用户名: 密码: 验证码:
森林可燃物热解动力学及燃烧性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林火灾是一种频繁发生的自然灾害现象,并且在特定的条件下会造成严重的财产损失和人员伤亡。在城镇-森林交界域发生的火灾会通过多种传播途径危及城市公共安全。森林火灾的发生和蔓延不仅与可燃物的种类及存在形态有关,而且与可燃物的热分解机理密切相关。掌握森林可燃物的热解和燃烧机理,有助于开发森林火灾着火和火蔓延模型,评估森林火灾风险,预防和控制森林火灾的发生。
     本文的研究目标是,建立用于综合模拟木质纤维素材料热解和燃烧过程,同时考虑固相和气相反应的统一的动力学机理;采用改进的混合型遗传算法优化动力学参数;分析热解失重过程对实验条件如升温速率、颗粒粒径、样品量的敏感性,讨论升温速率对热解失重过程的影响,分析颗粒粒径对热解失重进程及其动力学的影响;采用本文提出的统一动力学模型,对樟子松的松针、松枝和松皮的热解和燃烧过程进行模拟,计算动力学参数,从动力学的角度讨论三种森林可燃物的燃烧性。
     本文的具体工作包括:
     建立了综合热解和燃烧过程,考虑固相和气想反应的,化学意义上正确的统一动力学机制。当前建立的热解和燃烧模型中存在多方面的不一致性,而且大多仅仅是基于燃料的固相质量变化,忽略了气相反应。本文基于热分析联用系统(TG-FTIR-MS),测量了三种森林可燃物在热解和燃烧过程中的质量损失特征和气相产物生成规律,提出了一个新的反应动力学模型,该模型基于传统的三步平行反应模型,将热解考虑为三种伪组分中可挥发部分的平行反应过程,将空气气氛下的燃烧过程考虑为四步平行反应,其中包括与热解类似的三步独立脱挥发份过程和一步炭氧化反应。该模型的主要特征在于对热解和燃烧的主要分解反应考虑了相同的化学组成,并通过主动控制各组分的含量,保证了该模型不仅可以准确地捕捉热解和燃烧失重特征,而且在化学意义上是正确的。通过改进的混合型遗传算法,该模型以较快的收敛速度获得了最佳的动力学参数。
     采用Kissinger方程解释了升温速率引起的失重曲线发生偏移的现象,并对基他升温速率下的峰值温度进行了预测。前人的研究仅仅从表观上讨论升温速率的影响,或者采用线性外推的方法预测不同升温速率下的失重速率曲线的峰值温度。本文利用Kissinger方程,从热分解反应的内在动力学角度出发解释了升温速率引发的失重曲线发生偏移的现象,并对不同升温速率下的峰值温度进行了预测。
     讨论了动力学控制机制下题粒粒径对三种森林可燃物热解失重过程及其动力学的影响。分析了颗粒热解和燃烧过程的反应速率控制机制,通过计算相关参数发现本研究所用的粒径范围内(<1500μm)的颗粒都处于动力学控制机制下。对不同粒径的松针、松枝和松皮颗粒进行了升温速率2℃/min下的热重实验,发现粒径在不同的温度区间以不同的方式影响三种可燃物的失重速率。研究认为在动力学控制机制下,粒径影响热解失重过程和动力学参数是通过改变颗粒的化学组成实现的。对不同粒径颗粒的工业分析结果也验证了该结论。
     丛动力学的角度对不同森林可燃物的燃烧性进行了研究。通过分析樟子松松针、松枝和松皮的热解和燃烧失重特征,结合燃料热解和燃烧动力学模拟结果,比较了三种森林可燃物的燃烧性。结果认为,松针由于具有较低的分解起始温度和反应活化能,因此具有较高的着火性能。松皮的整体反应速率偏低并且在整个反应进程中活化能都较高因此具有较强的燃烧持续性。而松枝的燃烧过程的两个阶段都具有较低的活化能,反应速率较快,维持时间短,因此松枝的燃烧强度大,但是维持燃烧的能力不强。
Forest fire is a natural disaster that frequently happens worldwide. Under specific conditions, forest fires may cause great losses of properties and casualties. Especially forest fires may also threaten the safety of Wildland-Urban Interface areas. The ignition and spread of forest fires, are not only related to the properties of plant species, but also closely related to the mechanisms of pyrolysis and combustion. Therefore, research on the mechanisms of pyrolysis and combustion of forest fuels is valuable for the development of ignition and fire spread models, the assessment of forest fire risks, and the prevention and control of forest fires.
     The aim of this paper is to develop a unified kinetic mechanism that combines solid and gas phase reactions for simulating both the pyrolysis and combustion behaviors of lignocellulosic materials. A modified hybrid genetic algorithm is used for the optimization of kinetic parameters. The sensitivity of mass loss characteristics of pyrolysis to the experimental conditions is analyzed. The influence of heating rates, particle size and sample mass on the processes and kinetics of pyrolysis is discussed. The flammability of different parts of a plant is evaluated from the aspects of kinetics.
     The work and results of the thesis are summarized as follows.
     A unified kinetic scheme combining the solid and gas phase reactions is developed for simulating the pyrolysis and combustion of forest fuels. Previous pyrolysis and combustion models were inconsistent with each other, and most of them were developed only based on the mass loss in solid phase, for which reactions in gas phase were ignored. Using the TG-FTIR-MS thermal analysis systems, the mass loss rate in solid phase and evolution of products in gas phase of three forest fuels under inert and oxidative atmospheres were recorded. A unified kinetic scheme is proposed for simulating the pyrolysis and combustion reactions. Based on the traditional three parallel reaction model, the pyrolysis of forest fuels is considered to be the sum of devolatilization processes of three pseudo-components, and the forth reaction, oxidation of char, is added for the combustion mechanism. The presented scheme focuses on the consistent compositions for the major pyrolytic reactions of pyrolysis and combustion. The unified scheme not only reproduces the mass loss curves and captures most of pyrolysis and combustion features, but also is reasonable in chemical sense. A modified hybrid genetic algorithm is presented for optimization of kinetic parameter with high convergence speeds.
     Kissinger equation is used to explain deviation of mass loss rate curves caused bv the increasing of heating rates, and the peak temperatures of mass loss rate is predicted under different heating rates. Previous studies were mainly focused on the apparent temperature deviation, and the peak temperatures of mass loss rate curves were predicted by linear extrapolation. From the intrinsic kinetics aspect, this work explained the effects of heating rate on the reaction processes, and predicted the peak temperatures of mass loss rate under different heating rates.
     The effects of particle size on the mass loss processes and kinetics of pyrolysis of three forest fuels under regimes of kinetics is discussed. The regime of kinetics is verified for all of the particles (<1500μm) under study. Particles of three forest fuels, Pine Needle (PN), Pine Branch (PBr), and Pine Bark (PB) with different dimensions were pyrolyzed under heating rate of2℃/min to investigate the effect of particle sizes. It is concluded that the difference of mass loss rates and kinetics is mainly due to the variation of chemical composition, which is verified by the industrial analysis results.
     The flammability of forest fuels is evaluated from the aspect of kinetics. The flammability of PN, PBr and PB of Pinus Sylvestris is compared by the thermal stability and the kinetics of the pyrolysis and combustion processes. It is concluded that PN holds the highest ignitability due to the lowest initial degradation temperatures and activation energies during the initial stage. PB is considered to be most sustainable in fire due to the lowest reaction rates and the highest activation energies during the whole process. PBr holds the highest combustibility due to the two highest peak of mass loss rates.
引文
陈海翔.2006.生物质热解的物理化学模型与分析方法研究[D]:[博士].合肥:中国科学技术大学.
    陈杰.2007.MATLAB宝典[M].北京:電子工業出版社.
    胡荣祖,高胜利,赵凤起,等.2008.热分析动力学[M].第2版.北京:科学出版社.
    胡亿明.2013.木质生物质各组分热解过程和热力学特性研究[D]:[博士].北京:中国林业科学研究院.
    蒋金山.2012.最优化计算方法与实现[M].广州:华南理工大学出版社.
    林其钊,舒立福.2003.林火概论[M].合肥:中国科学技术大学出版社.
    刘乃安.2000.生物质材料热解失重动力学及其分析方法研究[D]:[博士].合肥:中国科学技术大学.
    刘荣厚,牛卫生,张大雷.2005.生物质热化学转换技术[M].北京:化学工业出版社.
    孟百宏.2007.用热重-红外联合技术研究玉米秸秆热解特性[D]:[硕士].哈尔滨:哈尔滨工业大学.
    彭云云,武书彬.2009.TG-FTIR联用研究半纤维素的热裂解特性[J].化工进展,(08):1478-1484.
    任强强,赵长遂,庞克亮.2008.生物质热解的TGA-FTIR分析[J].太阳能学报,(07):910-914.
    任学勇,杜洪双,王文亮,等.2012.基于TG-FTIR的落叶松木材热失重与热解气相演变规律研究[J].光谱学与光谱分析,(04):944-948.
    施海云,方梦祥,王树荣,等.2002.建筑装磺中几种常用板材热解特性及动力学研究[J].火灾科学,11(4):211-216.
    孙晓乾,李元洲,霍然,等.2006.西藏古建筑常用木材的着火特性试验[J].中国科学技术大学学报,36(1):77-80.
    肖军,沈来宏,郑敏,等.2007.基于TG-FTIR的生物质催化热解试验研究[J].燃料化学学报,(03):280-284.
    薛定宇,陈阳泉.2004.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社有限公司.
    杨卿.2010.麦草及其三种主要组分的热解规律[D]:[博士].广州:华南理工大学.
    周明,孙树栋.1999.遗传算法原理及其应用[M].北京:国防工业出版社.
    庄磊,王福亮,孙晓乾,等.2006.布达拉宫古建筑火灾危险性调查研究[J].消防科学与技术,25(3):337-340.
    Aboyade A O, Carrier M, Meyer E L, et al.2012. Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues[J]. Thermochimica Acta,530 (0):95-106.
    Abu-Bakar A S, Moinuddin K A M.2012. Effects of variation in heating rate, sample mass and nitrogen flow on chemical kinetics for pyrolysis[M].18th Australasian Fluid Mechanics Conference.
    Altun N E, Hicyilmaz C, Kok M V.2003. Effect of particle size and heating rate on the pyrolysis of Silopi asphaltite[J]. Journal of Analytical and Applied Pyrolysis,67 (2):369-379.
    Anderson H E.1970. Forest fuel ignitibility[J]. Fire Technology,6 (4):312-319.
    Antal M J, Jr., Varhegyi G.1995. Cellulose pyrolysis kinetics:the current state of knowledge[J]. Industrial & Engineering Chemistry Research,34 (3):703-717.
    Arora S, Kumar M, Kumar M.2012. Catalytic effect of bases in impregnation of guanidine nitrate on Poplar (Populus) wood flammability and multiple heating rate kinetic study[J]. Journal of Thermal Analysis and Calorimetry,107 (3):1277-1286.
    Barneto A G, Carmona J A, Alfonso J E M, et al.2009. Use of thermogravimetry/mass spectrometry analysis to explain the origin of volatiles produced during biomass pyrolysis[J]. Industrial & Engineering Chemistry Research,48 (15):7430-7436.
    Barneto A G, Carmona J A, Alfonso J E M, et al.2010a. Simulation of the thermogravimetry analysis of three non-wood pulps[J]. Bioresource Technology,101 (9):3220-3229.
    Barneto A G, Carmona J A, Ferrer J A C, et al.2010b. Kinetic study on the thermal degradation of a biomass and its compost:Composting effect on hydrogen production[J]. Fuel,89 (2): 462-473.
    Bassilakis R, Carangelo R M, Wojtowicz M A.2001. TG-FTIR analysis of biomass pyrolysis[J]. Fuel,80 (12):1765-1786.
    Behm A L, Duryea M L, Long A J, et al.2004. Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland-urban interface[J]. International Journal of Wildland Fire,13 (3):355-365.
    Bellais M, Davidsson K O, Liliedahl T, et al.2003. Pyrolysis of large wood particles:a study of shrinkage importance in simulations[J]. Fuel,82 (12):1541-1548.
    Biagini E, Barontini F, Tognotti L.2006. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique[J]. Industrial & Engineering Chemistry Research, 45 (13):4486-4493.
    Biagini E, Tognotti L.2006. Comparison of devolatilization/char oxidation and direct oxidation of solid fuels at low heating rate[J]. Energy & Fuels,20 (3):986-992.
    Bilbao R, Mastral J F, Aldea M E, et al.1997. The influence of the percentage of oxygen in the atmosphere on the thermal decomposition of lignocellulosic materials[J]. Journal of Analytical and Applied Pyrolysis,42 (2):189-202.
    Bilbao R, Millera A, Arauzo J.1989. Thermal decomposition of lignocellulosic materials: influence of the chemical composition[J]. ThermochimicaActa,143 (0):149-159.
    Branca C, Albano A, Di Blasi C.2005. Critical evaluation of global mechanisms of wood devolatilization[J]. ThermochimicaActa,429 (2):133-141.
    Branca C, Di Blasi C.2003. Kinetics of the isothermal degradation of wood in the temperature range 528-708 K[J]. Journal of Analytical and Applied Pyrolysis,67 (2):207-219.
    Branca C, Di Blasi C.2004. Global interinsic kinetics of wood oxidation[J]. Fuel,83 (1):81-87.
    Branca C, Di Blasi C.2013. A unified mechanism of the combustion reactions of lignocellulosic fuels[J]. Thermochimica Acta,565 (10):58-64.
    Bridgeman T G, Darvell L I, Jones J M, et al.2007. Influence of particle size on the analytical and chemical properties of two energy crops[J]. Fuel,86 (1-2):60-72.
    Bryden K M, Ragland K W, Rutland C J.2002. Modeling thermally thick pyrolysis of wood[J]. Biomass & Bioenergy,22 (1):41-53.
    Caballero J A, Conesa J A, Font R, et al.1997. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions[J]. Journal of Analytical and Applied Pyrolysis,42 (2):159-175.
    Chen D T Y.1975. Effect of heating rate on activation-energies derived by a dynamic kinetic method[J]. Journal of Thermal Analysis,7 (1):61-64.
    Chen H, Liu N, Shu L, et al.2004. Smoothing and differentiation of thermogravimetric data of biomass materials[J]. Journal of Thermal Analysis and Calorimetry,78 (3):1029-1041.
    Chen X, Yu J, Guo S, et al.2008. Flammability and thermal oxidative degradation kinetics of Magnesium Hydroxide and Expandable Graphite flame retarded Polypropylene composites[J]. Journal of Macromolecular Science, Part A,45 (9):712-720.
    Chen Y.1998. Extension of a coal pyrolysis model to biomass feedstocks[M]. Fuel and Energy Abstracts. Elsevier.36-36.
    Chouchene A, Jeguirim M, Khiari B, et al.2010. Thermal degradation of olive solid waste: influence of particle size and oxygen concentration[J]. Resources Conservation and Recycling, 54 (5):271-277.
    Coats A W, Redfern J P.1964. Kinetic parameters from thermogravimetric data[J]. Nature,201 (4914):68-69.
    Colomba D B.2008. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science,34 (1):47-90.
    Conesa J A, Domene A.2011. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions[J]. Thermochimica Acta,523 (1-2):176-181.
    Corradini E, Teixeira E M, Paladin P D, et al.2009. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry,97 (2):415-419.
    Delichatsios M, Paroz B, Bhargava A.2003. Flammability properties for charring materials[J]. Fire Safety Journal,38 (3):219-228.
    Di Blasi C.1994. Numerical simulation of cellulose pyrolysis[J]. Biomass and Bioenergy,7 (1-6):87-98.
    Di Blasi C.1996. Kinetic and heat transfer control in the slow and flash pyrolysis of solids[J]. Industrial & Engineering Chemistry Research,35 (1):37-46.
    Di Blasi C.2000. The state of the art of transport models for charring solid degradation[J]. Polymer International,49 (10):1133-1146.
    Di Blasi C.2008. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science,34 (1):47-90.
    Di Blasi C, Branca C.2000. The effects of water leaching on the isothermal degradation kinetics of straw[J]. Industrial and Engineering Chemistry Research,39 (7):2169-2174.
    Dimitrakopoulos A P.2001. Thermogravimetric analysis of Mediterranean plant species[J]. Journal of Analytical and Applied Pyrolysis,60 (2):123-130.
    Dimitrakopoulos A P, Papaioannou K K.2001. Flammability assessment of Mediterranean forest fuels[J]. Fire Technology,37 (2):143-152.
    Doyle C D.1961. Kinetic Analysis of Thermogravimetric Data[J]. Journal of applied polymer science,5(15):285-292.
    Duz M Z, Tonbul Y, Baysal A, et al.2005. Pyrolysis kinetics and chemical composition of Hazro coal according to the particle size[J]. Journal of thermal analysis and calorimetry,81 (2): 395-398.
    Elder T, Kush J S, Hermann S M.2011. Thermogravimetric analysis of forest understory grasses[J]. Thermochimica Acta,512 (1-2):170-177.
    Elliott L, Ingham D B, Kyne A G, et al.2006. Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms[J]. Computers & Chemical Engineering,30 (5):889-900.
    Encinar J M, Beltran F J, Bernalte A, et al.1996. Pyrolysis of two agricultural residues:olive and grape gagasse, influence of particle size and temperature.[J]. Biomass & Bioenergy,11 (5): 397-409.
    Encinar J M, Beltran F J, Bernalte A, et al.1998. Pyrolysis of two agricultural residues:olive and grape bagasse. Influence of particle size and temperature[J]. Biomass and Bioenergy,11 (5): 397-409.
    Fang M X, Shen D K, Li Y X, et al.2006. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis,77 (1):22-27.
    Fateh T, Rogaume T, Luche J, et al.2013. Kinetic and mechanism of the thermal degradation of a plywood by using thermogravimetry and Fourier-transformed infrared spectroscopy analysis in nitrogen and air atmosphere[J]. Fire Safety Journal,58 (0):25-37.
    Figueiredo J L, Valenzuela C, Bernalte A, et al.1989. Pyrolysis of holm-oak wood-influence of temperature and particle-size[J]. Fuel,68 (8):1012-1016.
    Flynn J H, Wall L A.1966. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B:Polymer Letters,4 (5): 323-328.
    Font R, Conesa J A, Molto J, et al.2009. Kinetics of pyrolysis and combustion of pine needles and cones[J]. Journal of Analytical and Applied Pyrolysis,85 (1-2):276-286.
    Gai C, Dong Y, Zhang T.2013. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions[J]. Bioresource Technology,127 (0):298-305.
    Galgano A, Blasi C D.2003. Modeling wood degradation by the unreacted-core-shrinking approximation[J]. Industrial & Engineering Chemistry Research,42 (10):2101-2111.
    Ganteaume A, Jappiot M, Lampin C.2013. Assessing the flammability of surface fuels beneath ornamental vegetation in Wildland-Urban Interfaces in Provence (south-eastern France)[J]. International Journal of Wildland Fire,22 (3):333-342.
    Gao N, Li A, Quan C, et al.2013. TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust[J]. Journal of Analytical and Applied Pyrolysis,100 (0):26-32.
    Gronli M G, Melaaen M C.2000. Mathematical Model for Wood PyrolysisComparison of Experimental Measurements with Model Predictions[J]. Energy & Fuels,14 (4):791-800.
    Gronli M G, Antal M J, Varhegyi G.1999. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry[J]. Industrial & Engineering Chemistry Research,38 (6):2238-2244.
    Gronli M G, Varhegyi G, Di Blasi C.2002. Thermogravimetric analysis and devolatilization kinetics of wood[J]. Industrial & Engineering Chemistry Research,41 (17):4201-4208.
    Gu X, Ma X, Li L, et al.2013. Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis,102 (0):16-23.
    Guldogan Y, Evren V, Durusoy T, et al.2001. Effects of heating rate and particle size on pyrolysis kinetics of Mengen lignite[J]. Energy Sources,23 (4):337-344.
    Hatakeyama T, Quinn F X.1999. Thermal analysis:fundamentals and applications to polymer science[M]. Chichester:John Wiley & Sons Ltd.
    Hibbert D B.1993. A hybrid genetic agorithm for the estimation of kinetic-parameters[J]. Chemometrics and Intelligent Laboratory Systems,19 (3):319-329.
    Huang X, Rein G.2014. Smouldering combustion of peat in wildfires:Inverse modelling of the drying and the thermal and oxidative decomposition kinetics[J]. Combustion and Flame.
    Kissinger H E.1957. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 29(11):1702-1706.
    Koufopanos C A, Papayannakos N, Maschio G, et al.1991. Modeling of the pyrolysis of biomass particles-studies on kinetics, thermal and heat-transfer effects[J]. Canadian Journal of Chemical Engineering,69 (4):907-915.
    Kung H C.1972. A mathematical model of wood pyrolysis[J]. Combustion and Flame,18 (2): 185-195.
    Lanzetta M, Di Blasi C.1998. Pyrolysis kinetics of wheat and corn straw[J]. Journal of Analytical and Applied Pyrolysis,44 (2):181-192.
    Larfeldt J, Leckner B, Melaaen M C.2000. Modelling and measurements of the pyrolysis of large wood particles[J]. Fuel,79 (13):1637-1643.
    Liang X H, Kozinski J A.2000. Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimetric systems[J]. Fuel,79 (12):1477-1486.
    Liodakis S, Agiovlasitis I P, Kakardakis T, et al.2011. Determining hazard risk indices for Mediterranean forest species based on particle flammability properties[J]. Fire Safety Journal, 46(3):116-124.
    Liodakis S, Bakirtzis D, Dimitrakopoulos A.2002. Ignition characteristics of forest species in relation to thermal analysis data[J]. Thermochimica Acta,390 (1-2):83-91.
    Liodakis S, Kakardakis T.2008. Measuring the relative particle foliar combustibility of WUI forest species located near athens[J]. Journal of Thermal Analysis and Calorimetry,93 (2): 627-635.
    Liodakis S, Kakardakis T, Tzortzakou S, et al.2008. How to measure the particle ignitability of forest species by TG and LOI[J]. Thermochimica Acta,477 (1-2):16-20.
    Liodakis S, Vorisis D, Agiovlasitis I P.2005. A method for measuring the relative particle fire hazard properties of forest species[J]. ThermochimicaActa,437 (1-2):150-157.
    Liu H M, Wang R, Xu X.2010. Thermal stability and flame retardancy of PET/magnesium salt composites[J]. Polymer Degradation and Stability,95 (9):1466-1470.
    Liu N, Chen H, Shu L, et al.2004. Gaussian smoothing strategy of thermogravimetric data of biomass materials in an air atmosphere[J]. Industrial & Engineering Chemistry Research,43 (15):4087-4096.
    Liu N, Zong R, Shu L, et al.2003. Kinetic compensation effect in thermal decomposition of cellulosic materials in air atmosphere[J]. Journal of Applied Polymer Science,89 (1):135-141.
    Luo S Y, Xiao B, Hu Z Q, et al.2010. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor[J]. International Journal of Hydrogen Energy,35 (1): 93-97.
    Maa P S, Bailie R C.1973. Influence of particle sizes and environmental conditions on high temperature pyrolysis of cellulosic material-I(Theoretical)[J]. Combustion Science and Technology,7 (6):257-269.
    Mak E H T.1988. Notes:measuring foliar flammability with the Limiting Oxygen Index method[J]. Forest Science,34 (2):523-529.
    Mani T, Murugan P, Abedi J, et al.2010. Pyrolysis of wheat straw in a thermogravimetric analyzer:effect of particle size and heating rate on devolatilization and estimation of global kinetics[J]. Chemical Engineering Research and Design,88 (8):952-958.
    Mayoral M C, Izquierdo M T, Andres J M, et al.2001. Different approaches to proximate analysis by thermogravimetry analysis[J]. Thermochimica Acta,370 (1-2):91-97.
    Mehrabian R, Scharler R, Obernberger I.2012. Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling[J]. Fuel,93 (0):567-575.
    Melaaen M C.1996. Numerical analysis of heat and mass transfer in drying and pyrolysis of porous media[J]. Numerical Heat Transfer, Part A:Applications,29 (4):331-355.
    Miller C A, Ramohalli K N R.1986. A theoretical heterogeneous model of wood pyrolysis[J]. Combustion Science and Technology,46 (3-6):249-265.
    Moghtaderi B.2006. The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels[J]. Fire and Materials,30 (1):1-34.
    Moghtaderi B, Dlugogorski B Z, Kennedy E M, et al.1998. Effects of the structural properties of solid fuels on their re-ignition characteristics[J]. Fire and Materials,22 (4):155-165.
    Orfao J J M, Antunes F J A, Figueiredo J L.1999. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model[J]. Fuel,78 (3):349-358.
    Park T-Y, Froment G F.1998. A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models[J]. Computers & Chemical Engineering,22, Supplement 1 (0): S103-S110.
    Parker J A.1986. Meeting report-28th annual research meeting, department of ophthalmology, university of toronto[J]. Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie,21 (5):207-207.
    Pawlowski K H, Schartel B.2008. Flame retardancy mechanisms of Aryl Phosphates in combination with Boehmite in Bisphenol A Polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymer Degradation and Stability,93 (3):657-667.
    Polifke W, Geng W, Dobbeling K.1998. Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms[J]. Combustion and Flame,113 (1-2):119-134.
    Pyle D L, Zaror C A.1984. Heat transfer and kinetics in the low temperature pyrolysis of dolids[J]. Chemical Engineering Science,39 (1):147-158.
    Ragland K W, Aerts D J, Baker A J.1991. Properties of wood for combustion analysis[J]. Bioresource Technology,37 (2):161-168.
    Rein G, Lautenberger C, Fernandez-Pello A C, et al.2006. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion[J]. Combustion and Flame,146 (1-2):95-108.
    Saha B, Reddy P K, Ghoshal A K.2008. Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics[J]. Chemical Engineering Journal,138 (1-3):20-29.
    Salehi M, Clemens F, Graule T, et al.2012. Kinetic analysis of the polymer burnout in ceramic thermoplastic processing of the YSZ thin electrolyte structures using model free method[J]. Applied Energy,95 (0):147-155.
    Schartel B, Weiss A, Mohr F, et al.2010. Flame retarded Epoxy Resins by adding layered Silicate in combination with the conventional protection-layer-building flame retardants Melamine Borate and Ammonium Polyphosphate[J]. Journal of Applied Polymer Science,118 (2):1134-1143.
    Schwenker R F, Beck L R.1963. Study of the pyrolytic decomposition of cellulose by gas chromatography[J]. Journal of Polymer Science Part C:Polymer Symposia,2 (1):331-340.
    Sergey V.2000. Computational aspects of kinetic analysis.:Part C. The ICTAC kinetics project-the light at the end of the runnel?[J]. Thermochimica Acta,355 (1-2):155-163.
    Shafizad.F, Mcginnis G D.1971. Chemical composition and thermal analysis of cottonwood[J]. Carbohydrate Research,16 (2):273-&.
    Shafizadeh F, Chin P P S.1976. Thermal deterioration of wood[J]. Abstracts of Papers of the American Chemical Society,172 (Sep3):37-37.
    Silva G G D, Guilbert S, Rouau X.2011. Successive centrifugal grinding and sieving of wheat straw[J]. Powder Technology,208 (2):266-270.
    Simeoni A, Thomas J C, Bartoli P, et al.2012. Flammability studies for wildland and Wildland-Urban Interface fires applied to pine needles and solid polymers[J]. Fire Safety Journal,54203-217.
    Spearpoint M J, Quintiere J G.2001. Predicting the piloted ignition of wood in the Cone Calorimeter using an integral model-effect of species, grain orientation and heat flux[J]. Fire Safety Journal,36 (4):391-415.
    Stenseng M, Jensen A, Dam-Johansen K.2001. Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry[J]. Journal of Analytical and Applied Pyrolysis,58-59 (0):765-780.
    Susott R A, Shafizadeh F, Aanerud T W.1979. Quantitative thermal analysis technique for combustable gas detection[J]. Journal of Fire & Flammability,10 94-104.
    Tillman D A.2000. Biomass cofiring:the technology, the experience, the combustion consequences[J]. Biomass and Bioenergy,19 (6):365-384.
    Varhegyi G, Antal Jr M J, Jakab E, et al.1997. Kinetic modeling of biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,42 (1):73-87.
    Varhegyi G, Antal M J, Szekely T, et al.1989. Kinetics of the thermal-decomposition of cellulose, hemicellulose, and sugar-Cane Bagasse[J]. Energy & Fuels,3 (3):329-335.
    Varhegyi G, Bobaly B, Jakab E, et al.2010. Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests[J]. Energy & Fuels,25 (1): 24-32.
    Vyazovkin S.1997. Advanced isoconversional method[J]. Journal of Thermal Analysis,49 (3): 1493-1499.
    Vyazovkin S.2001. Two types of uncertainty in the values of activation energy[J]. Journal of Thermal Analysis and Calorimetry,64 (2):829-835.
    Wojtowicz M A, Bassilakis R, Smith W W, et al.2003. Modeling the evolution of volatile species during tobacco pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,66 (1-2): 235-261.
    Wagner M,陆立明.2011.热分析应用基础[M].上海:东华大学出版社,
    Wilkie C A.1999. TGA/FTIR:an extremely useful technique for studying polymer degradation[J]. Polymer Degradation and Stability,66 (3):301-306.
    Williams P.1996. The influence of temperature and heating rate on the slow pyrolysis of biomass[J]. Renewable Energy,7 (3):17.
    Williams P T, Besler S.1993. The pyrolysis of rice husks in a thermogravimetric analyzer and static batch reactor[J]. Fuel,72 (2):151-159.
    Yang H, Yan R, Chen H, et al.2006. Mechanism of palm oil waste pyrolysis in a packed bed[J]. Energy & Fuels,20 (3):1321-1328.
    Yang H, Yan R, Chen H, et al.2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,86 (12-13):1781-1788.
    Zhang Z X, Zhang H Y, Zhou D W.2011. Flammability characterisation of grassland species of Songhua Jiang-Nen Jiang Plain (China) using thermal analysis[J]. Fire Safety Journal,46 (5): 283-288.
    Zhong M, Fan W, Liu T, et al.2003. Statistical analysis on current status of China forest fire safety[J]. Fire Safety Journal,38 (3):257-269.
    Zong R, Hu Y, Liu N, et al.2007. Investigation of thermal degradation and flammability of Polyamide-6 and Polyamide-6 Nanocomposites[J]. Journal of Applied Polymer Science,104 (4):2297-2303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700