用户名: 密码: 验证码:
纽荷尔脐橙缺硼的砧木效应及叶片结构变化与代谢响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼是植物必需的微量元素之一,而赣南脐橙产区位于我国土壤有效硼含量极度缺乏的区域。近年来,缺硼导致该产区主栽品种纽荷尔脐橙出现大量叶片黄化现象,严重制约了脐橙产业的发展。砧木在脐橙的生长方面起着重要的作用,因此开展不同砧木脐橙硼营养机理以及纽荷尔脐橙缺硼响应机制的研究,有助于为下一步针对不同砧木采取相配套的施肥措施或着是培育优良砧木以扩大脐橙种植面积并保证高产优质提供依据。本论文采用营养液培养试验,研究了纽荷尔脐橙在硼的利用能力、吸收分配以及移动性方面的砧木效应,探讨了枳橙砧木与枳壳砧木缺硼反应差异及其机理;利用化学测定的方法研究了纽荷尔脐橙叶片缺硼后细胞壁组成的变化,借助电镜(SEM和TEM)、能谱(XPS和XRD)和光谱(FTIR)等生物物理方法分析了缺硼对纽荷尔脐橙叶片表面结构、细胞结构和细胞壁结构的影响,并运用代谢组学技术(GC-MS)比较了不同缺硼程度叶片代谢谱的变化差异。得到的主要结果如下:
     1.硼充足供应条件下,嫁接于枳橙砧木的纽荷尔脐橙植株各部位硼含量显著低于枳壳砧木纽荷尔脐橙相应各部位的硼含量,而两种砧木脐橙各部位干物重间无显著差异,说明枳橙砧木脐橙需硼量较低,其植株水平上硼的利用能力更高。通过进一步分析体内不同形态硼的相对含量,结果表明枳橙砧木脐橙的R值(半束缚态硼/自由态硼)显著高于枳壳砧木的,即硼在枳橙砧木脐橙中的跨膜能力更强,在细胞水平上解释了枳橙砧木纽荷尔脐橙硼利用能力更强的原因。
     2.新吸收的硼优先往新叶中转运,且在不同砧木脐橙老叶中的分配模式存在差异,新吸收的硼往枳橙砧木纽荷尔脐橙老叶中的分配远高于往枳壳砧木脐橙老叶中的分配,这些结果可以在一定程度上解释为什么缺硼条件下嫁接于枳壳砧木的纽荷尔脐橙老叶更容易出现缺硼症状。
     3.脐橙叶片施硼可以发生转运,下部老叶施硼后往新叶中的转运大于往其他老叶中的转运,枳橙与枳壳砧木纽荷尔脐橙中分别至少有吸收总硼的15.8%和17.6%转运到其他部位,但两种砧木之间硼的移动性并没有显著差异;叶片施硼不能转运到根中,反而还会降低根的硼含量和积累量,在缺硼的土壤中如果只采取叶片施硼的方式,反而可能会加重根的缺硼症状,从而影响根对其它元素的吸收。因此,农业生产中在缺硼的柑橘园施硼方式应以土施为主,叶施为辅。
     4.枳橙与枳壳实生幼苗在缺硼反应方面存在明显的基因型差异。缺硼后枳壳幼苗地上部的生长受到明显的抑制且出现黄化叶片,而对枳橙幼苗地上部的生长没有显著的影响。与处理之前各自植株的硼含量相比,缺硼35天后枳橙各部位硼含量都下降,但枳壳下降的程度更明显。硼正常供应条件下枳壳幼苗叶片及其细胞壁硼含量都明显高于枳橙幼苗相应的硼含量,但缺硼后枳橙叶片细胞壁硼含量增加而枳壳叶片细胞壁硼含量却降低。缺硼使枳橙与枳壳叶片细胞壁中共价结合态果胶含量都下降,而离子结合态果胶组分的增加只发生在枳橙幼苗叶片细胞壁中,枳壳中没有明显的变化。上述结果表明,枳橙砧木苗需硼量较枳壳苗更低,但在缺硼条件下又具有更强的硼吸收能力以及往细胞壁中分配硼的能力,再加上离子结合态果胶(CDTA可溶性果胶组分)的增加,对于维持细胞壁的完整性产生了重要的影响,从而增加了枳橙砧木对缺硼的耐受性。
     5.枳橙砧木纽荷尔脐橙上部叶(处理后形成)的缺硼程度远大于下部叶(处理时已存在),因此叶片黄化、卷曲等症状只出现在上部叶。缺硼提高了叶片细胞壁的提取率,改变了细胞壁的组成。缺硼使木质素和离子结合态果胶相对含量没有发生变化,共价结合态果胶含量下降,而半纤维素和纤维素相对含量显著增加,推测缺硼加剧了次生细胞壁的合成。缺硼显著降低了上部叶细胞壁中离子结合态果胶硼含量而对下部叶的无明显影响,共价结合态果胶和半纤维素硼含量缺硼后上部叶和下部叶都显著下降,而纤维素硼含量则都没有明显变化。上述结果表明缺硼后硼会优先分配到细胞壁离子结合态果胶中。
     6.严重缺硼破坏了脐橙叶片表皮结构,角质和蜡质等物质减少;细胞壁蛋白及果胶含量减少而纤维素和半纤维素含量增加;缺硼降低了纤维素结晶度并使细胞壁多糖糖苷键的构型方式发生变化;缺硼使细胞壁中的氢键及多糖交联方式发生改变;缺硼程度决定了细胞壁结构的破坏程度从而决定了缺硼症状的出现。
     7.上部叶和下部叶在正常生长条件下自身的代谢谱之间存在较大的差异。轻度缺硼的下部叶中蔗糖、葡萄糖和果糖含量都没有发生显著变化而淀粉含量显著增加,严重缺硼的上部叶除蔗糖含量无明显变化外,葡萄糖、果糖和淀粉含量都显著增加,而且缺硼处理的根系中可溶性总糖、蔗糖和淀粉含量也都显著增加。三羧酸循环中的柠檬酸和琥珀酸含量在缺硼处理的上部叶和下部叶中均显著下降,而苹果酸含量在上部叶中无明显变化但在下部叶中显著增加。与糖代谢相关性较高的肌醇和奎尼酸含量均显著增加。上述结果说明脐橙缺硼后会抑制其体内糖的利用并使三羧酸循环模式发生改变。
Boron (B) is an essential micronutrient element required for growth and development of higher plants. Ganzhou city in Jiangxi province in south China is a predominant region of navel orange production, where the hot water soluble B concentration is extremely low. In recent years, leaf chloresis a symptom of B deficiency occurs in the main local cultivar Newhall navel orange (Citrus sinensis Osb.), meanwhile the tree vigor declines rapidly after fruit set, and therefore affects fruit yield and quality in the coming years. Rootstock can greatly affect the growth and development of navel orange. Therefore, it is significant to carry out research works on the mechanism of B efficiency in navel orange grafted on different rootstocks and on the response mechanism of B deficiency on the cell wall structure and metabolism in navel orange plants. Furthermore, the study could provide a scientific basis for the study on perennial citrus rootstock-scion interaction of B nutrition and the development of citrus industry. In the present study, we compared the capacity of boron utilization, boron absorption and distribution, and boron mobility in Newhall navel orange plants grafted on citrange (Citrus sinensis (L.) Osb.×Poncirus trifoliate (L.) Raf.) and trifoliate orange (Poncirus trifoliate (L.) Raf), investigated the changes in cell wall composition and the structure of leaf, cell, and cell wall using the chemical extraction and biophysical methods (SEM, TEM, XPS, XRD, and FTIR) under B limitation, and analyzed the changes in metabolism profiling of leaves in Newhall navel orange plants due to B deficiency using metabolomics method (GC-MS) by hydroponic experiment. The main results were summarized as following:
     1. The relatively high B concentration observed in plants grafted on trifoliate orange suggested higher demand for B than those grafted on citrange, suggesting that the utilization efficiency of B in citrange-grafted plants was greater than that in trifoliate orange-grafted plants at whole plant level. There existed a balance for the B forms within plants to maintain normal growth. R value (R=semi-bound B/free B) was much higher in citrange-grafted plants than in trifoliate orange-grafted plants under same B supply level, suggesting that B transmembrane transport is easier in citrange than in trifoliate orange. This explained why citrange-grafted plants had less B but produced relatively more dry mass at cellular level.
     2. The newly absorbed B in the new leaves was much higher than that in the lower-old leaves and the upper-old leaves in both grafted plants. Citrange-grafted plants showed higher newly acquired total B content and B concentration in both lower-old and upper-old leaves than those in trifoliate-orange-grafted plants. These results suggest that different rootstocks affect the pattern of B distribution in the old leaves between citrange and trifoliate orange, resulting in greater proportion of B partitioning into the old leaves of citrange than trifoliate orange. This difference of B distribution between the two grafted plants may result in the good performance in the old leaves in citrange-grafted plants with limited-B conditions.
     3. Foliar application of10B to the lower-old leaves resulted in B translocation to the upper-old leaves and the new leaves with preference mainly to the new leaves in both citrange and trifoliate orange when root B supply was relatively low. However,10B sprayed to the lower-old leaves not only did not increase the abundance percentage of10B in the root, but also reduced B concentration and the total B content in the root. At least15.8%and17.6%of the absorbed10B was translocated to other plant parts in citrange-and trifoliate-orange-grafted plants, respectively. There was no significant difference for the B mobility between citrange and trifoliate orange.
     4. After35days under B deprivation, shoot dry mass in trifoliate orange decreased by28%, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for35days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to5μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange. These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.
     5. The extent of B deficiency in the upper leaves was more serious than that in the lower leaves. Therefore, the symptoms of curling of the leaves and leaf chlorosis were observed only in the upper leaves of B-deficient plants. Boron deficiency increased cell wall content and changed the cell wall composition. Boron deficiency had no significant effect on the lignin concentration in both upper leaves and lower leaves, and hardly affected the ionically bound pectin. However, boron deficiency significantly increased the relative hemicellulose and cellulose concentrations, and decreased covalently bound pectin in both upper and lower leaves. These results suggested that B deficiency probably enhanced the synthesis of secondary cell wall. Boron deficiency significantly decreased the B concentration in ionically bound pectin in the upper leaves but not in the lower leaves. The B concentrations in covalently bound pectin and hemicellulose was both decreased in the upper-and lower-leaves due to B deficiency, while there was no significant difference in the cellulose B concentration between the control and deficient-B plants. The results indicated that B seemed to be preferentially translocated to the ionically bound pectin of cell walls under B limitation.
     6. Seriously B deficiency destroyed the epidermis structure of navel orange leaves, and decreased the content of cutin and wax. Boron deficiency reduced the content of cell wall proteins and pectin but increased the content of cellulose and hemicellulose. The crystallinity of the cellulose and the anomeric configuration of carbohydrates in cell walls were largely destroyed by B deficiency. Furthermore, the mode of hydrogen bonding and the linkage pattern among cell wall components were also destroyed by B deficiency. Therefore, we speculated that the amount of wall components is not decisive for B deficiency symptoms, but that rather structural changes within these fractions are important.
     7. The metabolite profiling of the upper and lower leaves in orange plants showed remarkable differences under adequate B conditions. Boron deficiency increased the contents of glucose and fructose in upper leaves, but did not change the concentration of sucrose. In contrast, there were no significant differences in sucrose and hexose (glucose and fructose) contents of lower leaves between the B-deficient and control plants. The starch content was higher in both upper and lower leaves in B-deficient than in control plants. In addition, the contents of soluble sugars, sucrose, and starch in roots on a dry weight basis were higher in B-deficient than in control plants. Citrate and succinate decreased very strongly in both the upper and lower leaves under B deficiency. The increased level of malate occurred only in the lower leaves of B-deficient plants. The concentrations of inositol and quinate, which were highly associated with sugar metabolism, increased due to B deficiency. All these results suggested that boron deficiency inhibited sugar usage and altered TCA cyclic flux modes in citrus plants.
引文
1. 陈杰忠,邹浚渝.不同砧木甜橙幼树生长量及叶片矿质含量的研究.华南农业大学学报,1993,1:84-88
    2. 邓秀新.现代农业与农业发展.华中农业大学学报(社会科学版),2014,1:1-4
    3. 杜昌文,王运华,徐芳森,王火焰.一个植物硼素营养遗传指标的建立及其应用初探.植物营养与肥料学报,2000,6:347-352
    4. 杜昌文,王运华,徐芳森,王火焰.不同硼效率甘蓝型油菜品种中硼的形态及其相互关系.植物营养与肥料学报,2002a,8:105-109
    5.杜昌文,徐芳森,王火焰,王运华.不同硼效率甘蓝型油菜品种中硼的运输差异.贵州大学学报(农业与生物科学版),2002b,21:157-162
    6. 杜梨梨.缺硼对纽荷尔脐橙果实发育期叶片生理生化的影响.[硕士学位论文].武汉:华中农业大学图书馆,2009
    7. 姜存仓,王运华,刘桂东,夏颖,彭抒昂,钟八莲,曾庆銮.赣南脐橙叶片黄化及施硼效应研究.植物营养与肥料学报,2009,15:656-661
    8. 江荣风,张起刚,张福锁,魏向群,杨合法.施硼对花生利用氮素的影响.北京农业大学学报,1994,20:218-222
    9. 韩霜.缺硼对柑橘生理生化的影响.[硕士学位论文].福州:福建农林科技大学图书馆,2007
    10.何念祖,李素华,麻显清.钾硼对油菜吸收硼钾和生长的影响.土壤,1988,2:83-85
    11.李金柱,吴礼树,杨玉华.硼对不同硼效率甘蓝型油菜细胞壁硼钙含量的影响.中国油料作物学报,2007,29:68-72
    12.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.260-261
    13.梁和,马国瑞,石伟勇,杨玉爱.硼钙营养对不同品种柑桔糖代谢的影响.土壤通报,2002,33:377-380
    14.刘武定,皮美美,吴礼树.棉花硼、钾相互营养关系的研究.土壤学报,1987,24:43-50
    15.彭青枝,皮美美,曹享云,刘武定.硼对油菜不同品种酶活性和根系活力的影响.植物营养与肥料学报,1996,2:233-237
    16.皮美美,刘武定.棉花硼氮营养关系的研究.华中农业大学学报,1987,6:42-50
    17.盛鸥,宋尚伟,彭抒昂,邓秀新,卢晓鹏.不同硼浓度对脐橙生长和硼吸收、分布的影响.湖南农业大学学报(自然科学版),2007,33:76-84
    18.孙晶晶,吕忠贵,刘武定,皮美美.硼磷、硼钾对棉苗吸收32P和86Rb的影响.核农学报,1992,6:65-69
    19.孙伟伦,李坚.高温热处理落叶松木材尺寸稳定性及结晶度分析表征.林业科学,2010,46:114-118
    20.王火焰,王运华,吴礼树.硼钙营养对甘蓝型油菜IAA含量的影响.华中农业大学学报,1998a,17:341-344
    21.王火焰,王运华,吴礼树.不同硼效率甘蓝型油菜品种的硼钙营养效应.中国油料作物学报, 1998b,20:59-65
    22.王瑞东,姜存仓,刘桂东,王运华,彭抒昂,钟八莲,曾庆銮.赣南脐橙园立地条件及种植现状调查与分析.中国南方果树,2011a,40:1-3
    23.王瑞东,姜存仓,刘桂东,王运华,彭抒昂,曾庆銮.赣南脐橙产区果园土壤有效硼含量的现状与分析.中国南方果树,2011b,40:1-3,7
    24.肖家欣,彭抒昂.柑橘开花前后子房(幼果)钙、硼营养与IAA、GA1/3动态研究.果树学报,2004,21:132-135
    25.熊汉峰,刘武定,皮美美.硼氮及其配合对油菜苗期养分吸收的影响.土壤通报,1995,26:84-86
    26.熊双莲,吴礼树,王运华.黄瓜缺硼症状与激素变化关系的研究.植物营养与肥料学报,2001,7:194-198
    27.徐芳森,王运华,李建春.甘蓝型油菜不同硼效率品种对缺硼反应的研究.华中农业大学学报,1998,1:55-60
    28.杨琼,刘武定,皮美美.硼磷互作对油菜生长发育及ATP酶活性的影响.中国油料,1993,3:64-66
    29.杨淑敏,江泽慧,任海青,费本华.利用X-射线衍射法测定竹材纤维素结晶度.东北林业大学学报,2010,38:75-77
    30.杨玉华,杜昌文,吴礼树,王运华.不同硼效率甘蓝型油菜品种细胞壁组分中硼的分配.植物生理与分子生物学学报,2002,28:339-343
    31.杨玉华,喻敏,王运华,吴礼树,杜昌文.不同硼效率油菜品种细胞壁果胶硼的结合位点.华中农业大学学报,2005a,24:33-38
    32.杨玉华,夏运生,杜昌文,吴礼树,王运华.不同硼效率油菜品种营养生长需硼量的差异.中国油料作物学报,2005b,27:69-72
    33.尹小健.赣南脐橙产业现代化路径分析.企业经济,2012,7:130-133
    34.喻敏,褚海燕,吴礼树,王运华.甘蓝型油菜不同硼效率基因型对硼的吸收、分配的影响.中国油料作物学报,1999,21:48-52
    35.庄伊美.柑桔营养与施肥.北京:中国农业出版社,1994.32-37
    36.周开兵,郭文武,夏仁学,王贵元,沈婷.不同砧木砧木对脐橙幼树生长和叶片养分含量年变化的影响.植物营养与肥料学报,2004,10:657-662
    37.周开兵,郭文武,夏仁学,王贵元,鲍华兵.两类杂种砧木资源对柑橘幼树生长和叶片矿质营养含量的影响.西北植物学报,2005,25:293-298
    38.朱利华,章文才.砧木对柑橘嫁接幼树早果影响的生理生化研究.园艺学报,1991,18:296-302
    39. Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW. Evaluating cell wall structure and composition of developing cotton fibers using fourier transform infrared spectroscopy and thermogravimetric analysis. JAppl Polym Sci,2008,107:476-486
    40. Al-Jaleel A, Zekri M, Hammam Y. Yield, fruit quality, and tree health of 'Allen Eureka'lemon on seven rootstocks in Saudi Arabia. Sci Hort,2005,105:457-565
    41. Allen DK, Libourel IG, Shachar-Hill Y. Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ,2009,32:1241-1257
    42. Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J, 2007,52: 296-308
    43. Alves M, Chicau P, Matias H, Passarinho J, Pinheiro C, Ricardo CP. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency. Physiol Plant, 2011,142:224-232
    44. An JC, Liu YZ, Yang CQ, Zhou GF, Wei QJ, Peng SA. Isolation and expression analysis of CiNIP5, a citrus boron transport gene involved in tolerance to boron deficiency. Sci Hort, 2012, 142:149-154
    45. Arbona V, Manzi M, Ollas C, Gomez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci,2013,14:4885-4911
    46. Asad A, Blarney FPC, Edwards DG. Dry matter production and boron concentration of vegetative and reproductive tissues of canola and sunflower plants grown in nutrition solution. Plant Soil, 2002,243:243-252
    47. Asad A, Blamey FPC, Edwards DG. Effects of boron foliar applications on vegetative and reproductive growth of sunflower. Ann Bot, 2003,92:565-570
    48. Bacic A. Breaking an impasse in pectin biosynthesis. Proc Natl Acad Sci USA,2006, 103:5639-5640
    49. Bameix AJ, Causin HF. The central role of amino acids on nitrogen utilization and plant growth. J Plant Physiol,1996,149:358-362
    50. Barron C, Parker ML, Mills ENC, Rouau X, Wilson RH. FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta,2005,220:667-677
    51. Bassil E, Hu H, Brown PH. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol,2004,136:3383-3395
    52. Beato VM, Rexach J, Navarro-Gochicoa MT, Camacho-Cristobal JJ, Herrera-Rodriguez MB, Maldonado JM, Gonzalez-Fontes A. A tobacco asparagine synthetase gene responds to carbon and nitrogen status and its root expression is affected under boron stress. Plant Sci, 2010,178: 289-298
    53. Bellaloui N, Brown PH, Dandekar AM. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol, 1999,119:735-741
    54. Bellaloui N, Yadavc RC, Chern MS, Hu H, Gillen AM, Greve C, Dandekar AM, Ronald PC, Brown PH. Transgenically enhanced sorbitol synthesis facilitates phloem-boron mobility in rice. Physiol Plant,2003,117:79-84
    55. Bennett A, Rowe RI, Soch N, Eckhert CD. Boron stimulates yeast (Saccharomyces cerevisiae) growth. J Nutr, 1999,129:2236-2238
    56. Blaser-Grill J, Knoppik D, Amberger A, Goldbach HE. Influence of boron on the membrane potential in Elodea densa and Helianthus annuus roots and H+ extrusion of suspension cultured Daucus carota cells. Plant Physiol, 1989,90:280-284
    57. Blevins DG, Lukaszewski KM. Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:481-500
    58. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Analy Biochem, 1973,54:484-489
    59. Boaretto RM, Quaggio JA, Filho F, Gine MF, Boaretto AE. Absorption and mobility of boron in young citrus plants. Commun Soil Sci Plant Anal, 2008,39:2501-2514
    60. Boaretto RM, Quaggio JA, Jr. DM, Muraoka T, Boaretto AE. Boron uptake and distribution in field grown citrus trees. J Plant Nutr,2011,34:839-849
    61. Bolanos L, Lukaszewski K, Bonilla I, Blevins D. Why boron? Plant Physiol Biochem, 2004,42: 907-912
    62. Bonilla I, Mergold-Villasenor C, Campos ME, Sanches N, Perez H, Lopez L, Castrejon L, Sanchez F, Cassab GI. The aberrant cell walls of boron deficient bean root nodules have no covalently-bound hydroxyproline/proline-rich proteins. Plant Physiol, 1997,115:1329-1340
    63. Bouche N, Fromm H. GABA in plants:just a metabolite? Trends Plant Sci, 2004,9:110-115
    64. Brown PH, Bellaloui N, Hu H, Dandekar A. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol, 1999,119:17-20
    65. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Romheld V. Boron in plant biology. Plant Biol, 2002,4:205-223
    66. Brown PH, Hu H. Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species. Ann Bot, 1996,77:497-505
    67. Brown PH, Hu H. Does boron play only a structural role in the growing tissues of higher plants? Plant Soil,1997,196:211-215
    68. Brown PH, Shelp BJ. Boron mobility in plants. Plant Soil,1997,193:85-101
    69. Bruce RJ, West CA. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol,1989,91:889-897
    70. Burgert I, Dunlop JWC. Micromechanics of cell walls. In: Wojtaszek P, ed., Mechanical integration of plant cells and plants. Springer: Verlag Berlin Heidelberg,2011.27-52
    71. Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohyd Res,2009,344:1879-1900
    72. Cakmak I, Hengeler C, Marschner H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot, 1994, 45:1245-1250
    73. Cakmak I, Kurz H, Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol Plant, 1995,95:11-18
    74. Cakmak I, Romheld V. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil,1997,193:71-83
    75. Camacho-Cristobal JJ, Gonzalez-Fontes A. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta,1999,209:528-536
    76. Camacho-Crist6bal JJ, Lunar L, Lafont F, Baumert A, Gonzalez-Fontes A. Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves. J Plant Physiol,2004,161:879-881
    77. Camacho-Cristobal JJ, Gonzalez-Fontes A. Boron deficiency decreases plasmalemma H+ -ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta,2007,226:443-451
    78. Camacho-Cristobal JJ, Herrera-Rodriguez MB, Beato VM, Rexach J, Navarro-Gochicoa MT, Maldonado JM, Gonzalez-Fontes A. The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ Exp Bot, 2008,63:351-358
    79. Canon P, Aquea F, Rodriguez-Hoces de la Guardia A, Arce-Johnson P. Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant,2013,149:329-339
    80. Cantuarias-Aviles T, Mourao Filho FAA, Stuchi ES, Silva SR, Espinoza-Nunez E. Tree performance and fruit yield and quality of 'Okitsu' Satsuma mandarin grafted on 12 rootstocks. Sci Hort,2010, 123:318-322
    81. Cara FA, Sanchez E, Ruiz JM, Romero L. Is phenol oxidation responsible for the short-term effects of boron deficiency on plasma-membrane permeability and function in squash roots? Plant Physiol Biochem,2002,40:853-858
    82. Cervilla LM, Blasco B, Rios JJ, Rosales MA, Rubio-Wilhelmi MM, Sanchez-Rodriguez E, Romero L, Ruiz JM. Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol,2009,11:671-677
    83. Chatzissavvidis C, Therios L, Antonopoulou C, Dimassi K. Effects of high boron concentration and scion-rootstock combination on growth and nutritional status of olive plants. J Plant Nutr, 2008,31:638-658
    84. Chen LM, Carpita NC, Reiter WD, Wilson RW, Jeffries C, McCann MC. A rapid method to screen for cell wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J,1998,8:375-382
    85. Cohen MS, Albert LS. Autoradiographic examination of meristems of intact boron-deficient squash roots treated with tritiated thymidine. Plant Physiol,1974,54:766-768
    86. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol,2005,6:850-861
    87. Dannel F, Pfeffer H, Romheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. JPlant Physiol,1998,153:615-622
    88. Dannel F, Pfeffer H, Romheld V. Distribution within the plant or compartmentation does not contribute substantially to the detoxification of excess boron in sunflower (Helianthus annuus). Aust J Plant Physiol,1999,26:95-99
    89. Dannel F, Pfeffer H, Romheld V. Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10B and 11B. Aust J Plant Physiol,2000,27: 397-405
    90. Dannel F, Pfeffer H, Romheld V. Update on boron in higher plants-uptake, primary translocation and compartmentation. Plant Biol,2002,4:193-204
    91. Darvill AG, McNeil M, Albersheim P. Structure of plant cell walls. VIII. A new pectic polysaccharide. Plant Physiol,1978,62:418-422
    92. Dell B, Huang L. Physiological response of plants to low boron. Plant Soil,1997,193:103-120
    93. Dible WT, Troug E, Berger HC. Boron determination in soils and plants. Anal Chem,1954,26: 418-421
    94. Dordas C, Brown PH. Permeability of boric acid across lipid bilayers and factors affecting it. J Membrane Biol,2000,175:95-105
    95. Dordas C, Chrispeels MJ, Brown PH. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol,2000,124:1349-1361
    96. Dordas C, Brown PH. Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil,2001,235:95-103
    97. Dordas C, Brown PH. Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant Soil,2005,268:293-301
    98. Dokken K, Davis LC, Erickson LE, Castro S. Fourier transform infrared spectroscopy as a tool to monitor changes in plant structure in response to soil contaminants. Proceedings-Waste Res Tech, 2002,7
    99. Du CW, Wang YH, Xu FS, Yang YH, Wang HY. Study on the physiological mechanism of boron utilization efficiency in rape cultivars. J Plant Nutr, 2002,25:231-244
    100. Eaton FM, Blair GY. Accumulation of boron by reciprocally grafted plants. Plant Physiol,1935, 10:411-424
    1O.Eckhert CD, Rowe RI. Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish. J Trace Elem Exp Med,1999,12:213-219
    102. Edelstein M, Ben-Hur M, Cohen R, Burger Y, Ravina I. Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil,2005,269:273-284
    103. Eichert T, Goldbach HE. Transpiration rate affects the mobility of foliar-applied boron in Ricinus communis L. cv. Impala. Plant Soil,2010,328:165-174
    104. El-Shintinawy F. Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica,1999,36:565-573
    105. Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA,2003,100:11122-11126
    106. Fait A, Fromm H, Walter D, Galili G, Femie AR. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci,2008,13:14-19
    107. Ferrol N, Belver A, Roldan M, Rodriguez-Rosales MP, Donaire JP. Effects of boron on proton transport and membrane properties of sunflower (Helianthus annuus L.) cell microsomes. Plant Physiol,1993,103:763-769
    108. Fleischer A, O'Neill MA, Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol, 1999,121:829-838
    109. Foito A, Byrne SL, Hackett CA, Hancock RD, Stewart D, Barth S. Short-term response in leaf metabolism of perennial ryegrass (Lolium perenne) to alterations in nitrogen supply. Metabolomics,2013,9:145-156
    110. Forner-Giner MA, Alcaide A, Primo-Millo E, Forner JB. Performance of 'Navelina' orange on 14 rootstocks in Northern Valencia (Spain). Sci Hort,2003,98:223-232
    111. Garcfa-Luis A, Oliveira MEM, Bordon Y, Siqueira DL, Tominaga S, Guardiola JL. Dry matter accumulation in citrus fruit is not limited by transport capacity of the pedicel. Ann Bot, 2002,90: 755-764
    112. Gillaspy GE. The cellular language of myo-inositol signaling. New Phytol, 2011,192:823-839
    113. Goldbach HE. Influence of boron nutrition on net uptake and efflux of 32P and 14C-glucose in Helianthus annuus roots and cell cultures of Daucus carota. JPlant Physiol,1985,118:431-438
    114. Goldbach HE, Hartmann D, Rotzer T. Boron is required for the stimulation of the ferricyanide-induced proton release by auxins in suspension-cultured cells of Daucus carota and lycopersican esculentum. Physiol plant, 1990,80:114-118
    115. Goldbach HE, Wimmer MA, Findeklee P. Discussion paper: Boron-How can the critical level be defined? J Plant Nutr Soil Sci,2000,163:115-121
    116. Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Findeklee P, Baluska F. Rapid response reactions of roots to boron deprivation. J Plant Nutr Soil Sci, 2001,164:173-181
    117. Goldbach HE, Wimmer MA. Boron in plants and animals: Is there a role beyond cell-wall structure? J Plant Nutr Soil Sci,2007,170:39-48
    118. Haas ARC, Klotz LJ. Further evidence on the necessity of boron for health in citrus. Bot Gaz, 1931,92:94-100
    119. Hajiboland R, Bahrami-Rad S, Bastani S, Tolra R, Poschenrieder C. Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants. Acta Physiol Plant, 2013,35:2373-2381
    120. Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol, 2008,165:1331-1341
    121. Han S, Tang N, Jiang HX, Yang LT, Li Y, Chen LS. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci,2009,176:143-153
    122. Hayot CM, Forouzesh E, Goel A, Avramova Z, Turner JA. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. JExp Bot,2002,63:2525-2540
    123. Held MA, Be E, Zemelis S, Withers S, Wilkerson C, Brandizzi F. CGR3:A Golgi-localized protein influencing homogalacturonan methylesterification. Mol Plant,2011,4:832-844
    124. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Calif Agric Exp Stn Cir,1950,347:1-32
    125. Hofte H. A baroque residue in red wine. Science,2001,294:795-797
    126. Hoson T. Apoplast as the site of response to environmental signals. J Plant Res,1998,111: 167-177
    127. Hu H, Brown PH. Localization of boron in cell walls of squash and tobacco and its association with pectin-Evidence for a structural role of boron in the cell wall. Plant Physiol,1994,105: 681-689
    128. Hu H, Brown PH. Absorption of boron by plant roots. Plant Soil,1997,193:49-58
    129. Hu H, Brown PH, Labavitch JM. Species variability in boron requirement is correlated with cell wall pectin. JExp Bot, 1996,47:227-232
    130. Hu H, Penn SG, Lebrilla CB, Brown PH. Isolation and characterization of soluble boron complexes in higher plants—The mechanism of phloem mobility of boron. Plant Physiol,1997, 113:649-655
    131. Huang L, Bell RW, Dell B. Boron supply into wheat (Triticum aestivum L. cv. Wilgoyne) ears whilst still enclosed within leaf sheaths. JExp Bot, 2001,52:1731-1738
    132. Huang L, Bell RW, Dell B. Evidence of phloem boron transport in response to interrupted boron supply in white lupin (lupinus albus L. cv. Kiev Mutant) at the reproductive stage. J Exp Bot, 2008,59:575-583
    133. Iglesias DJ, Lliso I, Tadeo FR, Talon M. Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol Plant, 2002, 116: 563-572
    134. Ishii T, Matsunaga T. Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res, 1996,284:1-9
    135. Ishii T, Matsunaga T, Pellerin P, O'Neill MA, Darvill AG, Albersheim P. The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer. JBiol Chem,1999,274:13098-13104
    136. Ishii T, Matsunaga T, Hayashi N. Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol, 2001,126:1698-1705
    137. Iwai H, Hokura A, Oishi M, Chida H, Ishii T, Sakai S, Satoh S. The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proc Natl Acad Sci USA,2006, 103:16592-16597
    138. Jamet E, Canut H, Boudart G, Pont-Lezica RF. Cell wall proteins:a new insight through proteomics. Trends Plant Sci,2006,11:33-39
    139. Jansen M, Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophysical J,1995,68:997-1008
    140. Jiang F, Jeschke WD, Hartung W, Cameron DD. Mobility of boron-polyol complexes in the hemiparasitic association between Rhinanthus minor and Hordeum vulgare: the effects of nitrogen nutrition. Physiol Plant,2008,134:13-21
    141. Jonsson P, Bruce SJ, Moritz T, Trygg J, SjSstrom M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H. Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst,2005,130:701-707
    142. Kakegawa K, Ishii T, Matsunaga T. Effects of boron deficiency in cell suspension cultures of Populus alba L. Plant Cell Rep,2005,23:573-578
    143. Kaku T, Tabuchi A, Wakabayashi K, Kamisaka S, Hoson T. Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls. Plant Cell Physiol,2002,43:21-26
    144. Kaneko S, Ishii T, Matsunaga T. A boron-rhamnogalacturonan-II complex from bamboo shoot cell walls. Phytochemistry,1997,44:243-248
    145. Kastori R, Plesnicar M, Pankovic D, Sakac Z. photosynthesis, chlorophyll fluorescence and soluble carbohydrates in sunflower leaves as affected by boron deficiency. J Plant Nutr,1995,18: 1751-1763
    146. Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonan Ⅱ are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol, 1996,110:1017-1020
    147. Konsaeng S, Dell B, Rerkasem B. A survey of woody tropical species for boron retranslocation. Plant Prod Sci,2005,8:338-341
    148. Konsaeng S, Dell B, Rerkasem B. Boron mobility in peanut (Arachis hypogaea L.). Plant Soil, 2010,330:281-289
    149. Kontturi EJ. Surface chemistry of cellulose: from natural fibres to model surfaces. (PhD dissertation). Eindhoven: Eindhoven University of Technology,2005
    150. Kueger S, Steinhauser D, WHlmitzer L, Giavalisco P. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J, 2012,70:39-50
    151. Lanoue L, Trollinger DR, Strong PL, Keen CL. Functional impairments in preimplantation mouse embryos following boron deficiency. FASEB J,2000,14A:539
    152. Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol,2013,54:1056-1063
    153. Lehto T, Raisanen M, Lavola A, Julkunen-Tiitto R, Aphalo PJ. Boron mobility in deciduous forest trees in relation to their polyols. New Phytol,2004,163:333-339
    154. Leite VM, Brown PH, Rosolem CA. Boron translocation in coffee trees. Plant Soil, 2007,290: 221-229
    155. Leuschner C, Herrmann KM, Schultz G The metabolism of quinate in pea roots. Plant Physiol, 1995,108:319-325
    156. Li CJ, Pfeffer H, Dannel F, Romheld V, Bangerth F. Effects of boron starvation on boron compartmentation, and possibly hormone-mediated elongation growth and apical dominance of pea (Pisum sativum) plants. Physiol Plant,2001,111:212-219
    157. Liakopoulos G. Stavrianakou S, Filippou M, Fasseas C, Tsadilas C, Drossopoulos I, Karabourniotis G. Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations. Tree Physiol,2005,25:157-165
    158. Liakopoulos G, Psaroudi V, Stavrianakou S, Nikolopoulos D, Karabourniotis G Acclimation of eggplant (Solanum melongena) to low boron supply. J Plant Nutr Soil Sci,2012,175:189-195
    159. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc,2006,1:387-396
    160. Loewus FA, Murthy PPN. myo-Inositol metabolism in plants. Plant Sci,2010,150:1-19
    161. Loomis WD, Durst RW. Chemistry and biology of boron. Biofactors,1992,3:229-239
    162. Luedemann A, Strassburg K, Erban A, Kopka J. TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics,2008,24:732-737
    163. Marentes E, Shelp BJ, Vanderpool RA, Spiers GA. Retranslocation of boron in broccoli and lupin during early reproductive growth. Physiol Plant,1997,100:389-399
    164. Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. London:Academic Press,1995.
    165. Marsh KB, Boldingh HL, Shilton RS, Laing WA. Changes in quinic acid metabolism during fruit development in three kiwifruit species. Funct Plant Biol,2009,36:463-470
    166. Matoh T. Boron in plant cell walls. Plant Soil,1997,193:59-70
    167. Matoh T, Ishigaki K, Ohno K, Azuma J. Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant Cell Physiol,1993,34:639-642
    168. Matoh T, Kawaguchi S, Kobayashi M. Ubiquity of a borate-rhamnogalacturonan II complex in the cell walls of higher plants. Plant Cell Physiol,1996,37:636-640
    169. Matoh T, Takasaki M, Takabe K, Kobayashi M. Immunocytochemistry of rhamnogalacturonan II in cell walls of higher plants. Plant Cell Physiol,1998,39:483-191
    170. Matoh T, Ochiai K. Distribution and partitioning of newly take-up boron in sunflower. Plant Soil, 2005,278:351-360
    171. Matsunaga T, Ishii T. Borate cross-linked/total rhamnogalacturonan II ratio in cell walls for the biochemical diagnosis of boron deficiency in hydroponically grown pumpkin. Anal Sci, 2006,22: 1125-1127
    172. Mattiello EM, Ruiz HA, Silva IR, Sarkis JES, Neves JCL, Pucci MM. Phloem mobility of boron in two eucalypt clones. R Bras Ci Solo, 2009,33:1695-1704
    173. Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol, 2001,35:191-201
    174. Matysik J, Alia, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci, 2002,82:525-532
    175. McCann MC, Chen L, Roberts K, Kemsley EK, Send C, Carpita NC, Stacey NJ, Wilson RH. Infrared microspectroscopy: sampling heterogeneity in plant cell wall composition and architecture. Physiol Plant, 1997,100:729-738
    176. McCann MC, Defernez M, Urbanowicz BR, Tewari JC, Langewisch T, Olek A, Wells B, Wilson RH, Carpita NC. Neural network analyses of infrared spectra for classifying cell wall architectures. Plant Physiol,2007,143:1314-1326
    177. McCann MC, Shi J, Roberts K, Carpita NC. Changes in pectin structure and localization during the growth of unadapted and NaCl-adapted tobacco cells. Plant J, 1994,5:773-785
    178. Mei L, Sheng O, Peng SA, Zhou GF, Wei QJ, Li QH. Growth, root morphology and boron uptake by citrus rootstock seedlings differing in boron-deficiency responses. Sci Hort, 2011,129: 426-432
    179. Micheli F. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci,2001,6:414-419
    180. Michell RH. Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol, 2008,9: 151-161
    181. Miwa K, Fujiwara T. Boron transport in plants:co-ordinated regulation of transporters. Ann Bot, 2010,105:1103-1108
    182. Miwa K, Takano J, Fujiwara T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J,2006,46:1084-1091
    183. Miwa K, Wakuta S, Takada S, Ide K, Takano J, Naito S, Omori H, Matsunaga T, Fujiwara T. Roles of BOR2, a boron exporter, in cross linking of rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis. Plant Physiol,2013,163:1699-1709
    184. Mottonen M, Lehto T, Aphalo PJ. Growth dynamics and mycorrhizas of Norway spruce (Picea abies) seedlings in relation to boron supply. Trees, 2001,15:319-326
    185. Nachiangmai D, Dell B, Bell R, Huang L, Rerkasem B. Enhanced boron transport into the ear of wheat as a mechanism for boron efficiency. Plant Soil,2004,264:141-147
    186. Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T. Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell, 2007,19:2624-2635
    187. O'Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls. In: Dey DM, ed., Methods in plant biochemistry. London: Academic Press, 1990.415-441
    188. O'Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of cell wall rhamnogalacturonan Ⅱ for Arabidopsis growth. Science, 2001,294:846-849
    189. O'Neill MA, Ishii T, Albersheim P, Darvill AG. Rhamnogalacturonan Ⅱ:Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol, 2004,55:109-139
    190. O'Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P. Rhamnogalacturonan-Ⅱ, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. JBiol Chem,1996,271:22923-22930
    191. Pan Y, Wang ZH, Yang L, Wang ZF, Shi L, Naran R, Azadi P, Xu FS. Differences in cell wall components and allocation of boron to cell walls confer variations in sensitivities of Brassica napus cultivars to boron deficiency. Plant Soil,2012,354:383-394
    192. Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A. Boron toxicity in 'Clementine' mandarin plants grafted on two rootstocks. Plant Sci, 2004a, 166: 539-547
    193. Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A. Effects of B excess on some physiological and anatomical parameters of 'Navelina' orange plants grafted on two rootstocks. Environ Exp Bot,2004b,51:247-257
    194. Peaucelle A, Bray brook SA, Le Guillou L, Bron E, Kuhlemeier C, Hofte H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol,2011,21: 1720-1726
    195. Perez-Castro R, Kasai K, Gainza-Cortes F, Ruiz-Lara S, Casaretto JA, Pena-Cortes H, Tapia J, Fujiwara T, Gonzalez E. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol,2012,53:485-494
    196. Pfeffer H, Dannel F, Romheld V. Are there connections between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunflower plants? Physiol Plant, 1998,104:479-485
    197. Pfeffer H, Dannel F, Romheld V. Isolation of soluble boron complexes and their determination together with free boric acid in higher plants. J Plant Physiol, 1999a,154:283-288
    198. Pfeffer H, Dannel F, Romheld V. Are there two mechanisms for boron uptake in sunflower? J Plant Physiol,1999b,155:34-40
    199. Pfeffer H, Dannel F, Romheld V. Boron compartmentation in roots of sunflower plants of different boron status: A study using the stable isotopes 10B and 11B adopting two independent approaches. Physiol Plant, 2001,113:346-351
    200. Popova TN, Pinheiro de Carvalho MAA. Citrate and isocitrate in plant metabolism. Biochimi Biophys Acta,1998,1364:307-325
    201. Raven JA. Short- and long-distance transport of boric acid in plants. New Phytol, 1980, 84: 231-249
    202. Redgwell RJ, Selvendran RR. Structural features of cell-wall polysaccharides of onion Alliun cepa. Carbohydr Res, 1986,157:183-199
    203. Rerkasem B, Jamjod S. Genotypic variation in plant response to low boron and implications for plant breeding. Plant Soil,1997,193:169-180
    204. Rerkasem B, Jamjod S. Boron deficiency in wheat: a review. Field Crop Res, 2004,89: 173-186
    205. Ridley BL, O'Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry,2001,57:929-967
    206. Robertson GA, Loughman BC. Reversible effects of boron on the absorption and incorporation of phosphate in Vicia faba. New Phytol, 1974,73:291-298
    207. Rodan M, Belver A, Rodriguez-Rosales P, Ferrol N, Donaire JP. In viro and in vitro effects of boron on the plama membrane proton pump of sunflower roots. Physiol Plant, 1992,84:49-54
    208. Roy WR. Studies of boron deficiency in grapefruit. Proc Florida State Hort Soc,1943,38-43
    209. Ruiz JM, Baghour M, Bretones G, Belakbir A, Romero L. Metabolism in tobacco plants (Nicotiana tabacum L.): Role of boron as a possible regulatory factor. Int J Plant Sci,1998a,159: 121-126
    210. Ruiz JM, Bretones G, Baghour M, Ragala L, Belakbir A, Romero L. Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry, 1998b,48:269-272
    211. Ruuhola T, Keinanen M, Keski-Saari S, Lehto T. Boron nutrition affects carbon metabolism of silver birch seedlings. Tree Physiol, 2011,31:1251-1261
    212. Sakurai N. Cell wall functions in growth and development, a physical and a chemical point of view. Bot Mag,1991,104:235-251
    213. Savic J, Nikolic M, Prodanovic S, Romheld V. Boron uptake by the root cortex symplast of tomato and pea plants:Evidence for low-boron-induced active transport. Fund Plant Biol, 2007, 34:1130-1136
    214. Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol, 2010,61:263-289
    215. Schon MK, Novacky A, Blevins DG Boron induces hyperpolarization of sunflower root cell membranes and increases membrane permeability to K+. Plant Physiol,1990,93:566-571
    216. Sene C, McCann MC, Wilson RH, Grinter R. Fourier-transform Raman and Fourier-transform infrared spectroscopy: an investigation of five higher plant cell walls and their components. Plant Physiol,1994,106:1623-1631
    217. Shelp BJ, Kitheka AM, Vanderpool RA, Van Cauwenberghe OR, Spiers GA. Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth. Physiol Plant,1998,104: 533-540
    218. Shelp BJ, Vivekanandan P, Vanderpool RA, Kitheka AM. Translocation and effectiveness of foliar-fertilized boron in broccoli plants of varying boron status. Plant Soil,1996,183:309-313
    219. Shelp BJ, Penner R, Zhu Z. Broccoli (Brassica oleracea var italica) cultivar response to boron deficiency. Can J Plant Sci,1992,72:883-888
    220. Sheng O, Song SW, Chen YJ, Peng SA, Deng XX. Effects of exogenous B supply on growth, B accumulation and distribution of two navel orange cultivars. Trees,2009,23:59-68
    221. Shorrocks VM. The occurrence and correction of boron deficiency. Plant Soil, 1997, 193: 121-148
    222. Showalter AM. Structure and function of plant cell wall proteins. Plant Cell, 1993,5:9-23
    223. Siddiqi MY, Glanss ADM. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr,1981,4:289-302
    224. Simons K, Ikonen E. Functional rafts in cell membranes. Nature,1997,387:569-572
    225. Smith MW, Shaw RG, Chapman JC, Owen-Turner J, Lee LS, McRae KB, Jorgensen KR, Mungomery WV. Long-term performance of 'Ellendale' mandarin on seven commercial rootstocks in sub-tropical Australia. Sci Hort,2004,102:75-89
    226. Sotiropoulos TE, Fotopoulos S, Dimassi KN, Tsirakoglou V, Therios IN. Response of the pear rootstock to boron and salinity in vitro. Biol Plant,2006,50:779-781
    227. Stangoulis JCR, Brown PH, Bellaloui N, Reid RJ and Graham RD. The efficiency of boron utilisation in canola.Aust J Plant Physiol,2001,28:1109-1114
    228. Stangoulis J, Tate M, Graham R, Bucknall M, Palmer L, Boughton B, Reid R. The mechanism of boron mobility in wheat and canola phloem. Plant Physiol,2010,153:876-881
    229. Stavrianakou S, Liakopoulos G, Karabourniotis G. Boron deficiency effects on growth, photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae). Environ Exp Bot, 2006,56:293-300
    230. Storey JD, Tibshirani R. Statistical significance for genome-wide experiments. Proc Natl Acad Sci USA,2003,100:9440-9445
    231. Sun J, Shi L, Zhang C, Xu F. Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep,2012,39:1963-1973
    232. Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RJ. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci,2010,15:462-470
    233. Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci,2010,15:89-97
    234. Takahashi H, Imamura T, Miyagi A, Uchimiya H. Comparative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Metabolomics,2012,8:154-163
    235. Takano J, Yamagami M, Noguchi K, Hayashi H, Fujiwara T. Preferential translocation of boron to young leaves in Arabidopsis thaliana regulated by the BOR1 gene. Soil Sci Plant Nutr, 2001,47: 345-357
    236. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T. Arabidopsis boron transporter for xylem loading. Nature,2002,420:337-340
    237. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell,2006,18:1498-1509
    238. Tan J, Wang C, Xiang B, Han R, Guo Z. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant Cell Environ,2013,36:288-299
    239. Tanaka M, Fujiwara T. Physiological roles and transport mechanisms of boron:perspectives from plants. Eur JPhysiol,2008,456:671-677
    240. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T. NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell, 2008, 20: 2860-2875
    241. Tanaka N, Uraguchi S, Saito A, Kajikawa M, Kasai K, Sato Y, Nagamura Y, Fujiwara T. Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process. Plant Cell Physiol, 2013,54:2011-2019
    242. Taylor BK, Dimsey RT. Rootstock and scion effects on the leaf nutrient composition of citrus trees. Aust J Exp Agr,1993,33:363-371
    243. Turan MA, Taban N, Taban S. Effect of calcium on the alleviation of boron toxicity and localization of boron and calcium in cell wall of wheat. Not Bot Hort Agrobot Cluj, 2009, 37: 99-103
    244. Valluru R, Van den Ende W. Myo-inositol and beyond - Emerging networks under stress. Plant Sci,2011,18:387-400
    245. Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD. The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUTl. Proc Natl Acad Sd USA,2002,99:3340-3345
    246. Wang G, Romheld V, Li C, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.). J Plant Physiol, 2006,163: 591-600
    247. Warington K. The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot,1923,37:629-672
    248. Will S, Eichert T, Fernandez V, Mohring J, Miiller T, Romheld V. Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex. Plant Soil,2011,344:283-293
    249. Wimmer MA, Lochnit G, Bassil E, Miihling KH, Goldbach HE. Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography. Plant Cell Physiol,2009, 50:1292-1304
    250. Wojcik P, Cieslinski G, Mika A. Apple yield and fruit quality as influenced by boron applications. J Plant Nutr, 1999,22: 1365-1378
    251. Wojcik P, Wojcik M, Treder W. Boron absorption and translocation in apple rootstocks under conditions of low medium boron. J Plant Nutr, 2003,26:961-968
    252. Woods WG. Review of possible boron speciation relating to its essentiality. J Trace Elem Exp Med,1996,9: 153-163
    253. Yang CQ, Liu YZ, An JC, Li S, Jin LF, Zhou GF, Wei QJ, Yan HQ, Wang NN, Fu LN, Liu X, Hu XM, Yan TS, Peng SA. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' navel orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy. PLoS ONE, 2013,8:e65737
    254. Yang J, Yen HY. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A fourier transform infrared spectroscopy study. Plant Physiol, 2002,130: 1032-1042
    255. Yang L, Zhang Q, Dou J, Li L, Guo L, Shi L, Xu F. Characteristics of root boron nutrition confer high boron efficiency in Brassica napus cultivars. Plant Soil, 2013,371:95-104
    256. Yemm EW, Willis AJ. The estimation of carbohydrates in plant extracts by anthrone. Biochem J, 1954,57:508-514
    257. Xiao JX, Yan X, Peng SA, Fang YW. Seasonal changes of mineral nutrients in fruit and leaves of 'Newhall' and'Skagg's Bonanza' navel oranges. J Plant Nutr, 2007,30: 671-690
    258. Xie Q, Wei WX, WangYH. Studies on absorption, translocation and distribution of boron in cotton (Gossypium hirsutum L.). ActaAgron Cinica, 1992,18:31-37
    259. Yu Q, Hlavacka A, Matoh T, Volkmann D, Menzel D, Goldbach HE, Baluska F. Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol, 2002, 130: 415-421
    260. Yu Q, Baluska F, Jasper F, Menzel D, Goldbach HE. Short-term boron deprivation enhances levels of cytoskeletal proteins in maize, but not zucchini, root apices. Physiol Plant, 2003,117: 270-278
    261. Zhao D, Oosterhus DM. Cotton carbon exchange, nonstructural carbohydrates, and boron distribution in tissues during development of boron deficiency. Field Crop Res, 2002,78:75-87
    262. Zhou J, Zhang L, Li X, Chang Y, Gu Q, Lu X, Zhu Z, Xu G Metabolic profiling of transgenic rice progeny using gas chromatography-mass spectrometry:the effects of gene insertion, tissue culture and breeding. Metabolomics, 2012,8: 529-539

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700