用户名: 密码: 验证码:
基于离子液体相互作用毛细管电泳新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳具有分析速度快、分离效率高、样品用量少等特点。室温离子液体由于低熔点、良好的导电性、电化学窗口宽、特殊溶解性,已广泛应用于毛细管电泳分离分析。咪唑型离子液体因其独特结构,能吸附在毛细管壁,影响毛细管电泳电渗流大小和方向。离子液体与其它分子间存在广泛分子间作用,如:静电作用、氢键、范德华力、色散力、n-π作用,π-π作用等,作为毛细管电泳添加剂,能与介质中包括分析物、环糊精、表面活性剂等成分作用,改变分析物Z/M值或分配特性,提供一种新的分离机制,所以咪唑型离子液体是毛细管电泳方法应用最多一种类型。论文在总结离子液体相关性质和应用基础上,第一部分尝试以非手性离子液体作辅助添加剂,探讨其对手性药物分离分析影响;第二部分通过疏水离子液体1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)与表面活性剂作用形成水包离子液体微乳液或者离子液体修饰胶束,与毛细管微乳液电动色谱(MEEKC)或胶束电动色谱(MEKC)相结合,研究这种新型微乳液和胶束在手性和非手性分离中的特性。具体内容主要有:
     (1)建立了以水溶性非手性离子液1-正丁基-3-甲基咪唑盐酸盐([BMIM]C1)为添加剂,β-环糊精及其衍生物作为手性选择剂的毛细管区带电泳方法,分离了氯霉素前体、普萘洛尔、沙丁胺醇三种手性药物对映体。结果表明:缓冲液中没有添加[BMIM]CI的条件下,药物只能部分分离,添加离子液体后三种药物都实现了基线分离,在此基础上考察了手性选择剂浓度、离子液体种类和浓度、缓冲溶液pH、分离电压等因素对手性分离度的影响。
     (2)为了探讨非手性离子液体对手性药物分离的影响机理,应用荧光光谱方法测定了缓冲液介质加入离子液体条件下,两种氯霉素前体对映体与β-环糊精结合常数,与无离子液体条件结合常数比较,并从微观上分析探索作用机制。
     (3)吐温-20(Tween-20)作为非离子型表面活性剂本身对中性化合物不能实现分离,通过与离子液体之间作用使胶束带有电荷。建立了基于以非离子型Tween-20为表面活性剂,1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)为油相形成水包离子液体微乳液分离四种中性化合物和四种喹诺酮药物MEEKC新方法。并对缓冲液pH值、离子浓度和表面活性剂用量、离子液体用量等因素对分离的选择性进行了讨论。在此基础上,比较其与环己烷为油相、SDS为表面活性剂组成的微乳液对分离对象选择性异同。
     (4)以非离子型Tween-20为表面活性剂,1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)为油相形成水包离子液体微乳液,把这种新型微乳液引入毛细管微乳液电动色谱(MEEKC),以β-环糊精衍生物作为手性选择剂,建立了在酸性条件下分离氯霉素前体、氧氟沙星手性药物毛细管微乳液电动色谱方法,同时考察微乳液组成等条件对分离的影响,并对其分离机制进行了初步研究。该方法保留了毛细管微乳液电动色谱可控条件多、理论塔板数高等优点,由于采用非离子型表面活性剂避免了对电渗流的抑制,可在酸性环境中对药物实现分离。
     (5)通过阴离子表面活性剂十二烷基硫酸钠(SDS)与疏水性离子液体1-正丁基-3-甲基咪唑六氟磷酸盐之间作用形成了离子液体修饰的SDS胶束,建立了新的胶束毛细管电动色谱方法,采用该方法分离8种喹诺酮药物混合物,并对微乳液PH值、缓冲液离子浓度、表面活性剂量、离子液体量等因素对分离的选择性进行了讨论。结果表明这种新型胶束与未被修饰SDS对分离的选择性存在差异。
Capillary electrophoresis (CE) is an effective analytical technique, which permits rapid, efficient separation and a small sample volume. Due to low melting point, good conductivity, wide electrochemical window, special solubility, room-temperature ionic liquids (RTILs) are widely applied in capillary electrophoresis. Imidazole ionic liquids can be absorbed into capillary wall affecting the quantity and direction of electroosmotic flow (EOF). What’s more, because of its unique structure, the interactions between ILs and other molecular are listed as electrostatic forces, hydrogen bonding, van der Waals forces, dispersion forces, n-πandπ-πinteraction, and so on. As additives in buffer, it can interaction with analytes, cyclodextrin and surfactant affecting the Z/M value of analytes or distribution characteristics, which show another separation mechanism for CE. Therefore, imidazole ionic liquid is the most widely applied in CE. Summarizing the structure, properties and applications of imidazole ionic liquid, IL as additive in CE was investigated. The thesis content consists of two part. The first part is that achiral ionic liquid as auxiliary additives is utilized for separation chiral drugs. The second part is that oil-in-water microemulsion containing IL and micelles modified hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) were introduced into microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) for separation chiral or achiral compounds. The separation selectivities of the novel MEEKC and MEKC on analytes were studied. Specific contents are listed as follows:
     (1) A capillary zone electrophoresis (CZE) method that the enantiomers of three chiral drugs (chloramphenicol precursors, propranolol, salbutamol) were separated on condition that water-soluble achiral ionic liquid 1-butyl-3-methyl-imidazole hydrochloride ([BMIM]C1) was used as an additive,β-cyclodextrin or its derivatives as chiral selectors in buffer was established. The results indicated that the three drugs can be baseline separated in the presence of ionic liquid. However, the above enantiomers can be partly separated if there exist no ionic liquid in buffer. On this basis, the effects of chiral selector concentration, type and concentration of ionic liquid, pH in buffer and separation voltage on the separation were further investigated.
     (2)In order to discuss the influence mechanism of achiral IL on the separation of chiral drugs, fluorescence spectroscopy was employed to determine binding constants between the each enantiomer of precursors of chloramphenicol andβ-cyclodextrin in the presence of IL, compared with the absence of IL. From the microscopic perspective, brief analysis and discussion were made in light of the results.
     (3)Neutral compounds can not be achieved separation by MEEKC using a nonionic surfactant Tween-20 as surfactant. However, Tween-20 micelles can share charge by interacting with hydrophobic ionic liquid formed similar mixed micelles. A novel microemulsion, Tween-20 as surfactant and 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6) as oil phase, was applied in MEEKC for separation of four neutral compounds and four fluoroquinolones . The effect of pH in buffer, ionic stength, concentration of surfactant and ionic liquid on the separation selectivity were discussed. Compared with the microemulsion containing cyclohexane as oil phase and sodium dodecyl sulfate (SDS) as surfactant, two microemulsion have differences in the distribution mechanism and separation selectivities.
     (4)Microemulsion containing IL was formed by using nonionic Tween-20 as surfactant and [BMIM]PF6 as oil phase. The microemulsion was introduced into MEEKC, and chiral drugs (chloramphenicol precursor and ofloxacin) were successfully separated by the novel MEEKC method under acidic conditions andβ-cyclodextrin derivatives as chiral selector. Besides, the effect of microemulsion composition on separation was investigated. The separation mechanism was briefly discussed as well. The method permits many adjustable factors, high theoretical plate number like tradition MEEKC method. Nonionic surfactant avoided inhibition of electroosmotic flow (EOF), The MEEKC method can realize separation of compounds in the acidic environment.
     (5) By the interaction between anionic surfactant sodium dodecyl sulfate (SDS) and hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, a novel micelles electrokinetic chromatography method was established. Mixture of eight kinds of quinolone drugs was successfully separated. Moreover, impacting factors on separation selectivity, such as pH, amount of surfactant and ionic liquid were discussed. The results show that the separation selectivity by using mixed micelles is different from that which SDS micelles was not modified by ionic liquid.
引文
[1] Wasserscheid, P., Gordon, C. M., Hilgers, C., et al. Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher a-olefins with cationic Ni complexes[J]. Chem. Commun., 2001, 13:1186-1187.
    [2] Meng, Z., D?lle, A., Carper, W. R. Gas phase model of an ionic liquid: semi-empirical and ab initio bonding and molecular structure[J]. J Mol. Struct., 2002, 585:119-128.
    [3] Dymek Jr, C. J., Stewart, J. J. P. Calculation of hydrogen-bonding interactions between ions in room-temperature molten salts [J]. Inorg. Chem., 1989, 28:1472-1476.
    [4] Dieter, K. M., Dymek, C. J., Heimer, N. E., et al. Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts[J]. J. Am. Chem. Soc., 1988, 110:2722-2726.
    [5] Bonhote, P., Dias, A. P., Papageorgiou, N., et al. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts [J]. Inorg. Chem., 1996, 35:1168-1178.
    [6] Wilkes, J. S., Zaworotko, M. J. Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids [J]. J. Chem. Soc., Chem. Commun., 1992, 965.
    [7] Wang, Y., Li, H., Han, S. Structure and conformation properties of 1-alkyl-3-methylimidazolium halide ionic liquids: a density-functional theory study[J]. J Chem. Phys., 2005, 123:174501.
    [8]田国才,华一新,刘洪学. Emim-R离子液体气相结构与光谱的密度泛函理论研究[J].计算机与应用化学, 2008, 25:170-173.
    [9] Hanke, C. G., Price, S. L., Lynden-Bell, R. M. Intermolecular potentials for simulations of liquid imidazolium salts[J]. Mol. Phys., 2001, 99:801-809.
    [10] Raabe, G., Kohler, J. Thermodynamical and structural properties of imidazolium based ionic liquids from molecular simulation[J]. J. Chem. Phys., 2008, 128:154509.
    [11] Liu, Z., Huang, S., Wang, W. A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids[J]. J. Phys. Chem. B, 2004, 108:12978-12979.
    [12] Maginn, E. J. Molecular simulation of ionic liquids: current status and future opportunities[J]. J.Phys: Condensed matter, 2009, 21:1-17.
    [13] Urahata, S. M., Ribeiro, M. C. Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study[J]. J. Chem. Phys., 2004, 120:1855-1863.
    [14] Wang, Y., Voth, G. A. Unique spatial heterogeneity in ionic liquids[J]. J. Am. Chem. Soc., 2005, 127:12192-12193.
    [15] Wang, Y., Jiang, W., Yan, T., et al. Understanding Ionic Liquids through Atomistic and Coarse-Grained Molecular Dynamics Simulations[J]. Acc. Chem. Res., 2007, 40:1193-1199.
    [16] Canongia Lopes, J. N., Padua, A. A. Nanostructural organization in ionic liquids[J]. J Phys. Chem.B, 2006, 110:3330-3335.
    [17] Triolo, A., Russina, O., Bleif, H. J., et al. Nanoscale segregation in room temperature ionic liquids[J]. J. Phys Chem.B, 2007, 111:4641-4644.
    [18] Xiao, D., Rajian, J. R., Cady, A., et al. Nanostructural organization and anion effects on the temperature dependence of the optical Kerr effect spectra of ionic liquids[J]. J. Phys. Chem.B, 2007, 111:4669-4677.
    [19] Dupont, J. On the solid, liquid and solution structural organization of imidazolium ionic liquids[J]. J. Braz. Chem. Soc., 2004, 15:341-350.
    [20] Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., et al. Liquid clathrate formation in ionic liquid–aromatic mixtures[J]. Chem. Commun., 2003, 4:476-477.
    [21] Lancaster, N. L., Welton, T. Molecular states of water in room temperature ionic liquid[J]. J. Org. Chem., 2004, 69:5986-5992.
    [22]翟翠萍,刘学军,王键吉.核磁共振波谱技术在室温离子液体研究中的应用[J].化学进展, 2009, 21:1185-1189.
    [23] Avent, A. G., Chaloner, P. A., Day, M. P., et al. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids[J]. J. Chem. Soc., 1994, 23:3405-3413.
    [24]田中华,华贲,王键吉.室温离子液体物理化学性质研究进展[J].化学通报, 2004, 67:
    [25] Heintz, A. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review[J]. J. Chem. Thermodyn., 2005, 37:525-535.
    [26] Hankea, C. G., Johanssona, A., Harperb, J. B., et al. Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liupids? A simulation study[J]. Chem. Phys. Lett., 2003, 374:85-90.
    [27] Gmehling, J., Krummen, M. DE Patent[P]. 2001, 10154052.
    [28] Kakiuchi, T. Mutual solubility of hydrophobic ionic liquids and water in liquid-liquid two-phase systems for analytical chemistry[J]. Anal Sci., 2008, 24:1221-1230.
    [29] Kakiuchi, K., Tsujioka, N. Cyclic voltammetry of ion transfer across the polarized interface between the organic molten salt and the aqueous solution[J]. Electrochem. Commun., 2003, 5:253-256.
    [30] Kakiuchi, T., Tsujioka, N., Sueishi, K., et al. Polarized Potential Window Available at the Interface Between an Aqueous Electrolyte Solution and Tetraalkylammonium Imide Salts[J].Electrochemistry, 2004, 72:833-835.
    [31] Vaher, M., Koel, M., Kaljurand, M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis[J]. Electrophoresis, 2002, 23:426-430.
    [32] Yanes, E. G., Gratz, S. R., Baldwin, M. J., et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids[J]. Anal. Chem., 2001, 73:3838-3844.
    [33] Qi, S. D., Cui, S. Y., Chen, X. G., et al. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid withβ-cyclodextrin as modifier in capillary zone electrophoresis Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid withβ-cyclodextrin as modifier in capillary zone electrophoresis[J]. J. Chromatogr. A, 2004, 1059:191-198.
    [34] Qi, S. D., Li, Y. Q., Deng, Y. R., et al. Simultaneous determination of bioactive flavone derivatives in Chinese herb extraction by capillary electrophoresis used different electrolyte systems-Borate and ionic liquids[J]. J. Chromatogr. A, 2006, 1109:300-306.
    [35] Jiang, T. F., Gu, Y. L., Liang, B., et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis[J]. Anal. Chim. Acta, 2003, 479:249-254.
    [36] Qin, W., Li, S. F. An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry[J]. Electrophoresis, 2002, 23:4110-4116.
    [37] Qin, W., Li, S. F. Electrophoresis of DNA in ionic liquid coated capillary[J]. Analyst, 2003, 128:37-41.
    [38] Vaher, M., Koel, M., Kaljurand, M. Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes[J]. Chromatographia, 2001, 53:S302-S306.
    [39] Vaher, M., Koel, M. Separation of polyphenolic compounds extracted from plant matrices using capillary electrophoresis[J]. J. Chromatogra.A, 2003, 990:225-230.
    [40]Yuan,L.M.,Han,Y.,Zhou,Y.,etal.R-N,N,N-Trimethyl-2-Aminobutanol-Bis(Trifluoromethane-Sulfon)Imidate Chiral Ionic Liquid Used as Chiral Selector in HPCE, HPLC, and CGC[J]. Anal. Lett., 2006, 39:1439-1449.
    [41] Shamsi, S. A., Danielson, N. D. Utility of ionic liquids in analytical separations[J]. J. Sep. Sci., 2007, 30:1729-1750.
    [42] Francois, Y., Varenne, A., Juillerat, E., et al. Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid A chemometric approach[J]. J. Chromatogr.A, 2007, 1138:268-275.
    [43] Tran, C. D., Mejac, I. Chiral ionic liquids for enantioseparation of pharmaceutical products by capillary electrophoresis[J]. J. Chromatogr.A, 2008, 1204:204-209.
    [44] Tang, W., Ong, T. T., Muderawan, I. W., et al. Effect of alkylimidazolium substituents on enantioseparation ability of single-isomer alkylimidazolium-beta-cyclodextrin derivatives in capillary electrophoresis[J]. Anal. Chim. Acta., 2007, 585:227-233.
    [45] Huang, L., Lin, J. M., Yu, L., et al. Improved simultaneous enantioseparation of beta-agonists in CE using beta-CD and ionic liquids[J]. Electrophoresis, 2009, 30:1030-1036.
    [46] Eriksson, J. C., Ljunggren, S., Willem, W. K., et al. Entropy and droplet size distributions of Winsor I and II microemulsions[J]. colloid. surf. A, 2001, 183-185:347-360.
    [47] Watarai, H. Miscroemulsion capillary electrophoresis[J]. Chem. Lett., 1991, 231:391-394.
    [48] ?uczaka, J., Hupkaa, J., Th?mingb, J., et al. Self-organization of imidazolium ionic liquids in aqueous solution[J]. Colloids Surf., A, 2008, 329:125-133.
    [49] Bowers, J., Butts, C. P., Martin, P. J., et al. Aggregation behavior of aqueous solutions of ionic liquids[J]. Langmuir, 2004, 20:2191-2198.
    [50] Miskolczya, Z., Seb?k-Nagya, K., Biczók, L., et al. Aggregation and micelle formation of ionic liquids in aqueous solution[J]. Chem. Phys. Lett., 2004, 400:296-300.
    [51] Sirieix-Plenet, J., Gaillon, L., Letellier, P. Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water Potentiometric and conductimetric studies[J]. Talanta, 2004, 63:979-986.
    [52] Dorbritz, S., Ruth, W., Kragl, U. Investigation on Aggregate Formation of Ionic Liquids[J]. Adv. Synth. Catal., 2005, 347:1273-1279.
    [53] Goodchilda, I., Colliera, L., Millara, S. L., et al. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures [J]. J. Colloid Interface Sci., 2007, 307:445-468.
    [54] Blesic, M., Marques, M. H., Plechkova, N. V., et al. Self-aggregation of ionic liquids: micelle formation in aqueous solution[J]. Green Chem., 2007, 9:481-490.
    [55] Inouea, T., Ebinaa, H., Dong, B., et al. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solutio[J]. J. Colloid Interface Sci., 2007, 314:236-241
    [56] Jungnickela, C., ?uczaka, J., Rankeb, J., et al. Micelle formation of imidazolium ionic liquids in aqueous solution[J]. J.Colloids Surf. A, 2008, 316:278-284.
    [57] Greavesa, T. L., Drummond, C. J. Ionic liquids as amphiphile self-assembly media[J]. Chem. Soc. Rev., 2008, 37:
    [58] Huibers, P. D. T., Lobanov, V. S., Katritzky, A. R., et al. Prediction of Critical MicelleConcentration Using a Quantitative Structure?Property Relationship Approach[J]. Langmuir, 1996, 12:1462-1470.
    [59] Bloom, H., Reinsborough, V. C. Cryoscopy in molten pyridium chloride solution[J]. Aust. J. Chem., 1967, 20:2583-2587.
    [60] Anderson, J. L., Pino, V., Hagberg, E. C., et al. Surfactant solvation effects and micelle formation in ionic liquids[J]. Chem. commun., 2003, 2444-2445.
    [61] Fletcher, K. A., Pandey, S. Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Langmuir, 2004, 20:33-36.
    [62] Moniruzzaman, M., Kamiya, N., Nakashima, K. Formation of reverse micelles in a room-temperature ionic liquid[J]. Chem. Phys. chem., 2008, 9:689-692.
    [63] Patrascu, C., Gauffre, F., Nallet, F., et al. Micelles in Ionic Liquids: Aggregation Behavior of Alkyl Poly(ethyleneglycol)-ethers in 1-Butyl-3-methyl-imidazolium Type Ionic Liquids[J]. Chem. Phys. Chem., 2006, 7:99-101.
    [64] Behera, K., Dahiya, P., Pandey, S. Effect of added ionic liquid on aqueous Triton X-100 micelles[J]. J. Colloid Interface Sci., 2007, 307:235-245.
    [65] He, Y., Li, Z., Simone, P., et al. Self-assembly of block copolyner micelles in an ionic liquids[J]. J. Am. Chem. Soc., 2006, 128:2745-2750.
    [66] Simone, P. M., Lodge, T. P. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid[J]. Appl. Mater. Interfaces, 2009, 1:2812-2820.
    [67] Simone, P. M., Lodge, T. P. Macromol. Micellization of PS-PMMA Diblock Copolymers in an Ionic Liquid[J]. Chem. Phys. Chem., 2007, 208:339-348.
    [68] He, Y., Boswell, P. G., Buhlmann, P., et al. Ion gels by self-assembly of a triblock copolymer in an ionic liquid[J]. J. Phys. Chem. B, 2007, 111:4645-4652.
    [69] Behera, K., Pandey, S. Modulating properties of aqueous sodium dodecyl sulfate by adding hydrophobic ionic liquid[J]. J. Colloid Interface Sci., 2007, 316:803-814.
    [70] Miskolczya, Z., Seb?k-Nagya, K., Biczók, L., et al. Aggregation and micelle formation of ionic liquids in aqueous solution[J]. Chem. Phys. Lett., 2004, 400:296-300.
    [71] Beyaz, A., Woon, S. O., Reddy, V. P. Synthesis and CMC studies of 1-methyl-3-(pentafluorophenyl)imidazolium quaternary salts[J]. Colloids Surf. B, 2004, 36:71-74.
    [72] Gao, H. X., Li, J. C., Han, B. X., et al. Microemulsions with ionic liquid polar domains[J]. 2004, 6:2914-2916.
    [73] Eastoe, J., Gold, S., Rogers, S. E., et al. Ionic liquid-in-oil microemulsions[J]. J. Am. Chem. Soc., 2005, 127:7302-7303.
    [74] Gao, Y. A., Li, N., Zheng, L. Q., et al. A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween-20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy[J]. Green Chem., 2006, 8:43-49.
    [75] Gao, Y., Han, S. B., Han, B. X., et al. TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions[J]. Langmuir, 2005, 21:5681-5684.
    [76] Seth, D., Setua, P., Chakraborty, A., et al. Solvent relaxation of a room-temperature ionic liquid [bmim][PF6] confined in a ternary microemulsion[J]. J Chem Sci., 2007, 119:105-111.
    [77] Cheng, S. Q., Fu, X. G., Liu, J. H., et al. Study of ethylene glycol/TX-100/ionic liquid microemulsions[J]. Colloids Surf A: Physicochem Eng Asp, 2007, 302: 211-215.
    [78] Qiu, Z. M., Texter, J. Ionic liquids in microemulsions[J]. Colloid Interface Sci., 2008, 13:252-262.
    [79] Chakrabarty, D., Seth, D., Chakraborty, A., et al. Dynamics of solvation and rotational relaxation of coumarin 153 in ionic liquid confined nanometer-sized microemulsions[J]. J. Phys. Chem. B., 2005, 109:5753-5758.
    [80] Gao, Y. N., Li, N., Zheng, L. Q., et al. The effect of water on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene ionic liquid microemulsions[J]. Chem. Eur. J., 2007, 13:2661-2670.
    [81] Gao, Y. A., Li, N., Zheng, L. Q., et al. Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene[J]. J. Phys. Chem. B., 2007, 111:2506-2513.
    [82] Gao, Y. A., Wang, S. Q., Zheng, L. Q., et al. Microregion detection of ionic liquid microemulsions[J]. J. Colloid Interface Sci., 2006, 301:612-616.
    [83] Gao, Y. A., Zhang, J., Xu, H. Y., et al. Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-xylene ionicliquid microemulsions[J]. Chem. Phys. chem., 2006, 7:1554-1561.
    [84] Rizvi, S. A., Shamsi, S. A. Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography[J]. Anal. Chem., 2006, 78:7061-7069.
    [85] Schnee, V. P., Baker, G. A., Rauk, E., et al. Electrokinetic chromatographic characterization of novel pseudo-phases based on N-alkyl-N-methylpyrrolidinium ionic liquid type surfactants[J]. Electrophoresis, 2006, 27:4141-4148.
    [86] Thibodeaux, S. J., Billiot, E., Warner, I. M. Enantiomeric separations using poly(L-valine) andpoly(L-leucine) surfactants. Investigation of steric factors near the chiral center[J]. J. chromatogr.A, 2002, 966:179-186.
    [87] Mwongela, S. M., Siminialayi, N., Fletcher, K. A., et al. A comparison of ionic liquids to molecular organic solvents as additives for chiral separations in micellar electrokinetic chromatography[J]. J. Sep. Sci., 2007, 30:1334-1342.
    [88] Tian, K., Qi, S., Cheng, Y., et al. Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier[J]. J. Chromatogr.A, 2005, 1078:181-187.
    [89] Zhang, H., Tian, K., Tang, J., et al. Analysis of baicalein, baicalin and wogonin in Scutellariae radix and its preparation by microemulsion electrokinetic chromatography with 1-butyl-3-methylimizolium tetrafluoborate ionic liquid as additive[J]. J. Chromatogr.A, 2006, 1129:304-307.
    [90] Borissova, M., Palk, K., Koel, M. Micellar electrophoresis using ionic liquids[J]. J. chromatogr.A, 2008, 1183:192-195.
    [91]王月伶,胡中波,袁倬斌.离子液体修饰毛细管胶束电动色谱法分离测定槲皮素、绿原酸和异槲皮甙[J].分析化学, 2006, 34: 741-1744.
    [92] Borges, K. B., Pupo, M. T., de Freitas, L. A., et al. Box-Behnken design for the optimization of an enantioselective method for the simultaneous analysis of propranolol and 4-hydroxypropranolol by CE[J]. Electrophoresis, 2009, 30:2874-2881.
    [93] Gagyi, L., Gyeresi, A., Kilar, F. Role of chemical structure in stereoselective recognition of beta-blockers by cyclodextrins in capillary zone electrophoresis[J]. J. Biochem. Bioph. Methods, 2008, 70:1268-1275.
    [94]方晓明,刘晓峰,叶建农, et al.高效毛细管电泳-电化学检测对外消旋氯霉素前体的拆分研究[J].高等学校化学学, 1997, 18:1944-1948.
    [95] Liu, Z. S., Fang, Z. L. Combination of Part 2.Chiral flow injection with capillary electrophoresis.separation of intermediate enantiomers in chloramphenicol synthesis[J]. Anal. Chim. Acta, 1997, 353:199-205.
    [96] Esquisabel, A., Hernandez, R. M., Gascon, A. R., et al. Determination of salbutamol enantiomers by high-performance capillary electrophoresis and its application to dissolution assays[J]. J. Pharm. Biomed. anal., 1997, 16:357-366.
    [97] Roig, M., Berges, R., Ventura, R., et al. Quantification of terbutaline in urine by enzyme-linked immunosorbent assay and capillary electrophoresis after oral and inhaled administrations[J]. J. Chromatogr. B., 2002, 768:315-324.
    [98] Kim, K. H., Kim, H. J., Jeun, E. Y., et al. Chiral separation of beta2-agonists by capillaryelectrophoresis using hydroxypropyl-alpha-cyclodextrin as a chiral selector[J]. Arch. Pharmacal Res., 2001, 24:281-285.
    [99] Lin, X., Zhu, C., Hao, A. Evaluation of newly synthesized derivative of cyclodextrin for the capillary electrophoretic separation[J]. J. Chromatogr.A, 2004, 1059:181-189.
    [100] Wei, S., Guo, H., Lin, J. M. Chiral separation of salbutamol and bupivacaine by capillary electrophoresis using dual neutral cyclodextrins as selectors and its application to pharmaceutical preparations and rat blood samples assay[J]. J Chromatogr B, 2006, 832:90-96.
    [101]蔡梅,李忠红,杨丹.硫酸沙丁胺醇的手性分离[J].药物分析杂志, 2006, 26:159-161.
    [102] Fran?oisa, Y., Varennea, A., Juillerata, E., et al. Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis[J]. J. Chromatogr. A, 2007, 1155:134-141.
    [103] Wren, S. A. C., Rowe, R. C. Theoretical aspects of chiral separation in capillary electrophoresis: I. Initial evaluation of a model[J]. J. Chromatogr. A, 1992, 603:235-241.
    [104] Wren, S., A. C., Rowe, R. C. Theoretical aspects of chiral separation in capillary electrophoresis: II. The role of organic solvent[J]. J. Chromatogr. A, 1992, 609:363-367.
    [105] Wren, S. A. C., Rowe, R. C. Theoretical aspects of chiral separation in capillary electrophoresis : III. Application toβ-blockers[J]. J.Chromatogr. A, 1993, 635:113-118.
    [106] Yu, L. J., Qin, W. D., Li, S. F. Y. Ionic liquids as additives for separation of benzoic acid and chlorophenoxy acid herbicides by capillary electrophoresis[J]. Anal. Chim. Acta, 2005, 547:165-171.
    [107] Marszall, M. P., Markuszewski, M. J., Kaliszan, R. Separation of nicotinic acid and its structural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis[J]. J.Pharm. Biomed. anal., 2006, 41:329-332.
    [108] Fang, Z. L., Liu, Z. S., Shen, Q. Combination of flow injection with capillary electrophoresis. Part I. The basic system[J]. Anal. Chim. Acta., 1997, 353:135-143.
    [109] Liu, Z. S., Fang, Z. L. Combination of flow injection with capillary electrophoresis. Part 2. Chiral separation of intermediate enantiomers in chloramphenicol synthesis[J]. Anal. Chim. Acta, 1997, 353:199-205.
    [110] Fran?ois, Y., Varenne, A., Juillerat, E., et al. Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis[J]. J. Chromatogr. A, 2007, 1155:134-141.
    [111] He, Y., Chen, Q., Xu, C., et al. Interaction between ionic liquids and beta-cyclodextrin: a discussion of association pattern[J]. J. Phys. Chem.B, 2009, 113:231-238.
    [112]王睿,尉志武. Benesi-HiLdebrand方程的正确性与可靠性[J].物理化学学报, 2007, 23:1353-1359.
    [113] Gao, Y. A., Li, Z. H., Du, J. M., et al. Preparation and characterization of inclusion complexes of beta-cyclodextrin with ionic liquid[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11:5875-5880.
    [114] Gao, Y., Zhao, X., Dong, B., et al. Inclusion complexes of beta-cyclodextrin with ionic liquid surfactants[J]. J. Phys. Chem.B, 2006, 110:8576-8581.
    [115] Li, N., Liu, J. H., Zhao, X. Y., et al. Complex formation of ionic liquid surfactant andβ-cyclodextrin[J]. Colloids Surf., A, 2007, 292:196-201.
    [116] Francois, Y., Varenne, A., Sirieix-Plenet, J., et al. Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis[J]. J. Sep. Sci., 2007, 30:751-760.
    [117] Amajjahe, S., Ritter, H. Anion Complexation of Vinylimidazolium Salts and Its Influence on Polymerization[J]. Macromolecules, 2008, 41:716-718.
    [118] Amajjahe, S., Choi, S., Munteanu, M., et al. Pseudopolyanions based on poly(NIPAAM-co-beta-cyclodextrin methacrylate) and ionic liquids[J]. Angew. Chem. Int. Ed., 2008, 47:3435-3437.
    [119]刘建芳,隋晓璠,孙进, et al.微乳电动色谱法的研究进展[J].分析化学, 2008, 36:1742-1748.
    [120] Altria, K. D., Mahuzier, P. E., Clark, B. J. Background and operating parameters in microemulsion electrokinetic chromatography[J]. Electrophoresis, 2003, 24:315-324.
    [121] Safavi, A., Maleki, N., Farjami, F. Phase behavior and characterization of ionic liquids based microemulsions [J]. Colloids Surf., A, 2010, 355:61-66.
    [122] Rojas, O., Koetz, J., Kosmella, S., et al. Structural studies of ionic liquid-modified microemulsions[J]. J Colloid Interface Sci, 2009, 333:782-790.
    [123] Hansen, S. H. Recent applications of microemulsion electrokinetic chromatography[J]. Electrophoresis, 2003, 24:3900-3907.
    [124] Marsh, A., Clark, B., Broderick, M., et al. Recent advances in microemulsion electrokinetic chromatography[J]. Electrophoresis, 2004, 25:3970-3980.
    [125] McEvoy, E., Marsh, A., Altria, K., et al. Recent advances in the development and application of microemulsion EKC[J]. Electrophoresis, 2007, 28:193-207.
    [126] Ryan, R., Donegan, S., Power, J., et al. Recent advances in the methodology, optimisation and application of MEEKC[J]. Electrophoresis, 2009, 30:65-82.
    [127] Chu, B. L., Guo, B. Y., Wang, Z., et al. Enantioseparation of esbiothrin by cyclodextrin-modified microemulsion and micellar electrokinetic chromatography[J]. J. Sep. Sci., 2008, 31:3911-3920.
    [128] Mertzman, M. D., Foley, J. P. Chiral cyclodextrin-modified microemulsion electrokinetic chromatography[J]. Electrophoresis, 2004, 25:1188-1200.
    [129] Zhao, H., Xiang, X., He, J. Enantiomeric separation of cypermethrin with microemulsion electrokinetic chromatography[J]. Chemical Journal on Internet, 2005, 7:81.
    [130] Bitar, Y., Holzgrabe, U. Enantioseparation of chiral tropa alkaloids by means of cyclodextrin-modified microemulsion electrokinetic chromatography[J]. Electrophoresis, 2007, 28:2693-2700.
    [131] de Boer, T., Mol, R., de Zeeuw, R. A., et al. Enantioseparation of ofloxacin in urine by capillary electrokinetic chromatography using charged cyclodextrins as chiral selectors and assessment of enantioconversion[J]. Electrophoresis, 2001, 22:1413-1418.
    [132] Zhou, S., Ouyang, J., Baeyens, W. R., et al. Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-beta-cyclodextrin as chiral selector[J]. J. Chromatogr.A, 2006, 1130:296-301.
    [133] Singh, T., Kumar, A. Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions[J]. J. Phys. Chem.B, 2007, 111:7843-7851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700