用户名: 密码: 验证码:
钙钛矿结构锰氧化物La_(1-x)Ca_xMnO_3的红外光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从巨磁阻效应发现以来,具有钙钛矿结构的锰氧化物La1-xCaxMnO3一直备受人们的关注。因为其电荷、轨道、自旋、晶格之间的复杂的相互作用和影响,导致了其丰富的物理内涵,如磁性的转变,金属-绝缘体的转变,电荷有序态,相分离等现象。锰氧化物La1-xCaxMnO3是在母体材料LaMnO3基础上掺杂Ca替代La的位置,得到不同价态的锰离子,改变了原来母体材料的结构。随之而来的是其内在的微观作用的变化和微纳米尺度上的本征不均匀性,导致体系宏观物理性质的变化。这种掺杂的方式带来的很多的结构和相互作用的变化,丰富了这类强关联体系锰氧化物材料的物理内涵及其在实际生活生产的应用领域。
     本文采用了溶胶-凝胶法制备了La1-xCaxMnO3 (x=0.5,0.67,0.75)系列粉体样品,采用了固相法制备了La1-xCaxMnO3 (x=0.5,0.67,0.75)系列块材样品。系统地研究了高掺杂的钙钛矿型锰氧化物La1-xCaxMnO3 (x=0.5,0.67,0.75)样品的电磁性质和红外光学性质。
     我们运用X射线衍射仪测量了样品在室温下的X射线衍射图像对样品结构进行了研究,并应用Rietica精修软件拟合得到了样品的晶胞参数数据。对于粉体样品,我们系统的研究了烧结温度对样品结构特征的影响,发现随着烧结温度的升高,样品的结晶性越好,晶粒尺寸越大,样品的钙掺杂浓度越高时,样品成相所需要的烧结温度就越高。对于块材样品,我们发现随着钙掺杂浓度的升高,样品的晶胞体积和晶粒尺寸都有所增大。
     对样品磁性的研究中,我们使用超导量子干涉仪(SQUID)和振动样品磁强计(VSM)测量了样品在μ0H=0.1T和1T外加磁场下的磁性质,发现随着钙掺杂浓度的提高,各样品都存在顺磁—反铁磁转变行为,且顺磁—反铁磁转变温度在不同的钙掺杂情况下不同。
     对样品电学性质的研究中,我们运用标准的四探针法测量了样品在无外加磁场的条件下,在75K-300K的温度范围内的电阻率随温度变化的曲线。详细分析结果发现样品表现为绝缘体。电阻率对数对温度的导数曲线显示了样品的电荷有序相变点,有序相变的温度也因钙的掺杂量的不同而不同。
     对样品的红外光学性质的研究中,对于粉体样品,我们运用傅立叶变换红外光谱仪测试了不同烧结温度所得样品的红外吸收光谱图,发现随着烧结温度的升高,Mn06八面体结构的扭曲度越小,振动频率越低。对于块材样品,我们在室温到液氮的温度范围内,每隔10K取—个温度点,利用同步辐射红外光谱仪测量了样品在4500-370cm-1,700-20cm-1的波段区间的中红外和远红外反射光谱图。通过软件拟合得到样品在上述频率区间连续完整的反射率曲线。并运用Kramers-Kroning分析,从反射率光谱数据得到样品的光电导率曲线及介电常数曲线。通过对这些红外光谱图的分析,发现La1-xCaxMnO3(x=0.5,0.67,0.75)系列样品都存在一个相变温度点,结合磁性和电输运性质的研究,揭示了样品的微观结构和性质随温度的变化。
The perovskite structure manganese oxide R1-xAxMnO3 (R:3 valence rare earth, A:2 valence alkaline earth) are paid attention since the discovery of colossal magnetoresistive effect. The complex interaction and interplay among the charge, orbital, spin and lattice give rise to the abundant physics properties the magnetic transition, metal-insulator transformation, charge-order and phase separation. Manganese Lai1-xCaxMnO3 that origins from the matrix of LaMnO3 by replacing the La with the Ca change the matrix structure and bring about the different valence of Mn. The change of micro role and the intrinsic inhomogeneity on micro-nanometer scale give rise to the change of the macroscopic physical properties. The change of structure and interaction enrich the physical sense and the application in life of this kind of strong-correlation manganese material.
     The series of power and bulk sample of La1-xCaxMnO3 (x=0.5,0.67,0.75) are prepared by sol-gel and solid-state method respectively. The electronic, magnetic and infrared properties of high-doped manganese La1-xCaxMnO3 (x=0.5,0.67,0.75) are studied systematically.
     The X-ray diffraction is applied to analyze structure of La1-xCaxMnO3 (x=0.5,0.67, 0.75). And the lattice structure parameter of La1-xCaxMnO3=0.5,0.67,0.75)is fitted by means of the Rietica refinement software. The studies of influence of sintering temperature on the structural characteristic signify that the higher sintering temperature will generate the better crystallinity and the bigger grain. Moreover, the more density doping of Ca require the higher sintering temperature. For bulk material, along with the increase of doping density of Ca, the volume of cell and the size of grain magnify.
     The SQUID and VSM are employed for the magnetic properties of these manganese La1-xCaxMnO3 (x=0.5,0.67,0.75)underμ0H= 0.1 and 1T. As the doping density of Ca increase, the transformations from paramagnetic to the anti-ferromagnetic occur for every sample with different transformation temperature.
     The standard four probe method is used for the electrical properties under zero magnetic fields and the curve of resistivity with the changing temperature at the range of 75K-300K. These samples are insulator on the basis of careful analysis about the results. The curve of differential coefficient of logarithm of resistivity about temperature displays the different charge-order phase transition for different doping density of Ca. For infrared properties of these samples, Fourierf transformation infrared spectrometer is applied to measure the infrared absorption spectrum of power samples obtained in different sintering temperature. We found the distortion of octahedral structure and the frequency decrease with the increasing sintering temperature. For bulk sample, synchrotron radiation infrared spectrograph is used for intermediate infrared (4500~370cm-1) and far infrared (700~20cm-1) at the interval of 10K from room temperature to the temperature of liquid nitrogen. The whole refraction curve at the range of intermediate and far infrared is fitted by appropriated software. Conductivity and permittivity can be obtained from the refraction spectrum data by means of Kramers-Kroning analysis. All these analysis about infrared spectrum show that the manganese La1-xCaxMnO3 (x=0.5,0.67,0.75) samples have phase transformation temperature, and the change of micro structures, electrical and magnetic properties according to the magnetic and electrical transport mechanism.
引文
[1]Myron B. Salamon, Marcelo Jaime. The physics of manganites:Structure and transport[J]. Rev. Mod. Phys.,2001,73(3):583-628
    [2]Wollan E O, Koehler W C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3[J]. Phys. Rev.,1955,100(2): 545-563
    [3]Goodenough J B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3[J]. Phys. Rev.,1955,100(2):564-573
    [4]Searle C W, Wang S T. Studies of the ionic ferromagnet(LaPb)MnO3 Ⅲ. Ferromagnetic resonance studies[J]. Can. J. Phys.,1969,47:2713-2708
    [5]Kusters R M, Singleton J, Keen D A, et al. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3[J]. Physi(Amsterdam),1989,155B(1-3):362-365
    [6]Helmolt R V, Wocker J, Hozapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films[J]. Phys. Rev. Lett.,1993,71(14): 2331-2333.
    [7]Jin S, Tiefel T H, McCormack M, et al. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films[J]. Science,1994,264(5157):413-415.
    [8]Ajai K. Gupta, Rajesh Kumar, Vijay Kumar, et al. Study of magnetotransport in double-layered La1.4Ca1.6Mn2O7 manganite:Presence of nano-ferromagnetic domains in paramagnetic matrix[J]. J. Phys. Chem. Solids.,2009,70(1):117-121
    [9]Tomioka Y, Koshimizu M, Asai K. Positron lifetime study of Pr1-xCaxMnO3 (x=0.5,0.3) during magnetic transition[J]. Radiation Physics and Chemistry,2009,78(12):1092-1095
    [10]李宝河,鲜于文旭,万欣.钙钛矿锰氧化物Lao.7Sro.3MxMn1-xO3(M=Cr,Fe)的巨磁电阻效应与磁性[J].物理学报,2000,49(7):1366
    [11]Yin Congling, Li Guobao, Jin Tounan, et al. Synthesis, structure, and magnetic property of hexagonal perovskite Ba5Sn1.1Mn3.9O15[J]. Journal of Alloys and Compounds,2010, 489(1):152-156
    [12]Ren Y H, Ebrahim M, et al. Ultrafast quasi-particle dynamics of charge/orbital ordered and ferromagnetic clusters in La0.7Ca0.3MnO3[J]. New J. Phys.,2009,11:113013
    [13]陈春霞.钙钛矿锰氧化物中电荷有序现象研究进展[J].无机材料学报,2005,20(1):1-12
    [14]Maguy Dominiczak, Antoine Ruyter, et al. Effects of nanocracks on the magnetic and electrical properties of La0.8Sr0.2MnO3 single crystals [J]. Solid State Commun.,2009, 149(37-38):1543-1548
    [15]Cui Yujian, Ge Hongliang, Jia Guangqiang, et al. Transport Properties of Rare Earth Manganese Oxide La0.67Ca0.33Mn1-xFexO3[J]. J. Rare Earth.,2004,22(5):663
    [16]Nalbandian L, Evdou A, Zaspalis V. La1-xSrxMO3 (M= Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors[J]. Int. J. Hydrogen Energy,2009,34(17):7162-7172
    [17]Weber F, Aliouane N, Zheng H, et al. Signature of checkerboard fluctuations in the phonon spectra of a possible polaronic metal La1.2Sr1.8Mn2O7[J]. nat. Mater.,2009,8(10):798-802
    [18]夏同驰,李保忠,董会超余仲宝.掺钻锂锰氧化物的合成机理及红外光谱与磁性研究[J].郑州轻工业学院学报(自然科学版),2003,18(3):21-23
    [19]束正煌,董锦明.轨道序对半掺杂锰氧化物光学性质的影响[J].物理学报,2003,52(11):2918-2922
    [20]周国伟,Kang YoungSoo,李天铎,徐桂英.红钛锰矿MnTiO3纳米材料的溶胶-凝胶法制备及光谱研究[J].中国科学B辑化学,2004,34(6):449-453
    [21]负江妮.钙钛矿型锰氧化物半导化掺杂与表面吸附光电特性的理论研究[D].陕西:西北大学,2010
    [22]李元元.钙钛矿型可见光响应催化剂的合成及光催化性能的研究[D].武汉:华中科技大学,2010
    [23]张瑞丽,戴建明,宋文海,马永青,等.层状钙钛矿锰氧化物(La1.28r1.8Mn1.8Co0.2O7)中的光诱导效应[J].中国科学(G辑),2003,33(5):433-438
    [24]Zheng Yao, Zhang Chunming, Ran Ran, et al. A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode[J]. Acta Materialia, 2009,57(4):1165-1175
    [25]Combemale L, Caboche G, Stuerga D. Flash microwave synthesis and sintering of nanosized La0.75Sr0.25Cr0.93Ru0.07O3-δ for fuel cell application[J]. Journal of Solid State Chemistry,2009,182(10):2829-2834
    [26]张雪峰,蒋洪川,李会容,方明宪.退火温度对La1-xCaxMnO3薄膜电输运特性的影响[J].四川师范大学学报(自然科学版),2008,31(5):597-600
    [27]高国棉,陈长乐,等.La0.9Ce0.1MnO3薄膜的输运特性和光诱导效应[J].无机材料学报,2007,22(5):1011-1014
    [28]贾君茹,韩立安.La0.7Sr0.3MnO3薄膜的溶胶凝胶法制备及电特性研究[J].西安科技大学学报,2006,26(3):370-375
    [29]Dagotto E, Hotta T, Moreo A. Colossal magnetoresistant material:the key role of phase separation[J]. Phys. Rep.,2001,344(1):1-153
    [30]Chen C H, Cheong S W. Commensurate to Incommensurate Charge Ordering and Its Real-Space Images in La0.5Ca0.5MnO3[J]. Phys. Rev. Lett.,1996,76(21):4042-4045
    [31]Mori S, Chen C H, Cheong S W. Pairing of charge-ordered stripes in (La,Ca)MnO3[J]. Nature,1998,392:473-476
    [32]Zener C. Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure[J]. Phys. Rev.,1951,82(3),403-405
    [33]Anderson P W, Hasegawa H. Considerations on Double Exchange[J]. Phys. Rev.,1955, 100(2):675-681
    [34]de Gennes P. Effects of Double Exchange in Magnetic Crystals[J]. Phys. Rev.,1960,118(1): 141-154
    [35]Markovich V, Fita I, Wisniewski A, et al. Surface and exchange-bias effects in compacted CaMnO3-δ nanoparticles[J]. phys. Rev. B,2008,77(5):054410
    [36]Anderson P W. Antiferromagnetism. Theory of Superexchange Interaction[J]. phys. Rev., 1950,79(2):350-356
    [37]Kjeldaas T, Jr, Holstein T. Oscillatory Magneto-Acoustic Effect in Metals[J]. Phys. Rev. Lett.,1959,3(6):299
    [38]De Teresa J M, Ibarra M R, Algarabel P A, et al. Evidence for magnetic polarons in the magnetic perovskites[J]. Nature,1997,386:256-259
    [39]Mori S, Chen C H, Cheong S W. Paired and Unpaired Charge Stripes in the Ferromagnetic Phase of La0.5Ca0.5MnO3[J]. Phys. Rev. Lett.,1998,81(18):3972-3975
    [40]Allodi G, De Renzi R, Solzi M, et al. Field-induced segregation of ferromagnetic nanodomains in Pr0.5Sr0.5MnO3 detected by 55Mn NMR[J]. Phys. Rev. B,2000,61(9): 5924-5927
    [41]Radaelli P G, Ibberson R M, et al. Mesoscopic and microscopic phase segregation in manganese perovskites[J]. Phys. Rev. B,2001,63(17):172419
    [42]Uehara M, Mori S, Chen C H, Cheong S W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites[J]. Nature 1999,399:560-563
    [43]沈耀国,范宝殿.钙钛矿结构材料的制备方法研究[J].化工时刊,2008,22(11):45-46,52
    [44]曾昭权.同步辐射光源及其应用研究综述[J].云南大学学报(自然科学版),2008,30(5):477-483
    [45]沈元华.同步辐射光源及其应用[J].物理实验,21(2):3-6
    [46]Williams G P关于红外同步加速器辐射特性的综述及展望[J].红外月刊,2001,11:31-35
    [47]戚泽明,李成祥,洪义麟,等.同步辐射红外光源和NSRL红外光束线站[J].核技术,2008,31(12):881-885
    [48]Rai R C, Cao J, Brown S, et al. Optical properties and magnetic-field-induced phase transitions in the ferroelectric state of Ni3V2O8:Experiments and first-principles calculations[J]. Phys Rev B,2006,74(23):235101
    [49]Kim K H, Lee S, Noh T W, Cheong S W. Charge Ordering Fluctuation and Optical Pseudogap in La1-xCaxMnO3[J]. Phys. Rev. Lett.,2002,88(16):167204
    [50]Nucara A, Maselli P, Calvani P, et al. Observation of Charge-Density-Wave Excitations in Manganites[J]. Phys. Rev. Lett.,2008,101(6):066407
    [51]县涛,杨华,沈希,等.聚丙烯酰胺凝胶法合成BiFeO纳米颗粒[J].无机材料学报,2010,25(3):251-254
    [52]Roder H, Zang Jun, Bishop A R. Lattice Effects in the Colossal-Magnetoresistance Manganites[J]. Phys. Rev. Lett.,76(8):1356-1359
    [53]Coey J M D, Viret M, Ranno L. Electron Localization in Mixed-Valence Manganites[J]. Phys. Rev. Lett.,1995,75(21):3910-3913
    [54]刘建,云国宏,杨智慧,等.La2/3Sr1/3MnO3掺杂RE(RE-Pr、Eu、Y、Tb)的结构、红外及磁学性质[J].功能材料,2007,38(9):1443-1446
    [55]Okimoto Y, Katsufuji T, Ishikawa T, et al. Variation of electronic structure in La1-xSrxMnO3f(0    [56]Boris A V, Kovaleva N N, Bazhenov A V, et al. Infrared studies of a La0.67Ca0.33MnO3 single crystal:Optical magnetoconductivity in a half-metallic ferromagnet[J]. Phys. Rev. B, 1999,59(2):697-700
    [57]Cheong S W, Hwang H Y.1999. In:Tokura, Y. (Ed.), Contribution to Colossal Magnetoresistance Oxides, Monographsin Condensed Matter Science.. Gordon & Breach, London. p.237.
    [58]Zhang T, Zhukova E, Gorshunov B, et al. Terahertz spectroscopy of low-energy excitations in charge-ordered Lao.25Cao.75Mn03[J]. Phys. Rev. B,2010,81(12):125132
    [59]王桂英,严国清,毛强,等.La0.45 Ca0.55MnO3电荷有序态下的磁电性质和再入型自旋玻璃行为[J].稀土,2009,30(3):10-14
    [60]Padilla W J, Basov D N, Smith D R. Negative refractive index metamaterials[J]. Materials Today,2006,9(7-8):28-35
    [61]Basov D N, Timusk T. Electrodynamics of high-Tc superconductors [J]. Rev. Mod. Phys., 2005,77(2):721-779
    [62]LaForge A D, Padilla W J, Burch K S, et al. Sum rules and interlayer infrared response of the high temperature YBa2Cu3Oy superconductor in an external magnetic field[J]. Phys. Rev. Lett.,2008,101(9):097008
    [63]Qazilbash M M, Brehm M, Chae B G, et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging[J]. Science,2007,318(5857):1750-1753
    [64]Li Z Q, Podzorov V, Sai N, et al. Light Quasiparticles Dominate Electronic Transport in Molecular Crystal Field-Effect Transistors[J]. Phys. Rev. Lett.,2007,99(1):016403
    [65]Burch K S, Shrekenhamer D B, Singley E J, et al. Impurity band conduction in a high temperature ferromagnetic semiconductor[J]. Phys. Rev. Lett.,2006,97(8):87208
    [66]Zhao J, Yao D X, Li S L, et al. Low Energy Spin Waves and Magnetic Interactions in SrFe2As2[J]. Phys. Rev. Lett.,2008,101(16),167203
    [67]Hu Z G, Li W W, Li Y W, et al. Electronic properties of nanocrystalline LaNiO3 and La0.5Sr0.5CoO3 conductive films grown on silicon substrates determined by infrared to ultraviolet reflectance spectra[J]. Appl. Phys. Lett.,2009,94(22):221104
    [68]Millis A J, Mueller R, Shraiman B I. Fermi-liquid-to-polaron crossover. Ⅱ. Double exchange and the physics of colossal magnetoresistance[J]. Phys. Rev. B,1996,54(8): 5405-5417
    [69]Iliev M N, Abrashev M V, Lee H G, et al. Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3[J]. Phys. Rev. B,1998,57(5):2872-2877

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700