用户名: 密码: 验证码:
生物质催化转化制备芳烃化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质资源的开发和利用受到世界各国的重视。面对化石能源的逐渐减少,环境问题的日益严重,用生物质资源部分替代目前化石资源势在必行。生物质是一种有机碳构成的植物能源,生物质也是目前唯一一种能够转化制备液体燃料的可再生资源。生物质资源具有可持续性,同时也是一种绿色的资源。生物质来源于植物吸收二氧化碳进行光合作用,因此生物质燃料的使用实现了二氧化碳的零排放,能够有效地缓解地球上由于化石能源使用所带来的日益严重的环境问题。
     生物质结构复杂,生物质制备的化学品和能源分子的结构具有多样性。以生物质为原料制备大宗化学品和能源分子具有广泛的应用前景。芳烃化合物,特别是苯,甲苯和二甲苯是目前应用非常广泛的大宗化学品,也被称为一级基本有机化工原料。同时芳烃化合物也可以作为汽油添加剂,能够很好的提高汽油辛烷值。因此,基于生物质为原料的芳烃化学品和能源分子的制备是为生物质资源的有效开发利用开辟了一条新的路径,对于生物质的综合利用,以及后续的研究开发都有促进作用。生物质资源的有效利用降低了化石能源在使用过程中对环境和生态带来的破坏,对于改善生态环境具有重要的意义。
     我们重点发展各种转化方法,实现由生物质到芳烃化合物的转化。主要研究目标是以生物质为原料的芳烃化合物制备。研究的内容包括如何催化转化绿色可再生的生物质资源,如:木质素,生物质平台化合物5-羟甲基糠醛和Y-戊内酯为原料制备芳烃。最终实现以来源于生物质的原料制备苯、甲苯和二甲苯等芳烃化合物。
     第一章.主要是对生物质的结构,目前生物质的转化应用进行了简要介绍。通过对生物质中水相炼制,包括生物质平台化合物5-羟甲基糠醛和γ-戊内酯的研究进展,木质素的氧化和氢化解聚方法的介绍,以及我们了解的目前生物质化学转化的研究发展历程。热化学转化也是生物质转化的一个重要的方法,我们简述了生物质热解制备生物油,生物油的提质,重点介绍了催化热解在生物质转化中应用。最后,介绍了大宗化学品苯,甲苯和二甲苯的制备和应用,以及目前基于生物质转化为芳烃化合物的研究。
     第二章.木质素是由大量芳环组成大分子化合物,通过木质素的解聚能够有效地获得芳烃化合物。我们采用催化氧化的方法解聚木质素,通过对温度,溶剂,氧化剂和催化剂的调节,实现木质素的解聚,获得了大量的芳香醛和酸类化合物。
     第三章.我们采用催化热解的方法解聚木质素获得芳烃化合物。实验发现催化剂的加入具有良好的脱氧效果,在无催化剂条件下获得的主要是酚类(酚类的选择性超过90%)化合物,而催化剂加入后主要获得芳烃化合物(选择性超过87%),特别是甲苯的含量有显著提高。催化热解木质素是有效制备芳环类化合物的方法。
     第四章.Y-戊内酯作为生物质中纤维素和半纤维素水解后的乙酰丙酸加氢产生的平台化合物,性质相对稳定。但是其与水能够完全的互溶,并且只是C5的含氧化合物,热值较低。因此转化γ-戊内酯到高热值的燃料的研究较多,我们通过催化热解的方法能有效的将Y-戊内酯转化为芳烃化合物。此方法不仅降低了氧含量,同时达到了增长碳链,提高热值的目的。
     第五章.基于纤维素来源的化合物5-羟甲基糠醛为原料制备芳烃化合物。5-羟甲基糠醛是果糖在酸性条件下脱水获得的平台化合物。但是由于其高含氧量,热值低,稳定性差等缺陷,作为汽油添加剂不合适。将5-羟甲基糠醛有效地转化为芳烃化合物,达到了脱氧,提高热值和稳定性的作用。其中芳烃产物中甲苯的选择性42.7%。
     第六章.总结与展望。
     本文的主要工作是以生物质中的木质素,生物质平台化合物5-羟甲基糠醛和γ-戊内酯为原料,通过催化热解的方法制备芳烃化合物。我们成功实现了由生物质到大宗化学品和能源分子芳烃化合物的转化,以比较高的选择性获得苯,甲苯和二甲苯。
Lignocellulosic biomass has shown to be an efficient source of carbon for the production of chemicals and fuels, and this renewable resource was attracted national attention. With the depletion of fossil fuels as a source for fuels, chemicals, and energy, growing environmental problems, will require the development of new, sustainable sources for fuels and bulk chemicals. The fraction of energy and chemicals supplied by renewable resources such as biomass can be expected to increase in the foreseeable future. Biomass is the only current sustainable source of organic carbon, and biofuels, fuels derived from plant biomass, is the only current sustainable source of liquid fuels. Biofuels generate significantly less greenhouse gas emissions than do fossil fuels and can even be greenhouse gas neutral if efficient methods for biofuels production are developed.
     Due to the complexity of biomass structure, the product from biomass was diversity characteristics. Chemicals or energy molecule production from biomass as raw material is a broad prospect. Aromatic hydrocarbons, especially benzene, toluene and xylene are currently widely used in international commodity chemicals. Aromatic hydrocarbons compounds can be used as a gasoline additive and can be very good increase gasoline octane. Therefore, production Aromatic hydrocarbons compounds from biomass as feedstocks has open up a new direction for biomass utilization, and subsequent research has a role in promoting development. Efficient use of biomass resources to reduce the damage of fossil energy in the course of the ecological environment, for the improvement of the ecological environment has important significance.
     We focus on the development of various conversion methods to achieve aromatic compounds from biomass conversion. The main goal of this paper is based on biomass feedstock for production aromatic compounds. Content of the study including how to catalytic conversion green renewable biomass resources, such as:lignin, biomass platform compound5-(hydroxymethyl) furfural and y-valerolactone as raw aromatics preparation. Our aim is to achieve a transformation of raw materials derived from biomass preparation of bulk chemicals aromatic, as example benzene, toluene and xylene.
     The First chapter.We introduces biomass structure and converion briefly. The chemical conversion of cellulose to5-Hydroxymethylfurfural and y-Valerolactone were reciewed. We also review of the catalytic lignin valorization literature. Fast pyrolysis is a promising technology for biomass utilization and has much advantage. The product of this technology, known as bio-oil, has lower cost than other bio-fuels. Finally, we describe certain aromatic compounds were introduced bulk chemicals and energy molecule of benzene, toluene and xylene preparation and application, as well as research-based aromatic compounds present biomass conversion process of discovery.
     The second chapter, Lignin was a large number of benzene linked together to form a three-dimensional structure of macromolecules interwoven through the C-O-C and the C-C bond, it was the obvious candidate to serve as a future aromatic resource for the production of liquid biofuels, biomaterials and green chemicals. In the present study, an efficient catalytic system for lignin oxidation to succinic acid and aromatic compounds were developed.
     The third chapter, we we reported a promising method for the production of aromatics from pyrolytic lignin. More importantly, phenols are the main products with selectivity over90%at600℃though no catalyst was loaded. For catalytic pyrolysis, selectivity for aromatic hydrocarbons is more than87%. Therefore we have demonstrated the catalytic pyrolysis of lignin is an alternative way to produce fuel additives and useful chemicals.
     Chapter IV, y-valerolactone can be obtained through the hydrogenation of levulinic acid, which can be obtained from acidic hydrolysis of lignocelluloses biomass. GVL cannot be used as a transportation fuel due to several reasons including high water solubility and lower energy density. This work shows that GVL could be transformed into aromatic hydrocarbons through catalytic pyrolysis. Different zeolite catalysts and reaction conditions have been tested for the catalytic conversion of GVL to aromatic hydrocarbons. By doxygenations or growth of carbon chain length, the fuel energy density of GVL is increased.
     Chapter V,5-Hydroxymethylfurfural (HMF) was a key intermediate of a biobased chemical industry and production of HMF from biomass. HMF suffered from several limitations for directly used as liquid transportation fuel, such as the high water solubility, easy decomposition and the relatively low energy density compared to petroleum-derived fuels. A novel method for the production of aromatic hydrocarbons from HMF through a single step has been reported in our work. HMF generated aromatic hydrocarbons in42.7%carbon yield through catalytic pyrolysis.
     Chapter VI, Summary and Outlook
     In summary, production aromatic compound throngh catalytic conversion biomass was the major work of this paper. We have been using lignin and biomass compound molecules platform5-Hydroxymethylfurfural and y-valerolactone as raw materials. We have successfully achieved the conversion of biomass to aromatic compounds as commodity chemicals, and high selectivity to obtain benzene, toluene and xylene.
引文
[1]BP Statistical Review of World Energy; BP:2011; http://www.bp.com/sectionbodycopy. Do Categoryld=7500&contentld=7068481.
    [2]Simonetti D A, Dumesic J A. Catalytic Strategies for Changing the Energy Content and Achieving C-C Coupling in Biomass-Derived Oxygenated Hydrocarbons [J]. ChemSusChem, 2008,1(8-9):725-733
    [3]Petroleum B. Statistical review of world energy 2010[J]. BP, London,2010.
    [4]Cleveland C J. Encyclopedia of energy [M]. Elsevier Academic Press,2004.
    [5]Klass D L. Biomass for renewable energy, fuels, and chemicals [M]. Academic press,1998.
    [6]Wyman C E, Decker SR, Himmel ME, et al. In Polysaccharides,2nd ed.; Dumitriu, S., Ed.; Marcel Dekker:New York,2005.
    [7]Wyman CE, Hinman ND. Ethanol. Fundamentals of production from renewable feedstocks and use as a transportation fuel [J]. Applied biochemistry and biotechnology.1990,24/25,735-753.
    [8]Wyman CE. Alternative fuels from biomass and their impact on carbon dioxide accumulation[J]. Applied biochemistry and biotechnology.1994,45/46,897-915.
    [9]Tyson, K. S. Fuel Cycle EValuations of Biomass-Ethanol and Reformulated Gasoline; Report No. NREL/TP-263-2950, DE94000227, National Renewable Energy Laboratory:Golden, CO, 1993.
    [10]Lynd L R, Cushman J H, Nichols R J, et al. Fuel ethanol from cellulosic biomass[J]. Science(Washington),1991,251(4999):1318-1323.
    [11]邓理,催化转化纤维素制备乙酰丙酸和γ-戊内酯的研究[D].中国科学技术大学2011.
    [12]钱伯章编著.生物质能技术与应用[M].科学出版社.2010.
    [13]Huber G W, Dale B E. Grassoline at the pump[J]. Scientific American,2009,301(1):52-59.
    [14]Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies[J]. Biotechnology Progress, 2009,25(2):333-339.
    [15]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社,2008
    [16]Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals [J]. Chemical Reviews,2010,110(6):3552-3599.
    [17]Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry [J]. Industrial Crops and Products,2004,20(2):131-141.
    [18]Sakakibari, A.1980. Wood Sci. Technol.14,89-93.
    [19]吴锦辉,彭昆荣译.木质素中的非环苯芳醚键[J].国外造纸,1982(5).
    [20]Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry,2010,12(9):1493-1513.
    [21]Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today,2006,111(1):119-132.
    [22]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering [J]. Chemical reviews,2006,106(9):4044-4098.
    [23]Klass D L. Biomass for renewable energy, fuels, and chemicals [M]. Academic press,1998.
    [24]Dry M E. The Fischer-Tropsch process:1950-2000[J]. Catalysis today,2002,71(3): 227-241.
    [25]Elliott D C, Beckman D, Bridgwater A V, et al. Developments in direct thermochemical liquefaction of biomass:1983-1990[J]. Energy & Fuels,1991,5(3):399-410.
    [26]Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource technology,2005,96(6):673-686.
    [27]Mamman A S, Lee J M, Kim Y C, et al. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuels, Bioproducts and Biorefining,2008,2(5):438-454.
    [28]Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover[J]. Bioresource technology, 2005,96(18):2026-2032.
    [29]Rinaldi R, Schuth F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes[J]. ChemSusChem,2009,2(12):1096-1107.
    [30]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [31]van Putten R J, van der Waal J C, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical reviews,2013,113(3): 1499-1597.
    [32]Besson M, Gallezot P, Pinel C. Conversion of Biomass into Chemicals over Metal Catalysts[J]. Chemical reviews,2014,114(3):1827-1870.
    [33]罗家凤,吴剑,张钰萍,等.碳水化合物制备5-羟甲基糠醛研究进展[J].精细化工中间体,2012(4).
    [34]安士云,金林红,胡德禹,等.固体酸催化单糖制备5-羟甲基糠醛(5-HMF)的研究进展[J].化学世界,2012(7).
    [35]姜楠,齐崴,黄仁亮,等.生物质制备5-羟甲基糠醛的研究进展[J].化工进展,2011,30(9):1937-1945.
    [36]杨凤丽,刘启顺,白雪芳,等.由生物质制备5-羟甲基糠醛的研究进展[J].现代化工,2009(5):18-22.
    [37]Mulder, G. J. J. Prakt. Chem. (Leipzig) 1840,21,203.
    [38]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [39]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [40]Yang Y, Hu C, Abu-Omar M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlC13-6H2O catalyst in a biphasic solvent system[J]. Green Chemistry,2012,14(2):509-513.
    [41]Su Y, Brown H M, Huang X, et al. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical[J]. Applied Catalysis A:General, 2009,361(1):117-122.
    [42]Qi X, Watanabe M, Aida T M, et al. Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process[J]. Cellulose,2011,18(5): 1327-1333.
    [43]Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5): 1979-1985.
    [44]Amiri H, Karimi K, Roodpeyma S. Production of furans from rice straw by single-phase and biphasic systems[J]. Carbohydrate research,2010,345(15):2133-2138.
    [45]田玉奎,邓晋,潘涛,等.离子液体中Lewis酸催化葡萄糖和果糖脱水制备5-羟甲基呋喃甲醛[J]. Chinese Journal of Catalysis,2011,32(6).
    [46]田玉奎.路易斯酸催化碳水化合物制备5-羟甲基呋喃甲醛[D].中国科学技术大学,2011.
    [47]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007,447(7147):982-985.
    [48]Yi Y B, Lee J W, Hong S S, et al. Acid-mediated production of hydroxymethylfurfural from raw plant biomass with high inulin in an ionic liquid[J]. Journal of Industrial and Engineering Chemistry,2011,17(1):6-9.
    [49]Thananatthanachon T, Rauchfiiss T B. Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angewandte Chemie International Edition,2010,49(37); 6616-6618,
    [50]Mascal M, Nikitin E B. Direct, High-Yield Conversion of Cellulose into Biofuel[J]. Angewandte Chemie International Edition,2008,47(41):7924-7926.
    [51]Balakrishnan M, Sacia E R, Bell A T. Etherification and reductive etherification of 5-(hydroxymethyl) furfural:5-(alkoxymethyl) furflirals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates[J]. Green Chemistry,2012,14(6):1626-1634
    [52]Lanzafame P, Temi D M, Perathoner S, et al. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts[J]. Catalysis Today,2011,175(1):435-441.
    [53]Kraus G A, Guney T. A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids[J]. Green Chemistry,2012,14(6):1593-1596.
    [54]Sutton A D, Waldie F D, Wu R, et al. The hydrodeoxygenation of bioderived furans into alkanes[J]. Nature chemistry,2013,5(5):428-432.
    [55]Osakada, K., Yoshikawa, S., Ikariya, T. J. Organomet. Chem.1982,231,79.
    [56]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, γ-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis, 2008,48(1-4):49-54.
    [57]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply [J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [27]. Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis, 2008,48(1-4):49-54.
    [58]Li W, Xie J H, Lin H, et al. Highly efficient hydrogenation of biomass-derived levulinic acid to γ-valerolactone catalyzed by iridium pincer complexes[J]. Green Chemistry,2012,14(9): 2388-2390.
    [59]Deng J, Wang Y, Pan T, et al. Conversion of Carbohydrate Biomass to γ-Valerolactone by using Water-Soluble and Reusable Iridium Complexes in Acidic Aqueous Media[J]. ChemSusChem,2013,6(7):1163-1167.
    [60]Upare P P, Lee J M, Hwang D W, et al. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial and Engineering Chemistry,2011,17(2):287-292.
    [61]Ortiz-Cervantes C, Garcia J J. Hydrogenation of levulinic acid to γ-valerolactone using ruthenium nanoparticles[J]. Inorganica ChimicaActa,2013,397:124-128.
    [62]Deng L, Zhao Y, Li J, et al. Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts[J]. ChemSusChem,2010,3(10):1172-1175.
    [63]Du X L, He L, Zhao S, et al. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts[J]. Angewandte Chemie International Edition,2011,50(34):7815-7819.
    [64]Gurbuz E I, Alonso D M, Bond J Q, et al. Reactive Extraction of Levulinate Esters and Conversion to Y-Valerolactone for Production of Liquid Fuels[J]. ChemSusChem,2011,4(3): 357-361.
    [65]Alonso D M, Wettstein S G, Bond J Q, et al. Production of biofuels from cellulose and corn stover using alkylphenol solvents[J]. ChemSusChem,2011,4(8):1078-1081
    [66]Heeres H, Handana R, Chunai D, et al. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts[J]. Green Chemistry,2009,11(8):1247-1255.
    [67]MartinaAlonso D, Marcel R a Gallo J. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts[J]. Catalysis Science & Technology,2013,3(4): 927-931.
    [68]Olcay H, Subrahmanyam A V, Xing R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams [J]. Energy & Environmental Science,2013,6(1):205-216.
    [69]Jeremy S. Luterbacher, Jacqueline M. Rand, David Martin Alonso, et al. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived g-Valerolactone. Science,2014, 343(6168):277-280.
    [70]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [71]Palkovits R. Pentenoic acid pathways for cellulosic biofuels[J]. Angewandte Chemie International Edition,2010,49(26):4336-4338.
    [72]Elliott, D. C.; Frye, J. G. U.S. Patent 5883266,1999
    [73]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B:Environmental,2010,100(1): 184-189.
    [74]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26):4479-4483.
    [75]Calvo-Flores F G, Dobado J A. Lignin as renewable raw material[J]. ChemSusChem,2010, 3(11):1227-1235.
    [76]Kirk T K, Higuchi T, Chang H. Lignin biodegradation:microbiology, chemistry, and potential applications[R], CRC Press, Inc., Boca Raton, FL,1980.
    [77]吴锦辉,彭昆荣.国外造纸,1982,5
    [78]. Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews,2010,110(6):3552-3599.
    [79]. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass:a review[J]. Bioresource Technology,2001,79(3):277-299.
    [80]Furimsky E. Catalytic hydrodeoxygenation[J]. Applied Catalysis A:General,2000,199(2): 147-190.
    [81]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & Fuels,2006,20(3):848-889.
    [82]Harris E E, Adkins H, et al. Journal of the American Chemical Society,1938,60,1467-1470.
    [83]a) Pepper, J. M.; Hibbert, H. J. Am. Chem. Soc.1948,70,67. b) Pepper, J. M.; Lee, Y. W. Can. J. Chem.1969,47,723. c) Pepper, J. M.; Supathna, P. Can. J. Chem.1978,56,899. d) Pepper, J. M.; Fleming, R. W. Can. J. Chem.1978,56,896.
    [84]Shabtai J, Nag N K, Massoth F E. Catalytic functionalities of supported sulfides:IV. C O hydrogenolysis selectivity as a function of promoter type[J]. Journal of Catalysis,1987,104(2): 413-423.
    [85]a) Romero Y, Richard F, Rene'me Y, et al. Applied Catalysis A:General,2009,353,46. b) Yakovlev V A, Khromova S A, Sherstyuk O V, et al. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel [J]. Catalysis Today,2009, 144(3):362-366.c) Koyama M. Hydrocracking of lignin-related model dimmers [J]. Bioresource technology,1993,44(3):209-215. d) Petrocelli F P, Klein M T. Ind. Eng. Chem. Prod. Res. Dev.1985,24,635.
    [86]Nagy M, David K, Britovsek G J P, et al. Catalytic hydrogenolysis of ethanol organosolv lignin[J]. Holzforschung,2009,63(5):513-520.
    [87]a) Yan N, Zhao C, Dyson P J, et al. Selective Degradation of Wood Lignin over Noble-Metal Catalysts in a Two-Step Process[J]. ChemSusChem,2008,1(7):626-629; b) Yan N, Yuan Y, Dykeman R, et al. Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Bronsted Acidic Ionic Liquids[J]. Angewandte Chemie International Edition,2010,49(32):5549-5553.
    [88]Matson T D, Barta K, Iretskii A V, et al. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels[J]. Journal of the American Chemical Society,2011, 133(35):14090-14097.
    [89]Sergeev A G, Hartwig J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science,2011,332(6028):439-443.
    [90]Nichols J M, Bishop L M, Bergman R G, et al. Catalytic C-O Bond Cleavage of 2-Aryloxy-l-arylethanols and Its Application to the Depolymerization of Lignin-Related Polymers[J]. Journal of the American Chemical Society,2010,132(36):12554-12555.
    [91]Portjanskaja E, Stepanova K, Klauson D, et al. The influence of titanium dioxide modifications on photocatalytic oxidation of lignin and humic acids[J]. Catalysis Today,2009, 144(1):26-30.
    [92]Ma Y S, Chang C N, Chiang Y P, et al. Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst[J]. Chemosphere,2008,71(5):998-1004.
    [93]Crestini C, Caponi M C, Argyropoulos D S, et al. Immobilized methyltrioxo rhenium (MTO)/H2O2systems for the oxidation of lignin and lignin model compounds[J]. Bioorganic & medicinal chemistry,2006,14(15):5292-5302.
    [94]Crestini C, Pro P, Neri V, et al. Methyltrioxorhenium:a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds[J]. Bioorganic & medicinal chemistry,2005,13(7):2569-2578.
    [95]Sun R, Lawther J M, Banks W B.Industrial Crops and Products,1995,4:241-254.
    [96]Bunch A Y, Ozkan U S. Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni-Mo/Al2O3Catalysts [J]. Journal of Catalysis,2002,206(2):177-187.
    [97]Gaspar A R, Gamelas J A F, Evtuguin D V, et al. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen:a review[J]. Green Chemistry,2007,9(7): 717-730.
    [98]Voitl T, Rudolf von Rohr P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols [J]. ChemSusChem,2008,1(8-9):763-769.
    [99]Zhao Y, Xu Q, Pan T, et al. Depolymerization of lignin by catalytic oxidation with aqueous Polyoxometalates [J]. Applied Catalysis A:General,2013,467:504-508.
    [100]Nichols J M, Bishop L M, Bergman R G, et al. Catalytic C-O Bond Cleavage of 2-Aryloxy-l-arylethanols and Its Application to the Depolymerization of Lignin-Related Polymers[J]. Journal of the American Chemical Society,2010,132(36):12554-12555.
    [101]Son S, Toste F D. Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage:Application to Degradation of Lignin Model Compounds [J]. Angewandte Chemie International Edition, 2010,49(22):3791-3794.
    [102]Hanson S K, Wu R, Silks L A. C-C or C-O Bond Cleavage in a Phenolic Lignin Model Compound:Selectivity Depends on Vanadium Catalyst [J]. Angewandte Chemie International Edition,2012,51(14):3410-3413.
    [103]Rahimi A, Azarpira A, Kim H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American Chemical Society,2013,135(17):6415-6418.
    [104]Nguyen J D, Matsuura B S, Stephenson C J. A Photochemical Strategy for Lignin Degradation at Room Temperature [J]. Journal of the American Chemical Society,2014,136(4): 1218-1221.
    [105]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:a critical review [J]. Energy & Fuels,2006,20(3):848-889.
    [106]Bridgwater A. IEA bioenergy update 27:biomass pyrolysis[J]. Biomass and bioenergy,2007, 31:1-20.
    [107]Bridgwater A V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass [J]. Catalysis today,1996,29(1):285-295.
    [108]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels,2004,18(2):590-598.
    [109]Peacocke G V C, Russell P A, Jenkins J D, et al. Physical properties of flash pyrolysis liquids[J]. Biomass and Bioenergy,1994,7(1):169-177.
    [110]Branca C, Giudicianni P, Di Blasi C. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood[J]. Industrial & Engineering Chemistry Research,2003, 42(14):3190-3202.
    [111]Piskorz J, Scott D S, Radlein D. Composition of oils obtained by fast pyrolysis of different woods[M].1988.
    [112]Elliott D C, Baker E G Hydrotreating biomass liquids to produce hydrocarbon fuels[R]. Pacific Northwest Lab., Richland, WA (USA),1986.
    [113]Elliott D C, Baker E G, Piskorz J, et al. Production of liquid hydrocarbon fuels from peat[J]. Energy & Fuels,1988,2(2):234-235.
    [114]Elliott D C, Beckman D, Bridgwater A V, et al. Developments in direct thermochemical liquefaction of biomass:1983-1990[J]. Energy & Fuels,1991,5(3):399-410.
    [115]Sheu Y H E, Anthony R G, Soltes E J. Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment[J]. Fuel processing technology,1988,19(1):31-50.
    [116]Ramanathan S, Oyama S T. New catalysts for hydroprocessing:transition metal carbides and nitrides[J]. The Journal of Physical Chemistry,1995,99(44):16365-16372.
    [117]Fisk C A, Morgan T, Ji Y, et al. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Applied Catalysis A:General,2009,358(2):150-156.
    [118]Tang Z, Lu Q, Zhang Y, et al. One step bio-oil upgrading through hydrotreatment, esterification, and cracking[J]. Industrial & Engineering Chemistry Research,2009,48(15): 6923-6929.
    [119]Tang Z, Zhang Y, Guo Q. Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol[J]. Industrial & Engineering Chemistry Research,2010,49(5):2040-2046.
    [120]Xiong W M, Zhu M Z, Deng L, et al. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts[J]. Energy & Fuels,2009,23(4):2278-2283.
    [121]Deng L, Fu Y, Guo Q X. Upgraded acidic components of bio-oil through catalytic ketonic condensation [J]. Energy & Fuels,2008,23(1):564-568.
    [122]Corma A. State of the art and future challenges of zeolites as catalysts[J]. Journal of Catalysis,2003,216(1):298-312.
    [123]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chemical reviews,1997,97(6):2373-2420.
    [124]Katikaneni S P R, Adjaye J D, Bakhshi N N. Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils[J]. Energy & fuels,1995,9(6):1065-1078.
    [125]Gayubo A G, Aguayo A T, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols[J]. Industrial & engineering chemistry research,2004,43(11):2610-2618.
    [126]Gayubo A G, Aguayo A T, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids[J]. Industrial & engineering chemistry research,2004,43(11):2619-2626.
    [127]Vispute T P, Zhang H, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science,2010,330(6008):1222-1227.
    [128]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels,2004,18(2):590-598.
    [129]Deng L, Yan Z, Fu Y, et al. Green solvent for flash pyrolysis oil separation[J]. Energy& Fuels,2009,23(6):3337-3338.
    [130]Zhao Y, Deng L, Liao B, et al. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy & Fuels,2010,24(10):5735-5740.
    [131]Stocker M. Biofuels and biomass-to-liquid fuels in the biorefinery:Catalytic conversion of lignocellulosic biomass using porous materials[J]. Angewandte Chemie International Edition, 2008,47(48):9200-9211.
    [132]Thring R W, Katikaneni S P R, Bakhshi N N. The production of gasoline range hydrocarbons from Alcell(?) lignin using HZSM-5 catalyst [J]. Fuel Processing Technology, 2000,62(1):17-30.
    [133]Williams P T, Home P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils [J]. Journal of Analytical and Applied Pyrolysis,1995,31:39-61.
    [134]Aho A, Kumar N, Eranen K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor:influence of the zeolite structure[J]. Fuel,2008,87(12):2493-2501.
    [135]Atutxa A, Aguado R, Gayubo A G, et al. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor[J]. Energy & fuels,2005,19(3):765-774.
    [136]Home P A, Williams P T. Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst:effect of catalyst dilution on product yields [J]. Fuel,1996,75(9):1043-1050.
    [137]Lappas A A, Samolada M C, Iatridis D K, et al. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals[J]. Fuel,2002,81(16):2087-2095.
    [138]Home P A, Williams P T. Premium quality fuels and chemicals from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading [J]. Renewable energy,1994,5(5): 810-812.
    [139]Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52(3):241-252.
    [140]French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production [J]. Fuel Processing Technology,2010,91(1):25-32.
    [141]Williams P T, Home P A. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass [J]. Journal of Analytical and Applied pyrolysis,1995,31:15-37.
    [142]Atutxa A, Aguado R, Gayubo A G, et al. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor[J]. Energy & fuels,2005,19(3):765-774.
    [143]Wang J, Zhang M, Chen M, et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J]. Thermochimica acta,2006,444(1):110-114.
    [144]Zhang H, Xiao R, Huang H, et al. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J]. Bioresource technology,2009,100(3):1428-1434.
    [145]Aho A, Kumar N, Eranen K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor:influence of the zeolite structure[J]. Fuel,2008,87(12):2493-2501.
    [146]Uzun B B, Sarioglu N. Rapid and catalytic pyrolysis of com stalks[J]. Fuel Processing Technology,2009,90(5):705-716.
    [147]Iliopoulou E F, Antonakou E V, Karakoulia S A, et al. Catalytic conversion of biomass pyrolysis products by mesoporous materials:Effect of steam stability and acidity of Al-MCM-41 catalysts[J]. Chemical Engineering Journal,2007,134(1):51-57.
    [148]Antonakou E, Lappas A, Nilsen M H, et al. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals[J]. Fuel, 2006,85(14):2202-2212.
    [149]Chiavari G, Galletti G C. Pyrolysis-gas chromatography/mass spectrometry of amino acids[J]. Journal of Analytical and Applied Pyrolysis,1992,24(2):123-137.
    [150]Samolada M C, Papafotica A, Vasalos I A. Catalyst evaluation for catalytic biomass pyrolysis[J]. Energy & Fuels,2000,14(6):1161-1167.
    [151]Nokkosmaki M I, Kuoppala E T, Leppamaki E A, et al. Catalytic conversion of biomass pyrolysis vapours with zinc oxide[J]. Journal of Analytical and Applied Pyrolysis,2000,55(1): 119-131.
    [152]Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose:an analytical study[J]. Journal of analytical and applied pyrolysis,2007,80(1):24-29.
    [153]Lu Q, Zhang Z F, Dong C Q, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides:an analytical Py-GC/MS study[J]. Energies,2010,3(11):1805-1820.
    [154]Lu Q, Zhang Y, Tang Z, et al. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts[J]. Fuel,2010,89(8):2096-2103.
    [155]Carlson T R, Jae J, Lin Y C, et al. Catalytic fast pyrolysis of glucose with HZSM-5:the combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis,2010,270(1): 110-124.
    [156]Home P A, Williams P T. Reaction of oxygenated biomass pyrolysis model compounds over a ZSM-5 catalyst[J]. Renewable Energy,1996,7(2):131-144.
    [157]Corma A, Huber G W, Sauvanaud L, et al. Biomass to chemicals:catalytic conversion of glycerol/water mixtures into acrolein, reaction network[J]. Journal of Catalysis,2008,257(1): 163-171.
    [158]Cheng Y T, Huber G W. Chemistry of furan conversion into aromatics and olefins over HZSM-5:a model biomass conversion reaction[J]. ACS Catalysis,2011,1(6):611-628.
    [159]Cheng Y T, Huber G W. Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5[J]. Green Chemistry,2012,14(11):3114-3125.
    [160]Cheng Y T, Wang Z, Gilbert C J, et al. Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings[J]. Angewandte Chemie International Edition,2012,51(44):11097-11100.
    [161]孔德金,杨为民.芳烃生产技术进展[J].化工进展,2011,30(1):16r25.
    [162]张敏.有机化学基础[M].北京:人民教育出版社,2007.
    [163]黄仲涛.化工词典[J].2004.
    [164]吴腾寿.芳烃联合装置的设计优化[J].炼油技术与工程,2010(1):55-57.
    [165]王广胜,高玉生.连续重整催化剂技术进展[J].化学工业,2010(6):43-46.
    [166]周红军,石铭亮,翁惠新,等.芳烃型催化重整集总反应动力学模型[J].石油学报(石油加工),2009,25(4):545-550.
    [167]催化重整工艺与工程[M].中国石化出版社,2006.
    [168]Ed de Jong. IEA Bioenergy Task 42:Report on Participating Countries. Document of IEA Bioenergy Task 42 'Biorefineries'[J].2014.
    [169]French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production[J]. Fuel Processing Technology,2010,91(1):25-32.
    [170]Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52(3):241-252.
    [171]Carlson T R, Vispute T P, Huber G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds[J]. ChemSusChem,2008,1(5):397-400.
    [172]Carlson T R, Jae J, Lin Y C, et al. Catalytic fast pyrolysis of glucose with HZSM-5:the combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis,2010,270(1): 110-124.
    [173]Corma A, Huber G W, Sauvanaud L, et al. Processing biomass-derived oxygenates in the oil refinery:catalytic cracking (FCC) reaction pathways and role of catalyst[J]. Journal of Catalysis, 2007,247(2):307-327.
    [174]Carlson T R, Jae J, Huber G W. Mechanistic Insights from Isotopic Studies of Glucose Conversion to Aromatics Over ZSM-5[J]. ChemCatChem,2009,1(1):107-110.
    [175]Bj(?)rgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. Journal of Catalysis,2007,249(2):195-207.
    [176]Olazar M, Aguado R, Bilbao J, et al. Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst[J]. AIChE Journal,2000,46(5):1025-1033.
    [177]Chen N Y, Degnan Jr T F, Koenig L R. Liquid Fuel from Carbohydrates. Chemtech[J].1986, 16,506-511.
    [178]Carlson T R, Cheng Y T, Jae J, et al. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust[J]. Energy & Environmental Science,2011,4(1):145-161.
    [179]Cheng Y T, Huber G W. Chemistry of furan conversion into aromatics and olefins over HZSM-5:a model biomass conversion reaction[J]. ACS Catalysis,2011,1(6):611-628.
    [180]Cheng Y T, Huber G W. Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5[J]. Green Chemistry,2012,14(11):3114-3125.
    [181]Cheng Y T, Wang Z, Gilbert C J, et al. Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings[J]. Angewandte Chemie International Edition,2012,51(44):11097-11100.
    [182]Dorrestijn E, Laarhoven L J J, Arends I W C E, et al. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal[J]. Journal of Analytical and Applied Pyrolysis, 2000,54(1):153-192.
    [183]Misson M, Haron R, Kamaroddin M F A, et al. Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis[J]. Bioresource technology,2009,100(11): 2867-2873.
    [184]Thring R W, Breau J. Hydrocracking of solvolysis lignin in a batch reactor[J]. Fuel,1996, 75(7):795-800.
    [185]Thring R W, Katikaneni S P R, Bakhshi N N. The production of gasoline range hydrocarbons from Alcell(?) lignin using HZSM-5 catalyst[J]. Fuel Processing Technology,2000, 62(1):17-30
    [186]Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I:Conversion over various catalysts[J]. Fuel Processing Technology, 1995,45(3):161-183.
    [187]Jackson M A, Compton D L, Boateng A A. Screening heterogeneous catalysts for the pyrolysis of lignin[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1):226-230.
    [188]Zhao Y, Deng L, Liao B, et al. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy & Fuels,2010,24(10):5735-5740.
    [189]McCall, M. J.; Allen, R. J.; Mackowiak, D. E. World Organization for Intellectual Property WO 2008/157165 Al,2008.
    [1]Hill C A S. Wood modification:chemical, thermal and other processes[M]. John Wiley & Sons, 2007.
    [2]罗学刚.高纯木质素提取与热塑改性.北京:化学工业出版社,2008
    [3]Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry[J]. Industrial Crops and Products,2004,20(2):131-141.
    [4]Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews,2010,110(6):3552-3599.
    [5]a) Pepper, J. M.; Hibbert, H. J. Am. Chem. Soc.1948,70,67. b) Pepper, J. M.; Lee, Y. W. Can. J. Chem.1969,47,723. c) Pepper, J. M.; Supathna, P. Can. J. Chem.1978,56,899. d) Pepper, J. M.; Fleming, R. W. Can. J. Chem.1978,56,896.
    [6]Son S, Toste F D. Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage:Application to Degradation of Lignin Model Compounds [J]. Angewandte Chemie International Edition,2010, 49(22):3791-3794.
    [7]Britt P F, Buchanan A C, Cooney M J, et al. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. The Journal of organic chemistry,2000,65(5):1376-1389.
    [8]Shabtai J, Nag N K, Massoth F E. Catalytic functionalities of supported sulfides:Ⅳ. C O hydrogenolysis selectivity as a function of promoter type[J]. Journal of Catalysis,1987,104(2): 413-423.
    [9]a) Yan N, Zhao C, Dyson P J, et al. Selective Degradation of Wood Lignin over Noble-Metal Catalysts in a Two-Step Process[J]. ChemSusChem,2008,1(7):626-629. b) Yan N, Yuan Y, Dykeman R, et al. Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Br(?)nsted Acidic Ionic Liquids[J]. Angewandte Chemie International Edition,2010,49(32):5549-5553.
    [10]Sales F G, Maranao L C A, Abreu C A M. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin[J]. Chemical Engineering Science,2007, 62(18):5386-5391.
    [11]Crestini C, Caponi M C, Argyropoulos D S, et al. Immobilized methyltrioxo rhenium (MTO)/H2O2systems for the oxidation of lignin and lignin model compounds[J]. Bioorganic & medicinal chemistry,2006,14(15):5292-5302.
    [12]Crestini C, Pro P, Neri V, et al. Methyltrioxorhenium:a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds[J]. Bioorganic & medicinal chemistry,2005,13(7):2569-2578.
    [13]Sun R, Lawther J M, Banks W B. The effect of alkaline nitrobenzene oxidation conditions on the yield and components of phenolic monomers in wheat straw lignin and compared to cupric (II) oxidation[J]. Industrial crops and products,1995,4(4):241-254.
    [14]Son S, Toste F D. Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage:Application to Degradation of Lignin Model Compounds [J]. Angewandte Chemie International Edition, 2010,49(22):3791-3794.
    [15]Gaspar A R, Gamelas J A F, Evtuguin D V, et al. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen:a review[J]. Green Chemistry,2007,9(7): 717-730.
    [16]Voitl T, Rudolf von Rohr P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols[J]. ChemSusChem,2008,1(8-9):763-769.
    [17]Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups[J]. Journal of Analytical and Applied Pyrolysis,2001,60(1):41-54.
    [18]Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin):Part Ⅱ. GPC, carbonyl goups, and 13C-NMR[J]. Journal of Analytical and Applied Pyrolysis,2001,58:387-400.
    [19]Bayerbach R, Nguyen V D, Schurr U, et al. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin):Part Ⅲ. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS[J]. Journal of analytical and applied pyrolysis, 2006,77(2):95-101.
    [20]Bayerbach R, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV:Structure elucidation of oligomeric molecules[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1):98-107.
    [21]Deng L, Yan Z, Fu Y, et al. Green solvent for flash pyrolysis oil separation[J]. Energy & Fuels, 2009,23(6):3337-3338.
    [22]Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization[J]. Inorganic Chemistry,1968,7(3):437-441.
    [23]Kamwilaisak K, Wright P C. Investigating laccase and titanium dioxide for lignin degradation[J]. Energy & Fuels,2012,26(4):2400-2406.
    [24]Dence C W. The determination of lignin[M]//Methods in lignin chemistry. Springer Berlin Heidelberg,1992:33-61.
    [1]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering [J]. Chemical reviews,2006,106(9):4044-4098.
    [2]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [3]Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals [J]. Chemical Reviews,2010,110(6):3552-3599.
    [4]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil [J]. Energy & Fuels,2004,18(2):590-598.
    [5]Zhang Q, Chang J, Wang T J, et al. Upgrading bio-oil over different solid catalysts[J]. Energy & Fuels,2006,20(6):2717-2720.
    [6]Peng J, Chen P, Lou H, et al. Upgrading of bio-oil over aluminum silicate in supercritical ethanol[J]. Energy & Fuels,2008,22(5):3489-3492.
    [7]Xiong W M, Zhu M Z, Deng L, et al. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts[J]. Energy & Fuels,2009,23(4):2278-2283.
    [8]Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil [J]. Energy & Fuels,1993, 7(2):306-314.
    [9]Gayubo A G, Aguayo A T, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols [J]. Industrial & engineering chemistry research,2004,43(11):2610-2618.
    [10]Gayubo A G, Aguayo A T, Atutxa A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids [J]. Industrial & engineering chemistry research,2004,43(11):2619-2626.
    [11]Nilsen M H, Antonakou E, Bouzga A, et al. Investigation of the effect of metal sites in Me-Al-MCM-41 (Me= Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass[J]. Microporous and Mesoporous Materials,2007,105(1):189-203.
    [12]Elliott D C. Historical developments in hydroprocessing bio-oils [J]. Energy & Fuels,2007, 21(3):1792-1815.
    [13]Tang Z, Lu Q, Zhang Y, et al. One step bio-oil upgrading through hydrotreatment, esterification, and cracking [J]. Industrial & Engineering Chemistry Research,2009,48(15): 6923-6929.
    [14]Gartner C A, Serrano-Ruiz J C, Braden D J, et al. Catalytic Upgrading of Bio-Oils by Ketonization[J]. ChemSusChem,2009,2(12):1121-1124.
    [15]Deng L, Fu Y, Guo Q X. Upgraded acidic components of bio-oil through catalytic ketonic condensation [J]. Energy& Fuels,2008,23(1):564-568.
    [16]Deng L, Yan Z, Fu Y, et al. Green solvent for flash pyrolysis oil separation [J]. Energy & Fuels,2009,23(6):3337-3338.
    [17]Vispute T P, Huber G W. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils [J]. Green Chemistry,2009,11(9):1433-1445.
    [18]Yan N, Zhao C, Dyson P J, et al. Selective Degradation of Wood Lignin over Noble-Metal Catalysts in a Two-Step Process[J]. ChemSusChem,2008,1(7):626-629.
    [19]Zhao C, Kou Y, Lemonidou A A, et al. Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes [J]. Angewandte Chemie,2009,121(22):4047-4050.
    [20]Thring R W, Katikaneni S P R, Bakhshi N N. The production of gasoline range hydrocarbons from Alcell(?) lignin using HZSM-5 catalyst [J]. Fuel Processing Technology,2000,62(1): 17-30.
    [21]Tang Z, Zhang Y, Guo Q. Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol [J]. Industrial & Engineering Chemistry Research,2010,49(5):2040-2046.
    [22]Carlson T R, Vispute T P, Huber G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds [J]. ChemSusChem,2008,1(5):397-400.
    [23]Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52(3):241-252.
    [24]Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups [J]. Journal of Analytical and Applied Pyrolysis,2001,60(1):41-54.
    [26]Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin):Part Ⅱ. GPC, carbonyl goups, and 13C-NMR [J]. Journal of Analytical and Applied Pyrolysis,2001,58:387-400.
    [26]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. science,1998,279(5350):548-552.
    [1]Bull T E. Biomass in the energy picture [J]. Science,1999,285(5431):1209-1209.
    [2]Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals [J]. Chemical Reviews,2010,110(6):3552-3599.
    [3]Horvath I T, Mehdi H, Fabos V, et al. y-Valerolactonc-a sustainable liquid for energy and carbon-based chemicals [J]. Green Chemistry,2008,10(2):238-242.
    [4]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis, 2008,48(1-4):49-54.
    [5]Manzer L E. Catalytic synthesis of a-methylene-γ-valerolactone:a biomass-derived acrylic monomer [J]. Applied Catalysis A:General,2004,272(1):249-256.
    [6]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply [J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [7]Deng L, Zhao Y, Li J, et al. Conversion of Levulinic Acid and Formic Acid intoy-Valerolactone over Heterogeneous Catalysts[J]. ChemSusChem,2010,3(10):1172-1175.
    [8]Gurbuz E I, Alonso D M, Bond J Q, et al. Reactive Extraction of Levulinate Esters and Conversion to γ-Valerolactone for Production of Liquid Fuels[J]. ChemSusChem,2011,4(3): 357-361.
    [9]Du X L, He L, Zhao S, et al. Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts[J]. Angewandte Chemie International Edition,2011,50(34):7815-7819.
    [10]a) Gao Y, Kuncheria J K, Yap G P A, et al. An efficient binuclear catalyst for decomposition of formic acid[J]. Chemical Communications,1998 (21):2365-2366. b) Gao Y, Kuncheria J K, Jenkins H A, et al. J. Chem. Soc. Dalton Trans.2000,3212-3217.
    [11]a) Loges B, Boddien A, Junge H, et al. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells[J]. Angewandte Chemie International Edition,2008,47(21):3962-3965. b) Boddien A, Loges B, Junge H, et al. Hydrogen generation at ambient conditions:application in fuel cells[J]. ChemSusChem,2008, 1(8-9):751-758. c) Loges B, Boddien A, Junge H, et al. Hydrogen generation:catalytic acceleration and control by light [J]. Chemical Communications,2009 (28):4185-4187.. e) Boddien A, Loges B, Gartner F, et al. Iron-catalyzed hydrogen production from formic acid[J]. Journal of the American Chemical Society,2010,132(26):8924-8934. f) Boddien A, Gartner F, Jackstell R, et al. ortho-Metalation of Iron (0) Tribenzylphosphine Complexes:Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid[J]. Angewandte Chemie International Edition,2010,49(47):8993-8996.
    [12]a) Fellay C, Dyson P J, Laurenczy G. A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst[J]. Angewandte Chemie, 2008,120(21):4030-4032. b) Fellay C, Yan N, Dyson P J, et al. Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation:A Mechanistic Study[J]. Chemistry-A European Journal,2009,15(15):3752-3760. c) Junge H, Boddien A, Capitta F, et al. Improved hydrogen generation from formic acid [J]. Tetrahedron Letters,2009,50(14): 1603-1606. [13]
    [14]Li X, Ma X, Shi F, et al. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids [J]. ChemSusChem,2010,3(1): 71-74.
    [15]Fukuzumi S, Kobayashi T, Suenobu T. Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridium-Ruthenium Complex in Water[J]. Journal of the American Chemical Society,2010,132(5):1496-1497.
    [16]Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide[J]. Nature,1994,368(6468):231-233.
    [17]Enthaler S. Carbon Dioxide-The Hydrogen - Storage Material of the Future? [J]. ChemSusChem,2008,1(10):801-804.
    [18]R. S. Coffey, Chem. Commun.1967,923-924
    [19]Zhou X, Huang Y, Xing W, et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J]. Chemical Communications,2008 (30):3540-3542.
    [20]Palkovits R. Pentenoic acid pathways for cellulosic biofuels [J]. Angewandte Chemie International Edition,2010,49(26):4336-4338.
    [21]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [22]Elliott, D. C.; Frye, J. G U.S. Patent 5883266,1999
    [23]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen [J]. Applied Catalysis B:Environmental,2010,100(1): 184-189.
    [24]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26):4479-4483.
    [25]Cheng Y T, Wang Z, Gilbert C J, et al. Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings[J]. Angewandte Chemie International Edition,2012,51 (44):11097-11100.
    [26]Chen N Y, Degnan T F, Koenig L R. Liquid fuel from carbohydrates[J]. Chemtech,1986, 16(8):506-511.
    [27]Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52(3):241-252.
    [28]Olcay H, Subrahmanyam A V, Xing R, et al. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams[J]. Energy & Environmental Science,2013,6(1):205-216.
    [29]Jeremy S. Luterbacher, Jacqueline M. Rand, David Martin Alonso, et al. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived g-Valerolactone. Science,2014, 343(6168):277-280.
    [1]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering [J]. Chemical reviews,2006,106(9):4044-4098.
    [2]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [3]Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews,2010,110(6):3552-3599.
    [4]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [5]Wyman C E. Biomass ethanol:technical progress, opportunities, and commercial challenges[J]. Annual Review of Energy and the Environment,1999,24(1):189-226.
    [6]Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover[J]. Bioresource technology, 2005,96(18):2026-2032.
    [7]Singh N R, Delgass W N, Ribeiro F H, et al. Estimation of liquid fuel yields from biomass[J]. Environmental science & technology,2010,44(13):5298-5305.
    [8]Bull T E. Biomass in the energy picture[J]. Science,1999,285(5431):1209-1209.
    [9]a) Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079. b) Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [10]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [11]Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5): 1979-1985.
    [12]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [13]Palkovits R. Pentenoic acid pathways for cellulosic biofuels[J]. Angewandte Chemie International Edition,2010,49(26):4336-4338.
    [14]Elliott, D. C.; Frye, J. G. U.S. Patent 5883266,1999
    [15]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B:Environmental,2010,100(1): 184-189.
    [16]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels; a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26):4479-4483.
    [17]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [18]Cheng Y T, Huber G W. Chemistry of furan conversion into aromatics and olefins over HZSM-5:a model biomass conversion reaction[J].ACS Catalysis,2011,1(6):611-628.
    [19]Cheng Y T, Wang Z, Gilbert C J, et al. Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings[J]. Angewandte Chemie International Edition,2012,51(44):11097-11100.
    [20]Chen N Y, Degnan T F, Koenig L R. Liquid fuel from carbohydrates[J]. Chemtech,1986, 16(8):506-511.
    [21]Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52(3):241-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700