用户名: 密码: 验证码:
两个中国遗传性聋家系的致病基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分一个母系遗传性聋家系的致病基因研究
     目的:
     研究一个五代母系遗传性聋大家系的遗传学病因及发病机制,阐明该家系成员耳聋的机制,为遗传性聋的防治提供理论依据。
     方法:
     经耳聋先证者获悉一遗传性聋大家系,经家系调查采集详细的临床及听力学资料,并在签署知情同意书后采集静脉血。由静脉血提取全基因组DNA,对母系成员的线粒体基因组全序列及常见耳聋基因GJB2经聚合酶链反应扩增和测序进行检测。对检测到的线粒体DNA耳聋相关突变应用焦磷酸测序进行异质性定量,分析突变的异质性比例与耳聋程度的相关性。对突变位点行物种间进化保守性分析。在相同遗传背景的200名正常听力对照和806名散发感音神经性聋患者中进行突变筛查。同时建立耳聋患者和正常听力对照的淋巴细胞系,提取细胞的线粒体总RNA,采用Northern blot检测基因突变后tRNA水平的变化,并进行线粒体基因的蛋白合成和细胞耗氧量测量。
     结果:
     该家系符合母系遗传规律,耳聋的发生与使用氨基糖甙类抗生素无关,表现为双侧对称、迟发性、进行性感音神经性聋,以高频听力损失为主,逐渐累积全频,常伴高调耳鸣。患者颞骨高分辨率CT无明显异常,未伴随明显的其他系统疾病,属于非综合征型聋。线粒体基因组全序列分析显示母系成员属于同一线粒体单倍型Z,共存在43种碱基改变,其中T12201C为异质性突变,位于tRNA—His基因二级结构的接受臂,使碱基配对由A-U变为A-C,该位点在多物种间高度保守,突变异质性比例与耳聋发病年龄和严重程度存在相关性。其余碱基改变无特殊病理意义。在200名听力正常对照和806名散发感音神经性聋患者中未筛查到该突变。常见耳聋基因GJB2筛查显示部分家系成员包括患者和听力正常者均携带235delC杂合突变。成功构建患者和正常听力对照的淋巴细胞系,Northern blot分析显示突变后tRNA-His水平较正常对照减少75%。线粒体基因的翻译产物较正常对照减少47%,细胞总耗氧率较正常对照减少36%,差异皆有统计学意义。
     结论:
     线粒体基因tRNA His T12201C异质性突变为该家系成员耳聋的主要分子基础,突变异质性比例与耳聋发病年龄和严重程度存在一定相关性。T12201C突变造成tRNA代谢异常,tRNA His的水平明显减少,使线粒体蛋白合成和呼吸功能显著降低,ATP合成减少,活性氧族增加,最终导致耳聋。
     第二部分一个Waardenburg综合征家系的致病基因研究
     目的:
     研究一个中国Waardenburg综合征家系的临床表型特征和遗传学致病基因,及其基因型和表型间的关系。
     方法:
     经耳聋先证者获悉一个综合征型聋家系,进行家系调查、听力学检测和全身检查,并在签署知情同意书后采集静脉血5ml,提取全基因组DNA。分析整理临床资料,绘制系谱图,判断遗传方式。聚合酶链反应扩增候选基因MITF全部9个外显子及其侧翼序列,PCR产物纯化测序后与参考序列比对,寻找突变和多态改变。对发现的突变分析氨基酸及编码蛋白质的改变,并进行氨基酸多物种间保守性分析。同时对所有家系成员进行常见耳聋基因GJB2、线粒体DNA 12S rRNA的测序筛查。在100名相同遗传背景的正常听力对照中对发现的突变进行测序筛查。
     结果:
     该家系诊断为Waardenburg综合征Ⅱ型,主要临床表现为棕褐色雀斑、早白发、虹膜异色、先天性感音神经性聋。根据系谱图判断为常染色体显性遗传方式,但家系中不同个体的表型存在明显差异。MITF基因外显子全测序在第8外显子发现c.[742-743delAAinsT;746-747delCA]杂合突变,12名家系成员携带该突变,与临床表型共分离。突变导致MITF蛋白第248位氨基酸由赖氨酸转变为终止密码子TAG,正常时419个氨基酸残基的蛋白截短为247个氨基酸,丧失了蛋白重要的功能结构域bHLH,导致单倍剂量不足。该氨基酸位点在多物种间高度保守。同时发现先证者不仅携带MITF基因的杂合突变,而且携带GJB2基因c. [109G>A]+[235delC]复合杂合致病突变。其他家系成员无GJB2基因双致病突变,所有成员线粒体DNA 12S rRNA均未发现致病突变。100名听力正常对照中未发现MITF基因第8外显子任何突变或多态改变,也未发现GJB2基因c.[109G>A]+[235delC]复合杂合致病突变。
     结论:
     Waardenburg综合征Ⅱ型临床表型多变,该家系成员的主要遗传学病因为MITF基因c.[742-743delAAinsT; 746-747delCA]杂合突变,这是一个新的WS2复杂突变。先证者同时存在MITF基因突变和GJB2基因双致病突变,两个基因可能在其耳聋的表型中均发挥作用。研究拓展了WS2基因突变谱,其基因型和表型的关系需进一步研究。
Part 1 A study associated with a maternally inherited deafness family in China
     Objective
     To clarify the genetic etiology and pathogenesis of maternally transmitted hearing loss in a large Chinese family, for the prevention and treatment of hereditary hearing loss to provide a theoretical basis.
     Methods
     One Han Chinese family was ascertained through the Otology Clinic. Clinical data was obtained from this deafness family. According to the mode of inheritance through mothers, we extract the whole genome DNA in leukocyte from all family members available. PCR and sequencing the whole mitochondrion DNA and GJB2 gene to detect the possible mutation(s) associated with deafness. Pyrosequencing was used to quantitate the level of heteroplasmic mutation, which is associated with the severity and age-at-onset of hearing loss. The mutation of evolutionary conservation is calculated by comparing the human mtDNA variants with other species. Steady-state level of mitochondrial RNAs was examined by use lymphobastoid cell lines from affected matrilineal relatives and controls. These cell lines were further assessed for the effects of the mitochondrial protein synthesis and endogenous respiration.
     Results
     The maternal family members had symmetrical, late-onset deafness, which began with tinnitus and high-frequency hearing loss, and the deafness was independence with use of aminoglycoside antibiotics. A CT scan of temporal bones of proband is normal. There is no other significant abnormal in this family. The mitochondrial DNA in this family has 43 mutations, belongs to haplotype Z. A novel heteroplasmic mutation T12201C in tRNA His of mitochondrial DNA had been found, which disrupts a highly conservative base-pairing (5A-68U) on the acceptor stem of tRNA His. The level of heteroplasmy in T12201C was roughly correlated with the age of onset and degree of deafness. No other mutations had been found important in mitochondrial DNA. Heterotic 235 delC in GJB2 gene had been found in seven maternal members including both deafness and normal hearing persons. Mitochondrial tRNA Northern analysis revealed that the T12201C mutation caused 75% reduction in steady-state levels of tRNA His,47% reduction in the rate of mitochondrial translation, and 37% reduction in the rate of total O2 consumption in the lymphoblastoid cell lines compared to the controls. The difference was statistically significant.
     Conclusions
     A novel heteroplasmic mutation T12201C in tRNA His of mitochondrion DNA is mostly possible mutation induced the maternally inherited deafness in this family. A failure in tRNA metabolism causes a significant decrease in mitochondrial protein synthesis and respiratory phenotype, which results in a decline in ATP production and increasing production of oxygen reactive species, and eventually hearing loss. The level of heteroplasmic T12201C is associated with the age of onset and the degree of deafness. Further more, the tissue-specificity of this pathogenic mtDNA mutation is likely duie to the involvement of nuclear modifier genes or tissue-specific differences in tRNA metabolism.
     Part 2
     The deafness of Waardenburg Syndrome typeⅡin a Chinese family
     Objective
     To investigate clinical and molecular features, relationship between phenotype and genotype in a large Chinese Waardenburg Syndrome family.
     Methods
     A family we obtained was identified with Waardenburg Syndrome in China. The proband with WS2 was discovered in clinic service, and then intimate clinic information and venous blood were collected in each member available by family investigation in their hometown. The whole genome DNA was extracted, and all 9 exons of MITF gene and the frequent hereditary deafness genes GJB2 and mitochondrial DNA (mtDNA) 12S rRNA were detected simultaneously by polymerase chain reaction (PCR). The mutations were analyzed and compared with the reference sequence to definite the genetic reason of WS2 in this family. We determined whether the gene mutations lead to changes of amino acids and evolution conservatism analysis of amino acids in MITF protein was made across many species. Screening the mutation discovered in one hundred controls with the same genetic background.
     Results
     According to the clinical features, it is consistent with WS2 diagnostic criteria previously described. The main abnormalities are sensorineural deafness, brown freckles on the skin, premature graying, and heterochromia irides in this family, but no dystopia canthorum in any person. The pedigree chart demonstrates autosomal dominant inheritance, but family members show varying degrees of clinical manifestation. An interesting novel heterozygous mutation c. [742-743delAAinsT; 746-747delCA] has been found in MITF gene exon 8. Twelve members have the mutation, which is co-segregate with phenotype of WS2 in the family. This mutation leads to an advanced termination codon TAG, which makes a truncated protein with only 247 amino acids, compared with the 419 amino acids in normal protein. The mutation makes MITF protein lost the complete functional structural domain bHLH-Zip, and leads to haploinsufficiency. This amino acid K (Lys) is highly conserved among many species. Intriguingly, the deaf proband had MITF gene heterozygous mutation as well as GJB2 gene c. [109G>A]+[235delC] compound heterozygous pathogenic mutations, which also lead to hereditary deafness. Nobody except the proband has double recessive pathogenic mutations in GJB2 gene and no pathogenic variants in mtDNA 12S rRNA gene are identified in all members of this pedigree. Meanwhile, no any mutation or polymorphism was observed in exon 8 of MITF gene in one hundred normal hearing controls with the same genetic background and c. [109G>A]+[235delC] in GJB2 gene was also not found in one hundred controls.
     Conclusions
     WS2 has multivariate clinical phenotype, the novel rare pattern of inconsecutive heterozygous mutation, c. [742-743delAAinsT; 746-747delCA], in MITF gene exon 8 was the main genetic etiology of this WS2 family. The proband has both GJB2 gene and MITF gene mutations. Therefore, a digenic effect may happen in the deafness of proband with MITF and GJB2 genes. This new miscellaneous frameshift mutation in MITF gene expands mutation databases of WS2A in chinese patients. Relationship between phenotype and genotype of this family needs to be studied further in the future.
引文
[1]T. R. Prezant, J. V. Agapian, M. C. Bohlmanet al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness [J]. Nat Genet,1993,4(3): 289-294
    [2]T. P. Hutchin, M. J. Parker, I. D. Younget al. A novel mutation in the mitochondrial tRNA(Ser(UCN)) gene in a family with non-syndromic sensorineural hearing impairment[J]. J Med Genet,2000,37 (9):692-694
    [3]V. Tiranti, P. Chariot, F. Carellaet al. Maternally inherited hearing loss, ataxia and myoclonus associated with a novel point mutation in mitochondrial tRNASer(UCN) gene[J]. Hum Mol Genet, 1995,4 (8):1421-1427
    [4]F. M. Reid, G. A. Vernham, H. T. Jacobs. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness[J]. Hum Mutat,1994,3(3):243-247
    [5]C. Bacino, T. R. Prezant, X. Buet al. Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness[J]. Pharmacogenetics,1995,5(3) 165-172
    [6]H. Zhao, R. Li, Q. Wanget al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family[J]. Am J Hum Genet,2004,74 (1):139-152
    [7]孔维佳,汪吉宝,黄选兆.实用耳鼻咽喉头颈外科学[M].北京:人民卫生出版社,2008:751
    [8]陈竺.医学遗传学[M].北京:人民卫生出版社,2005:82-99
    [9]刘雯,左伋.医学遗传学(第3版)[M].上海:复旦大学出版社,2003:41
    [10]M. J. Rieder, S. L. Taylor, V. O. Tobeet al. Automating the identification of DNA variations using quality-based fluorescence re-sequencing:analysis of the human mitochondrial genome[J]. Nucleic Acids Res,1998,26 (4):967-973
    [11]P. Dai, F. Yu, B. Hanet al. The prevalence of the 235delC GJB2 mutation in a Chinese deaf population[J]. Genet Med,2007,9(5):283-289
    [12]S. Anderson, A. T. Bankier, B. G. Barrellet al. Sequence and organization of the human mitochondrial genome[J]. Nature,1981,290 (5806):457-465
    [13]G. Gadaleta, G. Pepe, G. De Candiaet al. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome:cryptic signals revealed by comparative analysis between vertebrates[J]. J Mol Evol,1989,28 (6):497-516
    [14]M. J. Bibb, R. A. Van Etten, C. T. Wrightet al. Sequence and gene organization of mouse mitochondrial DNA[J]. Cell,1981,26 (2 Pt 2):167-180
    [15]B. A. Roe, D. P. Ma, R. K. Wilsonet al. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome[J]. J Biol Chem,1985,260 (17):9759-9774
    [16].医学分子生物学技术[M].上海:复旦大学上海医学院分子生物学实验室
    [17]G. Miller, M. Lipman. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes[J]. Proc Natl Acad Sci U S A,1973,70 (1):190-194
    [18]M. X. Guan, J. A. Enriquez, N. Fischel-Ghodsianet al. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression[J]. Mol Cell Biol,1998, 18 (10):5868-5879
    [19]X. Li, N. Fischel-Ghodsian, F. Schwartzet al. Biochemical characterization of the mitochondrial tRNASer(UCN) T7511C mutation associated with nonsyndromic deafness[J]. Nucleic Acids Res,2004,32 (3):867-877
    [20]M. X. Guan, Q. Yan, X. Liet al. Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations[J]. Am J Hum Genet,2006,79 (2):291-302
    [21]X. Wang, J. Lu, Y. Zhuet al. Mitochondrial tRNAThr G15927A mutation may modulate the phenotypic manifestation of ototoxic 12S rRNA A1555G mutation in four Chinese families[J]. Pharmacogenet Genomics,2008,18 (12):1059-1070
    [22]R. Li, Y. Liu, Z. Liet al. Failures in mitochondrial tRNAMet and tRNAGln metabolism caused by the novel 4401A>G mutation are involved in essential hypertension in a Han Chinese Family [J]. Hypertension,2009,54 (2):329-337
    [23]A. Chomyn. In vivo labeling and analysis of human mitochondrial translation products[J]. Methods Enzymol,1996,264:197-211
    [24]M. P. King, G. Attardi. Human cells lacking mtDNA:repopulation with exogenous mitochondria by complementation[J]. Science,1989,246 (4929):500-503
    [25]陈竺.医学遗传学[M].北京:人民卫生出版社,2005:180
    [26]孔维佳.耳鼻咽喉头颈外科学第2版[M].北京:人民卫生出版社,2010:199
    [27]孔维佳.耳鼻咽喉头颈外科学第2版[M].北京:人民卫生出版社,2010:55
    [28]D. C. Wallace.1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging[J]. Am J Hum Genet,1995,57 (2):201-223
    [29]S. Anderson, A. T. Bankier, B. G. Barrellet al. Sequence and organization of the human mitochondrial genome[J]. Nature,1981,290 (5806):457-465
    [30]C. Florentz, B. Sohm, P. Tryoen-Tothet al. Human mitochondrial tRNAs in health and disease[J]. Cell Mol Life Sci,2003,60 (7):1356-1375
    [31]M. A. Melone, A. Tessa, S. Petriniet al. Revelation of a new mitochondrial DNA mutation (G12147A)in a MELAS/MERFF phenotype[J].Arch Neurol,2004,61 (2):269-272
    [32]R. W. Taylor, A. M. Schaefer, M. T. McDonnellet al. Catastrophic presentation of mitochondrial disease due to a mutation in the tRNA(His) gene[J]. Neurology,2004,62 (8) 1420-1423
    [33]M. Crimi, S. Galbiati, M. P. Periniet al. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness[J]. Neurology,2003,60 (7):1200-1203
    [34]W. S. Shin, M. Tanaka, J. Suzukiet al. A novel homoplasmic mutation in mtDNA with a single evolutionary origin as a risk factor for cardiomyopathy[J]. Am J Hum Genet,2000,67 (6); 1617-1620
    [35]M. Mimaki, A. Ikota, A. Satoet al. A double mutation (G11778A and G12192A) in mitochondrial DNA associated with Leber's hereditary optic neuropathy and cardiomyopathy[J]. J Hum Genet,2003,48 (1):47-50
    [36]汪振诚.人线粒体tRNA Leu(UUR)基因点突变的研究[D].上海:第二军医大学,2003
    [37]M. Tanaka, V. M. Cabrera, A. M, Gonzalezet al. Mitochondrial genome variation in eastern Asia and the peopling of Japan[J]. Genome Res,2004,14 (10A):1832-1850
    [38]M. C. Brandon, M. T. Lott, K. C. Nguyenet al. MITOMAP:a human mitochondrial genome database--2004 update[J]. Nucleic Acids Res,2005,33 (Database issue):D611-D613
    [39]J. Normanly, J. Abelson. tRNA identity[J]. Annu Rev Biochem,1989,58:1029-1049
    [40]A. K. Hopper, E. M. Phizicky. tRNA transfers to the limelight[J]. Genes Dev,2003,17 (2) 162-180
    [41]A. Chomyn, J. A. Enriquez, V. Micolet al. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes[J]. J Biol Chem,2000,275 (25):19198-19209
    [42]X. Tang, R. Li, J. Zhenget al. Maternally inherited hearing loss is associated with the novel mitochondrial tRNA Ser(UCN) 7505T>C mutation in a Han Chinese family[J]. Mol Genet Metab, 2010,100 (1):57-64
    [43]M. X. Guan, N. Fischel-Ghodsian, G. Attardi. Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation[J]. Hum Mol Genet,1996,5(7):963-971
    [44]M. X. Guan, N. Fischel-Ghodsian, G. Attardi. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation[J]. Hum Mol Genet, 2001,10 (6):573-580
    [45]N. Fischel-Ghodsian. Mitochondrial deafness mutations reviewed[J]. Hum Mutat,1999,13 (4):261-270
    [46]M. X. Guan. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity[J]. Mitochondrion,2011,11 (2):237-245
    [47]T. R. Prezant, J. V. Agapian, M. C. Bohlmanet al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[J]. Nat Genet,1993,4(3): 289-294
    [48]J. Lu, Y. Qian, Z. Liet al. Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12S rRNA 1555A>G mutation[J]. Mitochondrion,2010, 10 (1):69-81
    [49]X. Estivill, N. Govea, E. Barceloet al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides[J]. Am J Hum Genet,1998,62 (1):27-35
    [50]Y. Bykhovskaya, M. Shohat, K. Ehrenmanet al. Evidence for complex nuclear inheritance in a pedigree with nonsyndromic deafness due to a homoplasmic mitochondrial mutation[J].Am J Med Genet,1998,77 (5):421-426
    [51]J. Lu, Z. Li, Y. Zhuet al. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss[J]. Mitochondrion,2010, 10 (4):380-390
    [52]M. Yoneda, A. Chomyn, A. Martinuzziet al. Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy[J]. Proc Natl Acad Sci U S A,1992,89 (23):11164-11168
    [53]Y. Michikawa, F. Mazzucchelli, N. Bresolinet al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication[J]. Science,1999,286 (5440):774-779
    [54]A. Sato, K. Nakada, H. Shitaraet al. Deletion-mutant mtDNA increases in somatic tissues but decreases in female germ cells with age[J]. Genetics,2007,177 (4):2031-2037
    [55]J. P. Jenuth, A. C. Peterson, K. Fuet al. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA[J]. Nat Genet,1996,14 (2):146-151
    [56]J. N. Spelbrink, F. Y. Li, V. Tirantiet al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria[J]. Nat Genet,2001,28 (3):223-231
    [57]D. R. Dunbar, P. A. Moonie, H. T. Jacobset al. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes[J]. Proc Natl Acad Sci U S A,1995,92 (14):6562-6566
    [58]B. J. Battersby, J. C. Loredo-Osti, E. A. Shoubridge. Nuclear genetic control of mitochondrial DNA segregation[J]. Nat Genet,2003,33 (2):183-186
    [59]X. Z. Liu, X. J. Xia, X. M. Keet al. The prevalence of connexin 26 (GJB2) mutations in the Chinese population[J]. Hum Genet,2002,111 (4-5):394-397
    [60]A. Malena, E. Loro, M. Di Reet al. Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA[J]. Hum Mol Genet,2009,18 (18):3407-3416
    [1]孔维佳.耳鼻咽喉头颈外科学第2版[M].北京:人民卫生出版社,2010:199
    [2]王秋菊,韩东一,翟所强,饶绍奇.遗传性听力损失及其综合征[M].北京:人民军医出版社,2006:11-19
    [3]W. E. Nance. The genetics of deafness[J]. Mental Retardation and Developmental Disabilities Research Reviews,2003,9 (2):109-119
    [4]P. J. Waardenburg. A New Syndrome Combining Developmental Anomalies of the Eyelids, Eyebrows and Nose Root with Pigmentary Defects of the Iris and Head Hair and with Congenital Deafness-Dystopia-Canthi Medialis Et Punctorum Lacrimalium Lateroversa, Hyperplasia Supercilii Medialis Et Radicis Nasi, Heterochromia Iridum Totalis Sive Partialis, Albinismus Circumscriptus (Leucismus, Poliosis), Et Surditas Congenita (Surdimutitas)[J]. American Journal of Human Genetics,1951,3 (3):195-253
    [5]A. P. Read, V. E. Newton. Waardenburg syndrome[J]. Journal of Medical Genetics,1997,34 (8):656-665
    [6]X. Z. Liu, V. E. Newton, A. P. Read. Waardenburg Syndrome Type-Ii-Phenotypic Findings and Diagnostic-Criteria[J]. American Journal of Medical Genetics,1995,55 (1):95-100
    [7]M. Tassabehji, V. E. Newton, A. P. Read. Waardenburg Syndrome Type-2 Caused by Mutations in the Human Microphthalmia (Mitf) Gene[J]. Nature Genetics,1994,8(3):251-255
    [8]H. S. Chen, L. Jiang, Z. G. Xieet al. Novel mutations of PAX3, MITF, and SOX10 genes in Chinese patients with type I or type II Waardenburg syndrome[J]. Biochemical and Biophysical Research Communications,2010,397 (1):70-74
    [9]陈静,杨淑芝,刘军等Waardenburg综合征Ⅱ型患者MITF基因突变分析[J].遗传,2008,30(4):6
    [10]冯永,刘铮铮,胡浩等.MITF基因的新突变导致Waardenburg综合征Ⅱ一例[J].中华耳鼻咽喉头颈外科杂志,2007,42(10):2
    [11]杨淑芝,曹菊阳,张锐宁等.Waardenburg综合征Ⅱ型中国家系MITF基因突变分析[J].中国听力语言康复科学杂志,2006(2):4
    [12]V. Pingault, D. Ente, F. Dastot-Le Moalet al. Review and Update of Mutations Causing Waardenburg Syndrome[J]. Human Mutation,2010,31 (4):391-406
    [13]陈竺.医学遗传学[M].北京:人民卫生出版社,2005:82-99
    [14]T. Shigemura, M. Shiohara, M. Tanakaet al. Effect of the Mutant Microphthalmia-Associated Transcription Factor Found in Tietz Syndrome on the In Vitro Development of Mast Cells[J]. Journal of Pediatric Hematology Oncology,2010,32 (6):442-447
    [15]杨淑芝.综合征型耳聋临床表型特征分析及相关基因突变研究[D]:中国人民解放军军医进修学院,2006
    [16]E. Pardono, Y. van Bever, J. van den Endeet al. Waardenburg syndrome:Clinical differentiation between types I and II[J]. American Journal of Medical Genetics Part A,2003, 117A (3):223-235
    [17]J. T. den Dunnen, S. E. Antonarakis. Mutation nomenclature extensions and suggestions to describe complex mutations:A discussion[J]. Human Mutation,2000,15 (1):7-12
    [18]S. D. Smith, P. M. Kelley, J. B. Kenyonet al. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF[J]. Journal of Medical Genetics,2000,37 (6):446-448
    [19]A. R. Ferredamare, P. Pognonec, R. G. Roederet al. Structure and Function of the B/Hlh/Z Domain of Usf[J]. Embo Journal,1994,13 (1):180-189
    [20]A. R. Ferredamare, G. C. Prendergast, E. B. Ziffet al. Recognition by Max of Its Cognate DNA through a Dimeric B/Hlh/Z Domain[J]. Nature,1993,363 (6424):38-45
    [21]M. Tachibana, L. A. Perezjurado, A. Nakayamaet al. Cloning of Mitf, the Human Homolog of the Mouse Microphthalmia Gene and Assignment to Chromosome 3p14.1-P12.3[J]. Human Molecular Genetics,1994,3 (4):553-557
    [22]J. H. Hallsson, B. S. Haflidadottir, A. Schepskyet al. Evolutionary sequence comparison of the Mitf gene reveals novel conserved domains[J]. Pigment Cell Research,2007,20 (3):185-200
    [23]C. Verastegui, K. Bille, J. P. Ortonneet al. Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10[J]. Journal of Biological Chemistry,2000,275 (40):30757-30760
    [24]S. Uehara, Y. Izumi, Y. Kuboet al. Specific expression of Gsta4 in mouse cochlear melanocytes:a novel role for hearing and melanocyte differentiation[J]. Pigment Cell & Melanoma Research,2009,22 (1):111-119
    [25]M. Tachibana. Cochlear melanocytes and MITF signaling[J]. Journal of Investigative Dermatology Symposium Proceedings,2001,6 (1):95-98
    [26]E. R. Price, D. E. Fisher. Sensorineural deafness and pigmentation genes:Melanocytes and the Mitf transcriptional network[J]. Neuron,2001,30 (1):15-18
    [27]P. Dai, F. Yu, B. Hanet al. The prevalence of the 235delC GJB2 mutation in a Chinese deaf population[J]. Genetics in Medicine,2007,9(5):283-289
    [28]P. Dai, F. Yu, B. Hanet al. GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment[J]. Journal of Translational Medicine,2009,7
    [29]陈帼玲.中国散发感音神经性聋患者GJB2基因突变的筛查分析[D].上海:复旦大学,2010
    [30]Y. Ma, T. Yang, Y. Liet al. Genotype-Phenotype Correlation of Two Prevalent GJB2 Mutations in Chinese Newborn Infants Ascertained From the Universal Newborn Hearing Screening Program[J]. American Journal of Medical Genetics Part A,2010,152A (11) 2912-2915
    [31]M. Palmada, K. Schmalisch, C. Bohmeret al. Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment[J]. Neurobiology of Disease, 2006,22 (1):112-118
    [32]J. Lautermann, W. J. F. Ten Cate, P. Altenhoffet al. Expression of the gap-junction connexins 26 and 30 in the rat cochlea[J]. Cell and Tissue Research,1998,294 (3):415-420
    [33]D. A. Gerido, T. W. White. Connexin disorders of the ear, skin, and lens[J]. Biochimica Et Biophysica Acta-Biomembranes,2004,1662 (1-2):159-170
    [34]F. Lang, V. Vallon, M. Knipperet al. Functional significance of channels and transporters expressed in the inner ear and kidney[J]. American Journal of Physiology-Cell Physiology,2007, 293:C1187-C1208
    [35]M. Tassabehji, V. E. Newton, X. Z. Liuet al. The Mutational Spectrum in Waardenburg Syndrome[J]. Human Molecular Genetics,1995,4(11):2131-2137
    [1]M. Crimi, R. Rigolio. The mitochondrial genome, a growing interest inside an organelle[J]. Int J Nanomedicine,2008,3 (1):51-57
    [2]D. C. Wallace.1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging[J]. Am J Hum Genet,1995,57 (2):201-223
    [3]S. Anderson, A. T. Bankier, B. G. Barrellet al. Sequence and organization of the human mitochondrial genome[J]. Nature,1981,290 (5806):457-465
    [4]M. X. Guan. Molecular pathogenetic mechanism of maternally inherited deafness[J]. Ann N Y Acad Sci,2004,1011:259-271
    [5]A. H. Schapira. Mitochondrial disease[J]. Lancet,2006,368 (9529):70-82
    [6]L. J. Wong. Diagnostic challenges of mitochondrial DNA disorders[J]. Mitochondrion,2007, 7 (1-2):45-52
    [7]JM Th Shoffner, D. C. Wallace. Oxidative phosphorylation diseases. Disorders of two genomes[J]. Adv Hum Genet,1990,19:267-330
    [8]P. F. Chinnery, D. M.Turnbull. Mitochondrial DNA mutations in the pathogenesis of human disease[J]. Mol Med Today,2000,6 (11):425-432
    [9]P. M. Matthews, R. M. Brown, K. Mortenet al. Intracellular heteroplasmy for disease-associated point mutations in mtDNA:implications for disease expression and evidence for mitotic segregation of heteroplasmic units of mtDNA [J]. Hum Genet,1995,96 (3):261-268
    [10]J. A. Canter, A. Eshaghian, J. Fesselet al Degree of heteroplasmy reflects oxidant damage in a large family with the mitochondrial DNA A8344G mutation[J]. Free Radic Biol Med,2005,38 (5):678-683
    [11]M. Tesarova, H. Hansikova, J. Kytnarovaet al. Clinical Heterogeneity, Tissue Distribution, and Intergenerational Segregation of mtDNA Mutation A3243G[J]. Toxicol Mech Methods,2004, 14 (1-2):79-84
    [12]M. Laloi-Michelin, T. Meas, C. Ambonvilleet al. The clinical variability of maternally inherited diabetes and deafness is associated with the degree of heteroplasmy in blood leukocytes[J]. J Clin Endocrinol Metab,2009,94 (8):3025-3030
    [13]S. Zhang, A. L. Tong, Y. Zhanget al. Heteroplasmy level of the mitochondrial tRNaLeu(UUR) A3243G mutation in a Chinese family is positively associated with earlier age-of-onset and increasing severity of diabetes[J]. Chin Med Sci J,2009,24 (1):20-25
    [14]Y. H. Wei. Mitochondrial DNA mutations and oxidative damage in aging and diseases:an emerging paradigm of gerontology and medicine[J]. Proc Nat1 Sci Counc Repub China B,1998, 22 (2):55-67
    [15]J. A. Morgan-Hughes, M. G. Sweeney, J. M. Cooperet al. Mitochondrial DNA (mtDNA) diseases:correlation of genotype to phenotype[J]. Biochim Biophys Acta,1995,1271 (1) 135-140
    [16]Y. Goto. Clinical and molecular studies of mitochondrial disease[J]. J Inherit Metab Dis, 2001,24 (2):181-188
    [17]A. Biggin, R. Henke, B. Bennettset al. Mutation screening of the mitochondrial genome using denaturing high-performance liquid chromatography[J]. Mol Genet Metab,2005,84 (1):61-74
    [18]Y. P. Conley, H. Brockway, M. Beattyet al. Qualitative and quantitative detection of mitochondrial heteroplasmy in cerebrospinal fluid using denaturing high-performance liquid chromatographyfJ]. Brain Res Brain Res Protoc,2003,12 (2):99-103
    [19]H. E. White, V. J. Durston, A. Selleret al. Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing[J]. Genet Test,2005,9 (3) 190-199
    [20]A. Ferraris, E. Rappaport, R. Santacroceet al. Pyrosequencing for detection of mutations in the connexin 26 (GJB2) and mitochondrial 12S RNA (MTRNR1) genes associated with hereditary hearing loss[J]. Hum Mutat,2002,20 (4):312-320
    [21]E. Ballana, N. Govea, R. de Cidet al. Detection of unrecognized low-level mtDNA heteroplasmy may explain the variable phenotypic expressivity of apparently homoplasmic mtDNA mutations[J]. Hum Mutat,2008,29 (2):248-257
    [22]M. Li, A. Schonberg, M. Schaeferet al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes[J]. Am J Hum Genet,2010,87 (2): 237-249
    [23]S. Tang, T. Huang. Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system[J]. Biotechniques,2010,48 (4):287-296
    [24]E. A. Schon, E. Bonilla, S. DiMauro. Mitochondrial DNA mutations and pathogenesis[J]. J Bioenerg Biomembr,1997,29 (2):131-149
    [25]T. R. Prezant, J. V. Agapian, M. C. Bohlmanet al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[J]. Nat Genet,1993,4(3): 289-294
    [26]M. E1-Schahawi, De Munain A. Lopez, A. M. Sarrazinet al. Two large Spanish pedigrees with nonsyndromic sensorineural deafness and the mtDNA mutation at nt 1555 in the 12s rRNA gene:evidence of heteroplasmy[J]. Neurology,1997,48 (2):453-456
    [27]Castillo FJ Del, M. Rodriguez-Ballesteros, Y. Martinet al. Heteroplasmy for the 1555A>G mutation in the mitochondrial 12S rRNA gene in six Spanish families with non-syndromic hearing loss[J]. J Med Genet,2003,40 (8):632-636
    [28]D. Otaegui, H. Irizar, M. Goicoecheaet al. Molecular characterization of putative modulatory factors in two Spanish families with A1555G deafness[J]. Audiol Neurootol,2008,13 (5): 320-327
    [29]严庆丰,管敏鑫.线粒体疾病与核基因-线粒体基因的表达调控[J].生命科学,2008,20(4):10
    [30]K. Ishikawa, Y. Tamagawa, K. Takahashiet al. Nonsyndromic hearing loss caused by a mitochondrial T7511C mutation[J]. Laryngoscope,2002,112 (8 Pt 1):1494-1499
    [31]R. Li, K. Ishikawa, J. H. Denget al. Maternally inherited nonsyndromic hearing loss is associated with the T7511C mutation in the mitochondrial tRNASerUCN gene in a Japanese family[J]. Biochem Biophys Res Commun,2005,328 (1):32-37
    [32]K. Verhoeven, R. J. Ensink, V. Tirantiet al. Hearing impairment and neurological dysfunction associated with a mutation in the mitochondrial tRNASer(UCN) gene[J]. Eur J Hum Genet,1999, 7(1):45-51
    [33]M. Toompuu, T. Yasukawa, T. Suzukiet al. The 7472insC mitochondrial DNA mutation impairs the synthesis and extent of aminoacylation of tRNASer(UCN) but not its structure or rate of turnover[J]. J Biol Chem,2002,277 (25):22240-22250
    [34]M. Toompuu, L. L. Levinger, A. Nadalet al. The 7472insC mtDNA mutation impairs 5'and 3' processing of tRNA(Ser(UCN))[J]. Biochem Biophys Res Commun,2004,322 (3):803-813
    [35]F. M. Reid, G. A. Vernham, H. T. Jacobs. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness[J]. Hum Mutat,1994,3(3):243-247
    [36]N. Fischel-Ghodsian, T. R. Prezant, P. Fournieret al. Mitochondrial mutation associated with nonsyndromic deafness[J]. Am J Otolaryngol,1995,16(6):403-408
    [37]A. Maasz, K. Komlosi, K. Hadzsievet al. Phenotypic variants of the deafness-associated mitochondrial DNA A7445G mutation[J]. Curr Med Chem,2008,15 (13):1257-1262
    [38]R. Li, G. Xing, M. Yanet al. Cosegregation of C-insertion at position 961 with the A1555G mutation of the mitochondrial 12S rRNA gene in a large Chinese family with maternally inherited hearing loss[J]. Am J Med Genet A,2004,124A (2):113-117
    [39]C. Bacino, T. R. Prezant, X. Buet al. Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness [J]. Pharmacogenetics,1995,5 (3) 165-172
    [40]M. Yoshida, T. Shintani, M. Hiraoet al. Aminoglycoside-induced hearing loss in a patient with the 961 mutation in mitochondrial DNA[J]. ORL J Otorhinolaryngol Relat Spec,2002,64(3): 219-222
    [41]R. A. Casano, D. F. Johnson, Y. Bykhovskayaet al. Inherited susceptibility to aminoglycoside ototoxicity:genetic heterogeneity and clinical implications[J]. Am J Otolaryngol,1999,20 (3) 151-156
    [42]U. Bai, M. D. Seidman. A specific mitochondrial DNA deletion (mtDNA4977) is identified in a pedigree of a family with hearing loss[J]. Hear Res,2001,154 (1-2):73-80
    [43]U. Bai, M. D. Seidman, R. Hinojosaet al. Mitochondrial DNA deletions associated with aging and possibly presbycusis:a human archival temporal bone study[J]. Am J Otol,1997,18 (4) 449-453
    [44]刘雯,左伋.医学遗传学(第3版)[M].上海:复旦大学出版社,2003:80
    [45]陈竺.医学遗传学[M].北京:人民卫生出版社,2005:181
    [46]A. Limongelli, J. Schaefer, S. Jacksonet al. Variable penetrance of a familial progressive necrotising encephalopathy due to a novel tRNA(Ile) homoplasmic mutation in the mitochondrial genome[J].J Med Genet,2004,41 (5):342-349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700