用户名: 密码: 验证码:
认知无线电网络中协作通信和频谱管理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的无线网络采用静态的频谱分配策略,但是近年来,随着多元化业务的发展所造成的频谱需求的增长,传统的静态分配策略面临着频谱稀缺的困境。而在大部分已分配的频谱中,在很多时刻是空闲状态的,这就导致了很多频谱的利用率低下的问题。动态频谱接入正是为了解决频谱效率问题。动态频谱接入的关键技术就是认知无线电(CR, Cognitive Radio)技术。此外,协作通信技术是一种新的通信方式,可以提高无线通信系统更高的容量,并获得复用增益。而频谱管理是一个在协调认知用户选择相应带宽进行传输时的非常重要的研究课题。本文着重分析认知无线电网络中协作通信和频谱管理问题。论文具体的研究工作包括以下几个部分:
     1.研究了双向中继系统的性能。协作中继在协作通信中是个十分重要的技术。应用网络编码思想的双向中继方式很好的解决了由于半双工模式所造成的频谱效率损失问,在双向中继系统中,两个信源通过一个中继节点交互相互信息。我们首先分析了双向多中继场景下信道估计误差对于系统性能的影响,通过近似有效信噪比和它的概率密度函数,最终得出平均错误概率的下界,仿真结果验证了理论分析的正确性。并且我们通过改进型一类贝塞尔函数求解双向中继系统中断概率并获得闭式表达式。这个工作是一个基础性的理论研究,对于指导认知无线电网络的协作通信研究有一定的意义。
     2.在认知无线网络中分为主用户网络(Primary Network)和次用户网络(Secondary Network),对于主用户网络来说,传统的协作通信技术都可以得到应用。而次户网络的协作通信主要研究的是协作感知。具体研究内容如下:
     1)基于分布式天线的多点协作传输:一方面应用多点协作传输,小区边缘用户的速率大大的得到了提升;另一方面,由于相比集中式网络的优势,分布式天线系统已经在学术界和工业领域研究多年并得到了广泛的认可。提出基于分布式天线的多点协作传输方案。评估在天线数量和天线位置两方面的变化对系统频谱效率的影响。这个工作对于主用户网络和基于构架的次用户网络都有一定的意义。
     2)协作感知数据上报性能分析:在协作感知的过程中分为感知信道和上报信道两个部分。协作感知数据上报的准确性对于协作感知的性能影响至关重要。考虑中继和广播链路共存的协作感知场景,研究在信道估计误差存在的情况下,分析在汇聚节点的误码率性能。分析具有一定的理论价值和工程意义。
     3.对认知无线电网络中的频谱管理问题做出了分析。应用OFDM调制方案的认知无线电系统的频谱管理问题可以简化为功率控制或者功率分配问题。功率分配问题往往会建模成优化问题,由于考虑到认知无线网络中的次用户的自私性,所以采用能体现用户间竞争体系的非合作博弈对网络进行建模。在考虑代价因子的情况下,我们分析了在认知无线电中基于代价函数的功率分配问题。应用变分不等式,最优化等数学理论分析了纳什均衡的存在性。另一方面,在传统的研究中,网络中许多用户长时间共存在一个系统中,也就是说,用户集是不变的。但是在实际上,认知无线电环境是动态变化的。认知环境的动态性注定了优化分析的不确定性,采用鲁棒性优化方法建模动态功率分配问题,并且提出迭代算法解决这一问题。
Current wireless networks are characterized by a static spectrum allocation policy. Recently, with the growing in spectrum demand due to the developing of multi-service, the traditional static spectrum policy faces spectrum scarcity in particular spectrum bands. In contrast, a large portion of the assigned spectrum is used sporadically, leading to underutilization of a significant amount of spectrum. Hence, dynamic spectrum access techniques were recently proposed to solve these spectrum inefficiency problems. The key enabling technology of dynamic spectrum access techniques is cognitive radio (CR) technology, which provides the capability to share the wireless channel with licensed users in an opportunistic manner. Moreover, Cooperative communication is a new communication paradigm that promises significant capacity and multiplexing gain increase in wireless networks. And spectrum management is a significant issue that coordinates CR users to select the best available channel to transmission. In this dissertation, we analyze the application of cooperative communication technologies and spectrum management problem for cognitive radio. Specifically, our research work consists of the following parts:
     1. Performance of two-way relay system was investigated. Cooperative relaying is a significant issue among cooperative communications. By reason of the spectral efficiency loss of half-duplex mode, two-way relaying method which involved in network coding idea was proposed, in two-way relay system, two sources exchange their information through one relay node. Firsly, we made the performance analysis of two-way multi-relay system with channel estimation error. With the derivation of effective signal-to-noise ratio at the transceiver and its probability density function, we can get lower bound expression for average bit error rate. Simulation results were performed to verify the analytical results. Moreover, we derived the close-form formulation of outage probability for the two-way relay system with the help of modified Bessel Function of the first kind. This work was a fundamental theoretical research and was meaningful for guiding the cooperative communication in cognitive radio network.
     2. In a CR network architecture, the components include both a primary network and a secondary network. Traditional cooperative technologies of wireless communication can be applied for primary users. For secondary users, cooperative technologies are mainly about cooperative spectrum sensing. Research details are as follows:
     1) Distributed antenna based coordinated multiple point transmission. In order to overcome large inter-cell interference of users at the cell boundary, coordinated multiple point transmission and reception was proposed; On the other hand, distributed antennas system has been widely focused both in academic and industrial field due to advantages over conventional centralized communication systems. Distributed antenna based coordinated multiple point transmission was proposed and we evaluated effect of number and position of antennas on system spectrum efficiency. This work was meaningful for both primary network and framework based secondary network.
     2) Performance analysis of reporting cooperative sensing data. The processing of cooperative sensing consists of sensing channel and reporting channel. There is challenging problem to cooperative spectrum sensing because reporting channels are normally subject to fading or heavy shadowing.The accuracy of reporting data is critical for the performance of cooperative sensing. We considered a scenario involving both relaying link and broadcasting link, and investigated the BER performance in common receiver with channel estimation error.
     3. Investigation was made upon spectrum management problem for cognitive radio network. Using the OFDM-based modulation scheme, the spectrum management can be reduced to the transmit power control. Power allocation problem is often modeled as optimization problems. With the selfish action of secondary users, we modeled the power allocation problem as a non-cooperative game which focused on the multiuser competitive feature. We studied the problem of power allocation in CR networks involving pricing utility. With the help of variational inequality and optimization theory, the existence of nash equilibrium was proved. In traditional research, many users co-exist over a long period of time. In other words, user set is unchanged in their analysis. But in fact, the cognitive radio environment is dynamic which leads to uncertainty characteristic. Robust optimization approach was being used to model the dynamic power control problem. Iterative algorithm was also proposed to solve this problem.
引文
[1]FCC. Spectrum policy task force report [R]. Tech. Rep 02-155,2002.
    [2]David P. Reed, "How wireless networks scale:the illusion of spectrum scarcity", FCC Technological Advisory Council, April 2002 and International Symposium on Advanced Radio Technologies (ISART 2002), March 2002.
    [3]Mitola J., Maguire G. Q. Jr. Cognitive radio:making software radios more personal. IEEE Personal Communications, Volume6, Issue4, Aug 1999, pp.13-18.
    [4]Mitola J. Cognitive radio:An integrated agent architecture for software defined radios [D]. Stockholm, Sweden:Royal Institute Technology (KTH),2000.
    [5]XG Working Group, The xG Architecture Framework, RFC v1.O available at:http:// www.ir.bbn.com/projects/xmac/rfc/rfc-af.pdf.
    [6]XG Working Group The XG Vision, RFC v2.0 available at:http:// www.ir.bbn.Com/-ramanath/pdf/rfe_vision.pdf.
    [7]Weiss T. A., Marcus Spiering, Jondral F. K., Quality of service in spectrum pooling systems. PIMRC 2004, Barcelona, Spain 5-8 Sept 2004, pp.347-349.
    [8]Capar F., Maitoryo I., Weiss T. A., Analysis of coexistence strategies for cellular and wireless local area networks. VTC 2003 Fall, PP.1812-1816.
    [9]Brodersen R. W., Wolisz A., Cabric D., Mishra S. M., Willkomm D., CORVUS:a cognitive radio approach for usage of virtual unlicensed spectrum, white paper, Berkeley Wireless Research Center. UC Berkeley, July 29,2004.
    [10]End-to-end Recofigurability E2R_WPS_D5.3_050727. available at:httP:// e2r.motLabs.com/Deliverables/E2R_WPS_D5.3_50727.pdf.
    [11]Grandblaise D., Kloeck C. Moessner K., et al. Techno-economic of collaborative based secondary spectrum usage E2R research project outcomes overview. DySPAN 2005, Nov.2005, pp.318-327.
    [12]IEEE 802 LAN/MAN Standards Committee 802.22 WG [EB/OL]. available at: httP://.ieee802.orG/22/.
    [13]IEEE 802.16's License-Exempt Task GrouP. available at:httP:// www.ieee802.org/16/le/.
    [14]IEEE P1900 WG available at:httP:// grouper.ieee.org/groups/emc/emc/1900/index.html.
    [15]IEEE Std 802.11h-2003 Part 11. Wireless LAN Medium Access Control (MAC) and Physieal Layer (PHY) specifications Amendment 5:Spectrum and Transmit Power Management Extensions in the 5 GHz band in Europe [3].2003.
    [16]IEEE P802.11-Task Group Y-Meeting Update:Status of Project IEEE802.11y [EB/OL]. available at:http://grouper.ieee.org/grouPs/802/11/RePorts/tgy_update.html.
    [1]Federal Communieations Commission, "Notice of Proposed Rule Making," August 12, 2000.
    [2]Mitola J. et al., "Cognitive Radio:Making Software Radios More Personal," IEEE Pers. Communication, vol.6. no.4, pp.13-18, Aug.1999.
    [3]Mitola J., "Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio," Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden,2000.
    [4]Mitola J., Ⅲ, "Cognitive Radio Architecture Evolution." IEEE Proceedings, vol.97, no.4, April 2009.
    [5]Haykin S., "Cognitive Radio:Brain-Empowered Wireless Communications," IEEE Journal on Selected Areas in Communications, vol.23, no.2, Feb.2005.
    [6]The National Association for Amateur Radio, Rep., ET Docket no.03-237.2004.
    [7]Kolodzy P. et al., "Next Generation Communications:Kickoff meeting." in Proceedings of DARPA, Oct.17.2001.
    [8]FCC, "Spectrum Policy Task Force Report," Nov.2002. FCC Doc. ET Docket No. 02-135.
    [9]Akyildiz I. F.. Lee W. Y., Vuran M. C., and Mohanty S., "Next generation/dynamic spectrum access/cognitive radio wireless networks:A survey," Comput. Netw., vol.50, pp. 2127-2159. May 2006.
    [10]Raman C., Yates R. D., and Mandayam N. B., "Scheduling variable rate links via a spectrum server," in Proc. IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, Nov.2005, pp.110-118.
    [11]Sahai A., Hoven N., and Tandra R., "Some fundamental limits on cognitive radio," in Proc. Allerton Conf., Monticello, Oct.2004.
    [12]Tang H., "Some physical layer issues of wide-band cognitive radio systems," in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, Nov.2005, pp.151-159.
    [13]Sahai A., Tandra R., Mishra S. M., and Hoven N., "Fundamental design tradeoffs in cognitive radio systems," in Proc. of Int. Workshop on Technology and Policy for Accessing Spectrum, Aug.2006.
    [14]Mishra S. t. B. S. M., Mahadevappa R., and Brodersen R. W., "Cognitive technology for ultra-wideband/WiMax coexistence," in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr.2007, pp.179-186.
    [15]Sahai A., Hoven N., and Tandra R., "Some fundamental limits on cognitive radio," in Proc. Allerton Conf., Monticello, Oct.2004.
    [16]Shankar N S., Cordeiro C., and Challapali K., "Spectrum agile radios:Utilization and sensing architectures," in Proc.1st IEEE Symp. New Frontiers Dyn. Spectrum Access Netw. (DySPAN), Baltimore, MD, Nov.8-11,2005, pp.160-169.
    [17]Gardner W. A. and Spooner C. M., "Signal interception:Performance advantages of cyclic-feature detectors," IEEE Trans. Commun., vol.40, pp.149-159, Jan.1992.
    [18]Yucek T. and Arslan H., "Spectrum characterization for opportunistic cognitive radio systems." in Proc. IEEE Military Commun. Conf.. Washington. D.C., USA. Oct. 2006, pp.1-6.
    [19]Tkachenko A., Cabric D., and Brodersen R. W., "Cyclostationary feature detector experiments using reconfigurable BEE2," in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks. Dublin, Ireland, Apr.2007, pp. 216-219.
    [20]Sutton P. D., Lotze J., Nolan K. E., and Doyle L. E., "Cyclostationary signature detection in multipath rayleigh fading environments," in Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Commun. (Crowncom), Orlando, Florida, USA, Aug.2007.
    [21]Tandra R. and Sahai A., "SNR walls for feature detectors," in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr.2007, pp.559-570.
    [22]Nosratinia A., Hunter T. E., and Hedayat A., "Cooperative communciation in wireless networks," IEEE Commun. Mag., vol.42, pp.74-80, Oct.2004.
    [23]Cover T. M. and Gamal A. A. El, "Capacity theorems for the relay channel," IEEE Trans. Inf. Theory, vol. IT-25, pp.572-584, Sep.1979.
    [24]Laneman J. N., Tse D. N. C., and Wornell G. W., "Cooperative diversity in wireless networks:Efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol.50, pp. 3062-3080, Dec.2004.
    [25]Kramer G., Gastpar M, and Gupta P., "Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Inf. Theory, vol.51. pp.3037-3063, Sep.2005.
    [26]Sendonaris A., Erkip E. and Aazhang B.,"User cooperation diversity-part I:system description," IEEE Transactions on Communications,51(11). Nov 2003:1927-1938.
    [27]Sendonaris A., Erkip E. and Aazhang B., "User cooperation diversity-part II: implementation aspects and performance analysis," IEEE Transactions on Communications,51(11), Nov 2003:1939-1948.
    [28]Hunter T. E. and Nosratinia A., Cooperation diversity through coding.2002
    [29]Anghel R. A. and Kaveh M., "Exact symbol error probability of a CooPerative network in a Ravleigh-fading environment," Wireless Communications, IEEE Transactions on. vol.3. PP.1416-1421.2004.
    [30]Suraweera H. A. and Karagiannidis G. K., "Closed-form error analysis of the non-identical Nakagami-m relay fading channel," Communications Letters, IEEE. vol.12. pp.259-261,2008.
    [31]Suraweera H. A., Smith P. J. and Armstrong J., "Outage Probability of Cooperative Relay Networks in Nakagami-m Fading Channels," IEEE Communications Letters, vol. 10, PP.834-836,2006.
    [32]Ikki S. and Ahmed M. H., "Performance of decode-and-forward cooperative diversity networks over Nakagami-m fadinge hannels," Presented at IEEE GLOBECOM, Washington, DC 2007.
    [33]Xu Feng, Francis C. M. Lau, Zhou Qing. F. and Yue D.-W., "Outage Performance of Cooperative Communication Systems Using Opportunistie Relaying and Selection Combining Receiver," IEEE SIGNAL PROCESSING LETTERS, vol.6, PP.113-116, 2009.
    [34]Cabric D., Mishra S. M., and Brodersen R. W., "Implementation issues in spectrum sensing for cognitive radios," in Proc. Asilomar Conf. Signals, Syst., Comput., Nov.7-10, 2004, vol.1, pp.772-776.
    [35]Ghasemi A. and Sousa E. S., "Collaborative spectrum sensing for opportunistic access in fading environments," in Proc.1st IEEE Symp. New Frontiers Dyn. Spectrum Access Netw. (DySPAN), Baltimore, MD, Nov.8-11,2005, pp.131-136.
    [36]Ganesan Q Li Y G. "Cooperative Spectrum Sensing in Cognitive Radio Networks", in Proc. IEEE DySPAN 2005,137-143.
    [37]Ganesan G. and Li Y., "Agility improvement through cooperative diversity in cognitive radio," in Proc. IEEE Global Telecomm. Conf. (Globecom), vol.5, St. Louis, Missouri, USA, Nov./Dec.2005, pp.2505-2509.
    [38]Cabric D., Tkachenko A., and Brodersen R., "Spectrum sensing measurements of pilot, energy, and collaborative detection," in Proc. IEEE Military Commun. Conf., Washington, D.C., USA, Oct.2006, pp.1-7.
    [39]Weiss T., Hillenbrand J., Krohn A., and Jondral F., "Efficient signaling of spectral resources in spectrum pooling systems," in Proc. IEEE Symposium on Commun. and Veh. Technol., Eindhoven, Netherlands, Nov.2003.
    [40]Guo C., Zhang T.,Zeng Z., and Feng C., "Investigation on spectrum sharing technology based on cognitive radio." in Proc. IEEE Int. Conf. on Communications and Networking in China, Beijing, China, Oct.2006. pp.1-5.
    [41]Cabric' D., Mishra S., Willkomm D., Brodersen R., and Wolisz A., "A cognitive radio approach for usage of virtual unlicensed spectrum." in Proc.IST Mobile and Wireless Communications Summit, Dresden, Germany, June 2005.
    [42]Akyildiz I. F., Lee W. Y., Vuran M. C., and Mohanty S., "NeXt generation/dynamic spectrum access/cognitive radio wireless networks:A survey," Computer Networks Journal (Elsevier), Sept.2006.
    [43]Visotsky E., Kuffner S., and Peterson R., "On collaborative detection of TV transmissions in support of dynamic spectrum sensing," in Proc.1st IEEE Symp. New Frontiers Dyn. Spectrum Access Netw. (DySPAN), Baltimore, MD, Nov.8-11,2005, pp. 338-345.
    [44]Varshney P. K. and Burrus C. S., Distributed Detection and Data Fusion. New York: Springer,1997.
    [1]Laneman J. N., Tse D. N. C., and Wornell G. W., "Cooperative diversity in wireless networks:Efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol.50, pp. 3062-3080, Dec.2004.
    [2]Sendonaris A., Erkip E., and Aazhang B., "User cooperation diversity-part I:system description," IEEE Transactions on Communications,51(11), Nov 2003. pp.1927-1938.
    [3]Sendonaris A., Erkip E., and Aazhang B., "'User cooperation diversity-part II: implementation aspects and performance analysis," IEEE Transactions on Communications,51(11), Nov 2003. pp.1939-1948.
    [4]Ochiai H., Mitran P., Tarokh V., and Kneubuhler F. W., "Variable Rate Two Phase Collaborative Communication Protocols for Wireless Networks." IEEE Transactions on Information Theory,52(9), Sep.2006. pp.4299-4313.
    [5]Host-Madsen A., "Capacity bounds for Cooperative diversity," IEEE Trans. Inform. Theory,52(4), Apr.2006. pp.1522-1544.
    [6]Cover T. M., and El Gamal A., "Capacity theorems for the relay channel," IEEE Trans. Inform. Theory.25(5), Sept.1979. pp.572-584.
    [7]Rankov B., and Wittneben A., "Spectral efficient signaling for half-duplex relay channels," in Proc. of Asilomar Conf., Pacific Grove, USA, Oct.2005:1066-1071.
    [8]Popovski P., and Yomo H., "Physical network coding in two-way wireless relay channels," in Proc. of IEEE ICC, June 2007. pp.707-712.
    [9]Rankov B., and Wittneben A., "Achievable rate regions for the two-way relay channel," in Proc. of IEEE ISIT, July 2006. pp.1668-1672.
    [10]Koike-Akino T., Popovski P., and Tarokh V., "Optimized Constellations for Two-Way Wireless Relaying with Physical Network Coding," IEEE Journal on Selected Areas in Communications,27(5),2009. pp.773-787.
    [11]Zhang Shengli, and Liew Soung-Chang, "Channel Coding and Decoding in a Relay System Operated with Physical-Layer Network Coding," IEEE Journal on Selected Areas in Communications,27(5),2009. pp.788-796.
    [12]Lu Ling, and YU Hong-yi, "Opportunistic Cooperative Network-Coding for Wireless Two-Way Relay Channel," Journal of Beijing University of Posts and Telecommunications,4,2008. pp.117-121.
    [13]Gedik B., and Uysal M., "Two Channel Estimation Methods for Amplifyand-Forward Relay Networks," Canadian Conference on Electrical and Computer Engineering (CCECE'08), May 2008.
    [14]Gao F., Cui T., and Nallanathan A., "On channel estimation and optimal training design for amplify and forward relay networks," IEEE Trans. Wireless Commun.,7(5), May 2008. pp.1907-1916.
    [15]Atia G., and Molisch A. F., "Cooperative Relaying with Imperfect Channel State Information," in IEEE Globecom,2008.
    [16]Patel C. S., and Stuber G. L., "Channel Estimation for Amplify and Forward Relay Based Cooperation Diversity Systems." IEEE Trans. Wireless Commun.,6(6). June 2007. pp.2348-2356.
    [17]Wu Y., and Patzold M., "Performance Analysis of Cooperative Communication Systems with Imperfect Channel Estimation," Proc. IEEE International Conference on Communication (ICC'09). Dresden, Germany, June,2009.
    [18]Ahlswede R., Cai N., Li S.-Y. R. and Yeung R. W., "Network information flow. IEEE Transactions on Information Theory,2000, vol.46, pp.1204-1216.
    [19]Li S.-Y. R., Yeung R. W. and Cai N., "Linear Network Coding,"IEEE Trans. Inform. Theory, vol.49, no.2, pp.1204-1216, Feb.2003.
    [20]Laneman J. N., "Network Coding Gain of Cooperative Diversity," IEEE Military Comm.Conf. (MILCOM), Monterey, CA, Nov.2004.
    [21]Rankov B., and Wittneben A., "Spectral efficient protocols for half-duplex fading relay channels," IEEE Journal on Selected Areas in Communications,25(2),2007, pp. 379-389.
    [22]Anghel P. A., and Kaveh M., "Exact symbol error probability of a cooperative network in a Rayleigh-fading environment," IEEE Trans. on Wirless Commun.,3(9), Sep. 2004, pp.1416-1421.
    [23]Papoulis A., The Fourier Integral and its Applications, NewYork:McGraw-Hill,1962.
    [24]Gradshteyn I. S. and Ryzhik I. M., Tables of Integrals, Series, and Products,5th ed. Academic,1994
    [1]FCC., Spectrum Policy Task Force. ET Docket,2002.02-135.
    [2]Haykin S., "Cognitive radio:Brain-empowered wireless communications," IEEE J. Sel. Areas Commun,23. pp.201-220,2005.
    [3]NTT DoCoMo, "Text proposal for RANI TR on LTE-Advanced", R1-083410,3GPP TSG RAN WG1 Meeting #54, Jeju, Korea, Aug 18-22,2008.
    [4]Dai L., Zho S., and Yao Y., "Capacity analysis in CDMA distributed antenna systems," IEEE Trans. on Wireless Commun, vol.4, no.6, pp.2613-2620, Nov.2006.
    [5]Wan Choi, and Jeffrey G. Andrews, "'Downlink Performance and Capacity of Distributed Antenna Systems in a Multicell Environment." IEEE Trans, on Wireless Commun, vol.6. no.1, pp.69-73, Jan.2007.
    [6]Ghasemi A. and Sousa E. S., "Collaborative spectrum sensing for opportunistic access in fading environments," in Proc.1st IEEE Symp. New Frontiers Dyn. Spectrum Access Netw. (DySPAN), Baltimore, MD, Nov.8-11,2005, pp.131-136.
    [7]Ghasemi A. and Sousa E. S., "Spectrum sensing in cognitive radio networks:The cooperation-processing tradeoff,"Wireless Commun. Mobile Comput., vol.7, no.9, pp. 1049-1060, Nov.2007.
    [8]Ghasemi A. and Sousa E. S., "Opportunistic spectrum access in fading channels through collobrative sensing," J. Commun., vol.2, no.2, pp.71-82, Mar.2007.
    [9]Mishra S. M., Sahai A., and Brodersen R. W., "Cooperative sensing among cognitive radios," in Proc. IEEE Int. Conf. Commun. (ICC), Turkey, Jun.2006, vol.4, pp. 1658-1663.
    [10]Patel C. S., Stuber G. L., "Channel Estimation for Amplify and Forward Relay Based Cooperation Diversity Systems," IEEE Trans. Wireless Commun,6(6), pp.2348-2356. 2007.
    [11]Yomo H., Carvalho E. D., "A CSI Estimation Method for Wireless Relay Network,' IEEE Commun. Letter,11(6), pp.480-482.2007.
    [12]3GPP TR36.814, "Further Advancements for E-UTRA Physical Layer Aspects," 2009.
    [13]R1084400, "Coordinated Multi-Point downlink transmission in LTE-Advanced,' Qualcomm Europe,2008.
    [I4J3GPP R1-090140, Clustering for CoMP Transmission, Nortel, Jan.2009.
    [15]3GPP R1-090657, Dynamic Cell Clustering for CoMP. LG Electronics. Feb.2009.
    [16]Goldsmith A. J. and Chua S.-G., "Variable-rate variable-power MQAM for fading channels," IEEE Trans. on Commun, vol.45, pp.1218-1230, Oct.1997.
    [17]Sahai A., Hoven N., and Tandra R., "Some fundamental limits on cognitive radio," in Proc. Allerton Conf., Monticello, Oct.2004.
    [18]Tang H., "Some physical layer issues of wide-band cognitive radio systems," in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, Nov.2005, pp.151-159.
    [19]Mishra S. t. B. S. M., Mahadevappa R., and Brodersen R. W., "Cognitive technology for ultra-wideband/WiMax coexistence," in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr.2007, pp.179-186.
    [20]ShankarN S., Cordeiro C., and Challapali K., "Spectrum agile radios:Utilization and sensing architectures," in Proc.1st IEEE Symp. New Frontiers Dyn. Spectrum Access Netw. (DySPAN), Baltimore, MD, Nov.8-11,2005, pp.160-169.
    [2l]彭涛,郭晨,王文博,“认知无线电网络高能效协作频谱感知技术,”.北京邮电大学学报,33(4),20l0年8月:93-96.
    [22]Urkowitz H., "Energy detection of unknown deterministic signals," Proc. IEEE, vol. 55, pp.523-531, Apr.1967.
    [23]Kostylev V. I., "Energy detection of a signal with random amplitude," in Proc. IEEE Int. Conf. Commun. (ICC), New York, Apr.28-May 2,2002, pp.1606-1610.
    [24]Digham F. F., Alouini M.-S., and Simon M. K., "On the energy detection of unknown signals over fading channels," IEEE Trans. Commun., vol.55, pp.21-24,Jan.2007.
    [25]Anghel P. A., Kaveh M., "Exact symbol error probability of a cooperative network in a Rayleigh-fading environment," IEEE Trans. on Wirless Commun,3(9),2004, pp. 1416-1421.
    [26]Anghel P. A., and Kaveh M., "Exact symbol error probability of a cooperative network in a Rayleigh-fading environment." IEEE Trans. on Wirless Commun,3(9), pp. 1416-1421.2004.
    [1]Wu Y. and Zou W. Y., "Orthogonal Frequeney Division MultiPlexing:amulti-carrier modulation seheme." IEEE Trans. Broadeast., vol.41, Aug.1995, PP.392-399.
    [2]Nolan K. E., "Reconfigurable OFDM Systems," Ph.D. dissertation, Univ. of Dublin, Trinity College, Dublin, Ireland,2005.
    [3]Berthold U., Jondral F. K., Brandes S., and Schnell M., "OFDM-based overlay systems:A promising approach for enhancing spectral efficiency," IEEE Commun. Mag., vol.45, no.12, pp.52-58,2007.
    [4]Arslan H., Mahmoud H. A., and Yucek T., "OFDM for cognitive radio:Merits and challenges." in Cognitive Radio. Software Defined Radio, and Adaptive Wireless Systems. H. Arslan, Ed. New York:Springer,2007.
    [5]Yu W., "Competition and cooperation in multi-user communication environments.' Ph.D. dissertation, Stanford Univ., Stanford, CA,2002.
    [6]Luo Z. Q., and Pang J, S., "Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines," EURASIP J. Appl. Signal Process., pp.1-10, 2006.
    [7]Yu Hui., Gao Lin., Li zheng., Wang Xinbing., and Hossain E., "Pricing for Uplink Power Control in Cognitive Radio Networks," IEEE Trans, on Vehicular Technology. May, pp.1769-1778,2010.
    [8]Wang Fan., Krunz M., and Cui Shuguang., "Price-Based Spectrum Management in Cognitive Radio Networks," IEEE Journal of Selected Topics in Signal Processing.,2(1), pp.74-87,2008.
    [9]罗伯特·吉本斯,博弈论基础,中国社会科学出版社,1999年3月弟1版.
    [10]Sun Y.,"Bandwidth-effieient wireless OFDM," IEEE J. Sel. Area Commun., vol.19, no.11, Nov.2001, PP.2267-2278.
    [11]van Nee R. and Prasad R., "FDM for Wireless Multimedia Communications," Boston: Artech House,2000.
    [12]Keller T. and Hanzo L., "Adaptive multicarrier modulation:A convenient framework for time-frequency processing in wireless communications," Proc. IEEE, vol.88, no.5, pp. 611-640,2000.
    [13]Bahai A. R. S., Saltzberg B. R., and Ergen M., Multi-Carrier Digital Communications: Theory and Applications of OFDM,2nd ed. New York:Springer,2004.
    [14]Li Y. and Stuber G., Orthogonal Frequency Division Multiplexing for Wireless Communications. New York:Springer,2006.
    [15]Sterand M., Svensson T., Ottosson T., Ahlen A., Svensson A., and Brunstrom A., "Towards systems beyond 3G based on adaptive OFDMA transmission," Proc. IEEE, vol. 95, no.12, pp.2432-2455,2007.
    [16]Boyd S., L Vandenberghe. Convex Optimization. Cambridge,U.K.:Cambridge Univ. Press,2004.
    [17]Facchinei F., Pang.J. S., Finite-Dimensional Variational Inequalities and Complementarity Problems. New York:Springer,2003.
    [18]Setoodeh P., Haykin S., "Robust Transmit Power Control for Cognitive Radio," Proc. IEEE,97(5), pp.915-939.2009.
    [19]Danskin J. M., The Theory of Max-Min. Springer-Verlag,1967.
    [20]Basar T., Bernhard P., H∞ Optimal Control and Related Minimax Design Problems:A Dynamic Game Approach,2nd ed. Berlin, Germany:Birkhauser,1995.
    [21]Yamashita N., Luo Z. Q., "A nonlinear complementarity approach to multiuser power control for digital subscriber lines," Optim. Methods Software.,19(5), pp.633-652,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700