectrum Allocation," 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, April 2007, pp.46-54.
    [3-13]Galani A., Tsagkaris K., Demestichas P., "Information Flow for Optimized Management of Spectrum and Radio Resources in Cognitive B3G wireless networks," Journal of Network and Systems Management, Springer, Nov.2009.
    [3-14]Galani A., Tsagkaris K., Koutsouris N. et al., "Design and Assessment of Functional Architecture for Optimized Spectrum and Radio Resource Management in Heterogeneous Wireless Networks," International Journal of Network Management, Feb.2010.
    [3-15]Fette B.A. (ed.), Cognitive Radio Technology, Newnes of Elsevier,2006, pp. 269-275.
    [3-16]Filjar R., Kos T., Markezic I., "GPS Ionospheric Error Correction Models," Multimedia Signal Processing and Communications,48th International Symposium ELMAR-2006, June 2006, pp.215-217.
    [3-17]Bishop G., Mazzella A., Holland E. et al., "Algorithms that use the ionosphere to control GPS errors," IEEE Position Location and Navigation Symposium, Apr.1996, pp.145-152.
    [3-18]Gao X., Dai Y., Wang K., "A study on the self-difference GPS positioning by dynamic and fictitious datum station," Proceedings of the IEEE International Vehicle Electronics Conference, vol.1, Sept.1999, pp.16-18.
    [3-19]Saaty T. L., Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, RWS Publications, U.S.A.,2000.
    [3-20]许树柏,层次分析法原理,天津:天津大学出版社,1998.
    [3-21]Deng J. L., Introduction to grey system theory, The Journal of Grey System, 1(1),1989, pp.1-24.
    [3-22]邓聚龙著,灰预测与灰决策,华中科技大学出版社,2002.
    [3-23]Liang L., Feng Z., Zhang P. et al., "A Mode and Channel Selection Scheme for Plug-and-Play Multi-Mode Access Point," 5th IEEE Consumer Communications and Networking Conference (CCNC), Jan.2008, pp.538-542.
    [4-1]IST-2003-507995 E2R (End-to-End Reconfigurability) Project, http://e2r.motlabs.com/.
    [4-2]ICT-2007-216248 E3 (End-to-End Efficiency) Project, http://www.ict-e3.eu/.
    [4-3]ITU-R WP5A 5A/305-E, "Annex 15-Working document towards a preliminary draft new report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," 3rd Meeting of Working. Party 5A, Geneva, May 18-27, 2009.
    [4-4]ITU-R WP5D 5D/597-E, "Chapter 06:Meeting Report of Working Group Technology Aspects," 6th meeting of Working Party 5D, Dresden, Oct.14-21, 2009.
    [4-5]ITU-R WP5D 5D/679-E,'"Chapter 05-Meeting Report of Working Group Technology Aspects," 7th meeting of Working Party 5D, Turin, Feb.17-24,2010.
    [4-6]Cordier P., Houze P., Jemaa S. B. et al., "E2R Cognitive Pilot Channel concept," 1ST Summit, Mykonos, June 2006.
    [4-7]E2R Ⅱ White Paper, "The E2R Ⅱ Flexible Spectrum Management (FSM) Framework and Cognitive Pilot Channel (CPC) Concept-Technical and Business Analysis and Recommendations," Nov.2007. https://ict-e3.eu/project/white_papers/e2r/7.E2RII_FSM_CPC_UBM_White_Pap er_Final%5B1%5D.pdf
    [4-8]E3 D5.1, "Overview of Support for Heterogeneous Standards Research Approaches and Plans," May 2008.
    [4-9]Perez-Romero J., Sallent O., Agusti R. et al., "A Novel On-Demand Cognitive Pilot Channel enabling Dynamic Spectrum Allocation," 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, April 2007, pp.46-54.
    [4-10]Sallent O., Perez-Romero J., Agusti R. et al., "Cognitive Pilot Channel Enabling Spectrum Awareness," IEEE International Conference on Communications Workshops, ICC Workshops 2009,14-18 June 2009.
    [4-11]Sallent O.. Agusti R., Perez-Romero J. et al., "Decentralized Spectrum and Radio Resource Management Enabled by an On-demand Cognitive Pilot Channel," Annales de Telecommunication. Springer, April 2008, pp.281-294.
    [4-12]Goldsmith A., Wireless Communication, Cambridge University Press,2005.
    [4-13]Proakis J. G., Digital Communications,4th ed., New York:McGraw-Hill, 2001.
    [4-14]Image Processing Toolbox, The Mathworks. http://www.mathworks.com/access/helpdesk/help/toolbox/images/index.html
    [4-15]Perez-Romero J., Sallent O., Agusti R., "On the Applicability of Image Processing Techniques in the Radio Environment Characterisation," IEEE 69th Vehicular Technology Conference, VTC Spring 2009,26-29 April 2009.
    [5-1]Thomas R. W., Friend D. H., Dasilva L. A. et al., "Cognitive networks: adaptation and learning to achieve end-to-end performance objectives," IEEE Communications Magazine, vol.44,2006, pp.51-57.
    [5-2]Webb W., "Wireless Communications:The Future", John Wiley & Sons, 2007.
    [5-3]Mansfield G., "Femtocells in the US Market-Business Drivers and Consumer Propositions," Femtocells Europe, ATT, London, U.K., June 2008.
    [5-4]Zhang J. and de la Roche G., "Femtocells:Technologies and Deployment," John Wiley & Sons Ltd,2010,1-13.
    [5-5]Cullen J., "Radioframe presentation," Femtocell Europe 2008, London, UK, June 2008.
    [5-6]Chandrasekhar V., Andrews J. G. and Gatherer A., "Femtocell Network:A Survey," IEEE Communications Magazine, September 2008, pp.59-67.
    [5-7]Xia P., Chandrasekhar V. and Andrews J. G., "Femtocell Access Control in the TDMA/OFDMA Uplink", IEEE Globecom, December 2010.
    [5-8]Xia P., Chandrasekhar V. and Andrews J. G., "Open vs. Closed Access Femtocells in the Uplink", IEEE Transactions on Wireless Communications, 9(12), December 2010, pp.3798-3809.
    [5-9]Galindo-Serrano A., Guipponi L. and Dohler M., "Cognition and Docition in OFDMA-Based Femtocell Networks," IEEE Globecom 2010.
    [5-10]Lien S., Tseng C., Chen K. et al., "Cognitive Radio Resource Management for QoS Guarantees in Autonomous Femtocell Networks," IEEE ICC 2010.
    [5-11]Li Y., Macuhua M., Sousa E. S. et al., "Cognitive interference management in 3G femtocells," IEEE PIMRC 2009.
    [5-12]Chandrasekhar V. and Andrews J. G., "Uplink capacity and interference avoidance for two-tier femtocell networks", IEEE Transactions Wireless Communications,8(7), July 2009, pp.3498-3509.
    [5-13]Chandrasekhar V. and Andrews J. G., "Spectrum Allocation in Tiered Cellular Networks", IEEE Transactions on Communications,57(10), Oct.2009, pp. 3059-3068.
    [5-14]Cheng S.-M., Ao W. C., and Chen K.-C., "Downlink Capacity of Two-tier Cognitive Femto Networks," IEEE PIMRC 2010.
    [5-15]Guvenc I., Jeong M-R., Watanabe F. et al. "A Hybrid Frequency Assignment for Femtocells and Coverage Area Analysis for Co-Channel Operation." IEEE Commun. Letters,12(12), Dec.2008, pp.880-882.
    [5-16]Sundaresan K. and Rangarajan S., "Efficient Resource Management in OFDMA Femto Cells", ACM Mobihoc'09, New Orleans, Louisiana, USA, May 18-21,2009.
    [5-17]Lopez-Perez D., Valcarce A., de la Roche G., and Zhang J., "OFDMA Femtocells:A Roadmap on Interference Avoidance," IEEE Communications Magazine,47(9), September 2009. pp.41-48.
    [5-18]Lopez-Perez D., Ladanyi A., Juttner A. et al., "OFDMA femtocells:A self-organizing approach for frequency assignment," IEEE Personal. Indoor and Mobile Radio Communications Symposium (PIMRC), Tokyo, Japan, Sept.2009.
    [5-19]Feng Z. Y., Liang L., Tan L., Zhang P., "Q-learning based heterogeneous network self-optimization for reconfigurable network with CPC assistance," Science in China Series F:Information Science,53(12),2009, pp.2360-2368.
    [5-20]Nolte K., Kaloxylos A., Tsagkaris K. et al., "The E3 architecture:enabling future cellular networks with cognitive and self-x capabilities," International Journal of Network Management,15 Sept.2010. pp.1-24.
    [5-21]Knisely D. N., Yoshizawa T. and Favichia F., "Standardization of Femtocells in 3GPP," IEEE Communications Magazine,47(9), Sept.2009, pp.68-75.
    [5-22]Knisely D. N. and Favichia F., "Standardization of Femtocells in 3GPP2,' IEEE Communications Magazine,47(9), Sept.2009, pp.76-82.
    [5-23]3GPP TR 25.820 v8.2.0, "3G Home NodeB Study Item Technical Report,' Sept.2008.
    [5-24]3GPP TR 36.814 V9.0.0, "3GPP TSG RAN (E-UTRA):Further advancements for E-UTRA physical layer aspects (Release 9)," March 2010.
    [5-25]Kingman J., Poisson Precesses, Oxford University Press,1993.
    [5-26]Poisson Process website: http://en.wikipedia.org/wiki/Poisson_distribution#2-dimensional_Poisson_proces s
    [5-27]沈嘉,索士强,全海洋等编著,3GPP长期演进(LTE)技术原理与系统 设计,人民邮电出版社,2008年,278-280.
    [5-28]Baccelli F., Blaszczyszyn B. and Muhlethaler P., "An aloha protocol for multihop mobile wireless networks," IEEE Trans. Inf. Theory,52(2), Feb.2006, pp.421-436.
    [5-29]Edwards J., "Implementation of network listen modem for WCDMA femtocell," IET Seminar on Cognitive Radio and Software Defined Radios: Technologies and Techniques,18 Sept.2008.
    [6-1]Webb W., "Wireless Communications:The Future", John Wiley & Sons, 2007.
    [6-2]Mansfield G., "Femtocells in the US Market-Business Drivers and Consumer Propositions," Femtocells Europe, ATT, London, U.K., June 2008.
    [6-3]Cullen J., "Radioframe presentation," Femtocell Europe 2008, London, UK, June 2008.
    [6-4]Zhang J. and de la Roche G., "Femtocells:Technologies and Deployment," John Wiley & Sons Ltd,2010,1-13.
    [6-5]Chandrasekhar V., Andrews J. G. and Gatherer A., "Femtocell Network:A Survey," IEEE Communications Magazine, September 2008, pp.59-67.
    [6-6]Edwards C., "The future is femto," IET Engineering & Technology,3(15), 2008,pp.70-73.
    [6-7]Claussen H., Ho L. T. W. and Samuel L. G., "An Overview of the Femtocell Concept", Bell Labs Technical Journal,13(1), May 2008, pp.221-246.
    [6-8]Claussen H., Ho L. T. W. and Samuel L. G., "Self-optimization of coverage for femtocell deployments," Wireless Telecommunications Symposium,24-26 April 2008, pp.278-285.
    [6-9]Ashraf I., Claussen H. and Ho L.T.W., "Distributed Radio Coverage Optimization in Enterprise Femtocell Networks," in Proc. IEEE International Conference on Communications (ICC), May 2010, pp.1-6.
    [6-10]Chandrasekhar V., Andrews J. G., Muharemovie T. et al., "Power Control in Two-Tier Femtocell Networks," IEEE Trans. Wireless Commun.,8(8), Aug.2009, pp.4316-4328.
    [6-11]Arulselvan N., Ramachandran V., Kalyanasundaram S. et al., "Distributed Power Control Mechanisms for HSDPA femtocells," IEEE Vehicular Technology Conference, VTC Spring 2009, April 2009, pp.1-5.
    [6-12]Lopez-Perez D., Valcarce A., de la Roche G., and Zhang J., "OFDMA Femtocells:A Roadmap on Interference Avoidance," IEEE Communications Magazine,47(9), September 2009, pp.41-48.
    [6-13]Yavuz M., Meshkati F., Nanda S. et al., "Interference Management and Performance Analysis of UMTS/HSPA+Femtocells," IEEE Communications Magazine,47(9), Sept.2009, pp.102-109.
    [6-14]Boudreau G., Panicker J., Guo N. et al., "Interference Coordination and Cancellation for 4G Networks," IEEE Communications Magazine,47(4), April 2009, pp.74-81.
    [6-15]Jo H.-S., Mun C., Moon J. et al., "Interference Mitigation Using Uplink Power Control for Two-Tier Femtocell Networks," IEEE Transactions on Wireless Communications.8(10), Oct.2009. pp.4906-4910.
    [6-16]Chandrasekhar V. and Andrews J. G. "Uplink Capacity and Interference Avoidance for Two-tier Femtocell Networks". IEEE Transactions Wireless Communications,8(7), July 2009, pp.3498-3509.
    [6-17]Claussen H., "Performance of Macro-and Co-channel Femtocells in a Hierarchical Cell Structure," IEEE PIMRC, Sept.2007, pp.1-5.
    [6-18]Ho L. T. W. and Claussen H., "Effects of User-deployed, Co-channel Femtocells on the Call Drop Probability in a Residential Scenario," IEEE PIMRC, Sept.2007, pp.1-5.
    [6-19]Claussen H., Pivit F., "Femtocell Coverage Optimization using Switched Multi-element Antennas," IEEE International Conference on Communications (ICC), June 2009, pp.1-6.
    [6-20]Chandrasekhar V., Kountouris M. and Andrews J. G., "Coverage in Multi-Antenna Two-Tier Networks," IEEE Transactions Wireless Communications,8(10), Oct.2009, pp.5314-5327.
    [6-21]张乃尧.阎平凡,神经网络与模糊控制,清华大学出版社,1998年.
    [6-22]Haykin S.. Neural Networks and Learning Machines,3rd ed.,Prentice Hall, 2009.
    [6-23]http://home.educities.edu.tw/oldfriend/article/antenna_design/antenna%20int roduction%20class.pdf
    [6-24]Tsagkaris K., Katidiotis A., Demestichas P., "Neural network-based learning schemes for cognitive radio systems." Computer Communications,31(14),5 Sept. 2008, pp.3394-3404.
    [6-25]Hopfield J.J., "Artificial neural networks," IEEE Circuits and Devices Magazine,4(5), Sept.1988, pp.3-10.
    [6-26]Cybenko G., "Approximation by Superposition of Sigmoidal Functions," Mathtematics of Control. Signals and Systems, vol.2,1989, pp.303-314.
    [6-27]Chen T. P., Chen H., Liu R., "Approximation Capability in C(Rn) by Multilayer Feedforward Networks and Related Problems," IEEE Trans.on Neural Networks,6(1),1995, pp.25-30.
    [6-28]Hagan M. T.. Demuth H. B., Beale M. H., Neural Network Design, Boston, MA:PWS Publishing.1996.
    [6-29]Mornik K. M., Stinchcombe M., White H., "Multilayer Feedforward Networks are Universal Approximators," Neural Networks,5(5),1989, pp. 359-366.
    [6-30]王学辉,张明辉等编著,Matlab 6.1最新应用详解,中国水利水电出版社,2002年.
    [7-1]FCC, "Spectrum Policy Task Force," Rep. ET Docket no.02-135, Nov.2002.
    [7-2]FCC, "Facilitating opportunities for flexible, efficient and reliable spectrum use employing cognitive radio technologies:notice of proposed rule making and order," FCC Document ET Docket No.03-108, Dec.2003.
    [7-3]Mitola J., "Software radios:wireless architecture for the 21st Century," New York:Wiley,2000.
    [7-4]Mitola J., "Cognitive radio [D]," Stockholms, Sweden:Royal Institute of Technology (KTH),2000.
    [7-5]Demestichas P., Dimitrakopoulos G., Strassner J. et al., "Introducing reconfigurability and cognitive networks concepts in the wireless world", IEEE Vehicular Technology Magazine,1(2), June 2006, pp.32-39.
    [7-6]ITU-R WP5A 5A/513-E "Annex 19 to Working Party 5A Chairman's Report Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service," Geneva,31 May 2010.
    [7-7]ITU-R WP5A 5A/601-E "Annex 21 to Working Party 5A Chairman's Report Working document towards a preliminary draft new Report ITU-R [LMS.CRS]-Cognitive radio systems in the land mobile service", Geneva,22 Nov. 2010.
    [7-8]Zhang Q. X., Feng Z. Y., Zhang G. Y. et al, "Efficient Mesh Division and Differential Information Coding Schemes in Broadcast Cognitive Pilot Channel," Wireless Personal Communications,3 Sept.2010.
    [7-9]Feng Z. Y., Zhang Q. X., Tian F. et al., "Novel Research on Cognitive Pilot Channel in Cognitive Wireless Network," Wireless Personal Communications,1 Jul.2010.
    [7-10]ETSI TR 102683 v1.1.1, "Reconfigurable Radio Systems (RRS); Cognitive Pilot Channel (CPC)", Sept.2009.
    [7-11]Zhang Q., Jia J. and Zhang J., "Cooperative relay to improve diversity in cognitive radio networks", IEEE Commu. Mag.,47(2), Feb.2009, pp.111-117.
    [7-12]Letaief K. B. and Zhang W., "Cooperative Communications for Cognitive Radio Networks," Proceedings of the IEEE,97(5), May 2009, pp.878-893.
    [7-13]Guo Y., Kang G., Zhang N. et al., "Outage performance of relay-assisted cognitive-radio system under spectrum-sharing constraints," Electronics Letters, 46(2), Jan.2010, pp.182-184.
    [7-14]Simeone O., Bar-Ness Y. and Spagnolini U., "Stable Throughput of Cognitive Radios With and Without Relaying Capability," IEEE Transactions on Communications,55(12), Dec.2007, pp.2351-2360.
    [7-15]Sadek A. K., Han Z. and Liu K. J. R., "A distributed relay-assignment algorithm for cooperative communications in wireless networks," In Proc. IEEE International Conference on Communications ICC'06, vol.4.2006. pp. 1592-1597.
    [7-16]Sadek A. K., Han Z. and Liu K. J. R., "Distributed Relay-Assignment Protocols for Coverage Expansion in Cooperative Wireless Networks,"IEEE Trans, on Mobile Computing,9(4), April 2010, pp.505-515.
    [7-17]Wang B., Han Z., and Liu K. J. R., "Distributed relay selection and power control for multiuser cooperative communication networks using buyer/seller game," In Proc. IEEE INFOCOM, Anchorage, Alaska. May 6-122007, pp. 544-552.
    [7-18]Sharma S., Shi Y., Hou Y T. et al., "Cooperative Communications in Multi-hop Wireless Networks:Joint Flow Routing and Relay Node Assignment,' IEEE INFOCOM 2010, March 2010. pp.1-9.
    [7-19]Shi Y, Sharma S., Hou Y. T. et al., "Optimal relay assignment for cooperative communications," In Proc. of ACM MobiHoc, Hongkong, China, May 27-30 2008, pp.3-12.
    [7-20]Xie M., Zhang W. and Wong K., "A geometic approach to improve spectrum efficiency for cognitive relay networks," IEEE Transactions on Wireless Communications,9(1). Jan 2010, pp.268-281.
    [7-21]Ng T.C-Y. and Yu W.,"Joint optimization of relay strategies and resource allocations in cooperative cellular networks," IEEE Journal on Selected Areas in Communications.25(2), Feb.2007, pp.328-339.
    [7-22]Yeh E.M and Berry R.A., "Throughput optimal control of cooperative relay networks." IEEE Trans. on Information Theory,53(10), October 2007, pp. 3827-3833.
    [7-23]Jia J., Zhang J. and Zhang Q., "Cooperative Relay for Cognitive Radio Networks," IEEE INFOCOM 2009, April 2009, pp.2304-2312.
    [7-24]陈宝林编著,最优化理论与算法,第2版,清华大学出版社,2005年.
    [7-25]孙惠泉编著,图论及其应用,科学出版社,2004年.
    [7-26]Diestel R., Graph Theory (3rd Edition), Springer-Verlag,2005.
    [7-27]Yucek T. and Arslan H., "A survey of spectrum sensing algorithms for cognitive radio applications Yucek," IEEE Communications Surveys and Tutorials,11(1),2009, pp.116-130.
    [7-28]Xie S., Liu Y., Zhang Y. et al., "A Parallel Cooperative Spectrum Sensing in Cognitive Radio Networks," IEEE Trans. on Vehicular Technology,59(8),2010, pp.4079-4092.
    [7-29]Quan Z., Cui S., Sayed A.H. et al., "Optimal Multiband Joint Detection for Spectrum Sensing in Cognitive Radio Networks," IEEE Trans. on Signal Processing,57(3),2009, pp.1128-1140.
    [7-30]Hoang A., Liang Y., Zeng Y., "Adaptive joint scheduling of spectrum sensing and data transmission in cognitive radio networks," IEEE Trans, on Communications,58(1),2010, pp.235-246.
    [7-31]Zhang W., Mallik R. and Letaief K., "Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks," IEEE Trans. on Wireless Communications,8(12),2009, pp.5761-5766.
    [7-32]3GPP TR 36.814 V9.0.0, "3GPP TSG RAN (E-UTRA):Further advancements for E-UTRA physical layer aspects (Release 9)", March 2010.
    [7-33](美)哥德史密斯,(GoldSmith, A.)著,杨鸿文,李卫东,郭文彬等译,无线通信(Wireless Communication),人民邮电出版社,2007年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700