用户名: 密码: 验证码:
复合材料液—固挤压过程辨识与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液态浸渗挤压(简称液-固挤压)复合材料工艺是近年来开发出的一种复合材料成形新工艺。这种工艺能以较低的成本制备出性能优良的复合材料管、棒材,从而具有广阔的应用前景。通过大量实验,已掌握了关键工艺参数(熔液浇注温度、挤压模预热温度、浸渍时间、浸渍力)的优化选取方法。在合理选取关键工艺参数的前提下,挤压速度的控制是成形出质量良好制件的关键。但是,目前对于挤压速度的控制仍停留在手动控制阶段,利用该工艺制备管、棒材制件的成功与否受操作者对该工艺及其设备的经验及熟练程度等不确定因素影响很大。针对这一问题,本文研究了现有条件下工艺过程挤压速度的自动控制问题,并为此设计了一套计算机控制系统。
     复合材料液-固挤压工艺过程中挤压速度的控制问题,不仅涉及到成形设备,而且与工艺本身的特点密切相关。因此,本文从挤压速度的控制出发,首先探讨并确立了本系统的基本控制策略;然后根据此控制策略的必然要求,对该工艺挤压过程所涉及到的挤压力、温度、挤压轴位移等参数间的关系进行了深入研究,利用系统辨识方法建立了挤压过程关键阶段的数学模型;在此基础上完成了相应的控制器设计,给出了控制算法,并对所设计的控制系统进行了仿真。仿真结果表明该控制系统是稳定的,系统性能可满足工艺要求,由此证明了它的可行性与有效性。
     最后,利用模块化设计方法完成了控制系统硬件的选型与设计,并编制了交互性良好的过程控制软件,从而使该控制系统得以初步实现。
     上述工作的完成,初步解决了挤压速度的自动控制问题,为复合材料液-固挤压成形工艺的实际应用奠定了基础。
Liquid-solid extrusion of composite material is a new kind of metal forming process, which has been developed in recent years with a promising practical application prospect for its simple working procedure, low cost and good workpiece performance.Through a lot of experiments,The optimization and chosing method of key process parameters(pouring temperature, mold warm-up temperature, impregnating pressure, impregnating time)has been mastered.Under the precondition of appropriate chosing these parameters, the effective control of extrusion velocity is the key of mading good workpiece.But the control of extrusion velocity remains a handwork,and it is heavily affected by such uncertainties as a handler's knowledge and skill about the process.In order to solve the problem, the automatic control of the extrusion velocity is studied,and a computer control system is also designed under existing condition.
    The control of extrusion velocity in the process is not only involved in the process equipment,but also related to the process itself. So,in the paper,proceeding from the automatic control of extrusion velocity and based on the basic control strategy presented firstly,the relation among parameters of the process such as pressure,temperature and displacement is investigated,and the model of the process has been built using system identification method.Then, a corresponding controller is designed together with its control algorithm,and the control system is proved viable and effective by the results of simulation on the control system.
    In the end,the problem of the realization of the control system is discussed by using modularization method.The hardware of the control system is designed and a sofeware with a perfect manmachine interface is developed,too.
    Thus, the problem of the control of extrusion velocity during the process has been basically solved, which establishes a base for the application of the process.
引文
[1] 齐乐华.高效成形复合材料管、棒材新工艺研究.西北工业大学学报,1999,4(17):629~630
    [2] Hu Lianxi, Luo Shoujing. Development of the technology of extrusion directly following infiltration for the manufacturing of metal-matrix composite. J. of materials processing technology, 1995, 49: 287~292
    [3] 罗守靖,田文彤,李金平.21世纪最具发展前景的近静成形技术.第一届半固态金属加工技术研讨会,2000.4:1~5
    [4] 齐乐华,孙乐民,侯俊杰等.高效成形复合材料管、棒材的新工艺研究.西北工业大学学报.1999,17(4):629-632
    [5] 何俊超.复合材料液-固挤压模糊神经网络建模及优化研究.西北工业大学硕士学位论文,2003
    [6] 余泽茂.液-固挤压复合材料数据采集系统及其模糊控制基础研究.西北工业大学硕士学位论文,2002
    [7] 方崇智,萧德云.过程辨识.北京:清华大学出版社.北京,1988
    [8] 陈克巧,张曙红,张代明等.金属基复合材料研究进展即新技术评述.四川有色金属,2000(2):28~31
    [9] 袁晓光.压铸技术的研究现状及进展.http://www. foundrynations. com/casting/diecasting/lyuan. htm, 2002
    [10] Qi Lehua. The Influence of liquid Extrusion on the Microstructure and Properties of an Al-Si Alloy. Materials and Manufacturing Process, 1998, 3(13): 405~413
    [11] 齐乐华,李贺军,罗守靖.液态挤压下ZA27合金的性能与组织特征.有色金属,1997,01(49):90~94
    [12] 胡连喜.液态浸渗侯直接挤压铝基复合材料的组织特征.特种铸造及有色金属,1996(1):1~3
    [13] 齐乐华,李贺军,罗守靖.液态挤压过程变形特征研究.塑性工程学报,1997,4(4):43~46
    [14] 罗守靖,李贺军,胡连喜.液态挤压下金属成形的力学研究.锻压技术,1993.2:16~19
    [15] 齐乐华,李贺军,罗守靖.液态模锻和液态挤压强韧化的机理研究.兵器材料科学与工程,1996,19(4):56~60
    [16] 罗守靖,李贺军,杨琦雯.液态挤压下Al—Zn合金的强韧化.材料科学进展,1993,7(2):110~113
    [17] Li Hejun, Qi Lehua et al. Research on the Properities and Microstructure of ZA13 Alloy Tubes Formed by Liquid Extrusion. J. of Mater. Process. Tech., 1995, 1(55): 19~23
    [18] Qi Lehua, Li Hejun, Shi Zhongke, Cui Peiling. Research on the forming of tubes and Bars of Alumina/LY12 Alloy Composites by Liquid extrusion Process. Proceeding of the third China International diecasting Congress. Northeastern University Press, 2002: 161~168
    
    
    [19] Luo Shoujing, Zu Lijun. Semi-solid extrusion of composites prepared by contact reaction method. Trans. Nonferrous Met. Soc. China, 2000, 10(3): 305~308
    [20] 胡连喜,罗守靖,崔文灿.液态浸渗后直接挤压过程的载荷-位移特性.轻合金加工技术,1998,26(10):43~47
    [21] 田丰.液态挤压成形过程的有限元模拟研究.西北工业大学硕士学位论文,1998
    [22] 任德祥.过程模型与方法.控制工程,2002,9(3):7~12
    [23] T. Van Gestel, J.A.K. Suykens, P. Van Dooren, B. De Moor. Identification of Stable Models in Subspace Identification by Using Regularization. IEEE Transactions on Control Systems Technology, 2001. 9, 46(9): 1416~1420
    [24] Wei Xing Zheng. A Bias Correction Method for Identification of Linear Dynamic Errors-in-Variables Models. IEEE Transactions on Control Systems Technology, 20020. 7, 47(7): 1142~1147
    [25] Ming-Jyi Jiang, Jiun-Shen Wang, Yung-Chin Liu. Applying differential transformation method to parameter identification problems. Applied Mathematics and Computation, 2003(139): 491~501
    [26] Damjan Zazula. A common approach to the analysis of cumulant-based AR and ARMA identification. Digital Signal Processing, 20020. 12: 1~19
    [27] C. G. Koh, Y.F. Chen, C.-Y.Liaw. A hybrid computational strategy for identification of structural parameters. Computers and Structures, 2002.7: 157~169
    [28] Korenberg M.J.,Billings S. A., Liu Y.P. etal. Orthogonal Parameter Estimation for Nonlinear Stochastic Systems. Int. J. Control, 1988, 48(1): 193~210
    [29] Chen S., Billings S.A. Representation of Nonlinear Systems: the NARMAX Model. Int. J. Control, 1989, 49(1): 1013~1032
    [30] Billings S. A., Chen S.,Korenberg M.J. Identification of MIMO Nonliear System Using a Forward-regression Orthogonal Estimator. Int. J. Control, 1989, 49(1):2157~2189
    [31] Chen S., Billings S.A., Luo W. Orthogonal Least Square Methods and their Application to Nonlinear System Identification. Int. J. Control, 1989, 50(2): 1873~1896
    [32] 王晓,韩崇昭,万百五.NARMAX模型辨识的直交化最小二乘新算法.西安交通大学学报,1997,31(9):11~17
    [33] D. Mirri, G. Iuculano, P. A. Traverso, G. Pasini, F. Filicori. Nonlinear dynamic system modelling based on modified Volterra series approches. Measurement, 2003, 33: 9~21
    [34] Nolan K. Read, W. Harmon Ray. Application of nonlinear dynamic analysis in the identification and control of nonlinear systems. J. Proc. Cont., 1998, 8(1): 1~14
    [35] 蒋宗礼.人工神经网络导论.北京:高等教育出版社,2001:1~3
    [36] 戴葵.神经网络实现技术.长沙:国防科大出版社,1998:1~2
    [37] 徐丽娜.神经网络控制.哈尔滨:哈尔滨工业大学出版社,1999:42~65
    [38] 周西峰.系统辨识与建模的一种新方法.信息与控制,2000,29(2):131~138
    
    
    [39] 王志中,王荣本,张友坤,李兵.自动导引车转向系统的辨识建模.农业工程学报,1999,15(2):27~31
    [40] 薛福珍,庞国仲,林盛荣.啤酒发酵过程的建模仿真与控制.中国科学技术大学学报,2001,31(4):502~507
    [41] Anupam Gangopadhyay, Peter H. Meckl. Extracting Physical Parameters from System Identification of a Natural Gas Engine. IEEE Transactions on Control Systems Technology, 2001, 9(3): 425~434
    [42] G. Iuculano, G. Rizzoni. Identification of a MIMO internal combustion engine model. ASME Winter Annu. Meet, 1994, 54: 141~173
    [43] 曹恒,张宝元,段军.基于曲轴角度域闭环辨识柴油机模型.大连理工大学学报,2001,41(1):73~76
    [44] 张琴舜,邓琛,李剑.系统辨识在热工系统仿真中的应用.微电脑应用,2001,17(1):50~51
    [45] Elena Grassi, Kostas S. Tsakalis, Sachi Dash etal. Integrated system identification and PID controller tuning by frequency loop-shaping. IEEE Transactions on Automatic Control, 2001, 9(2): 285~393
    [46] 杨拥明.自适应调节器在电弧焊控制中应用.自动化学报,1998,24(2):18~21
    [47] JiaXiang Zhao, Ioannis Kanellakopoulos. Active Identification for Discrete-Time Nonlinear Control-Part Ⅰ: Output-Feedback Systems. IEEE Transactions on Automatic Control, 2002, 47(2): 210~224
    [48] JiaXiang Zhao, Ioannis Kanellakopoulos. Active Identification for Discrete-Time Nonlinear Control-Part Ⅰ:Output-Feedback Systems. IEEE Transactions on Automatic Control, 2003, 47(2): 225~240
    [49] 杨凌宇,柳家润,申功璋.飞控—飞机低价等效系统的在线辨识.飞行力学,2003,21(2):27~30
    [50] 郭宇婕,黄立陪,邱阳.交流伺服系统的转动贯量辨识及调节器参数自整定.清华大学学报(自然科学版),2002,42(9):1180~1183
    [51] Richard B. Vilim, Humberto E. Garcia, Frederick W. Chen. An Identification Scheme Combining First Principle Knowledge, Neural Networks, and Likelihood Function. IEEE Transactions on Control Systems Technology, 2001, 9(1): 186~198
    [52] J. M. Berg, V.R. Voller. An identification and control strategy for a liquid composite molding process. Applied Mathematical Modelling, 1998(22): 207~218
    [53] 朱传敏,宋孔杰,田志仁.齿轮传动动态性能研究中的系统辨识算法.山东工业大学学报,1998,28(6):559~564
    [54] Erik Weyer, Geoff Bell, Peter L. Lee. System identification for generic model control. J. Proc. Cont., 1999(9): 357~364
    [55] Timothy A. Haley, Steven J. Mulvaney. On-line system identification and control design of an extrusion cooking process: Part Ⅱ. Model predictive and inferential control. Food Control, 2000(11): 121~129
    [56] 凌澄.PC总线工业控制系统精粹.北京:清华大学出版社,1998:100~110
    [57] 章宏甲,黄谊主编.液压传动.北京:机械工业出版社,1993:45~47
    [58] 王懋瑶主编.液压传动与控制.北京:机械工业出版社,1986:30~31
    
    
    [59] 严金坤编著.液压动力控制.上海:上海交通大学出版社,1986:35~36
    [60] 解素欣.压力补偿型调节器液压装置及系统的特点.水利水电技术,2001,22(1):18~20
    [61] 王庆丰,韩波,路.比例节流控制的流量数字压力补偿(特性校正)研究.设计与研究,1999.3:187~190
    [62] 杨寅威等.铺装机远行速度的电液比例补偿控制.林业机械与木工设备,2002,30(9):11~14
    [63] 路甬祥,胡大编著.电液比例控制技术.北京:机械工业出版社,1988
    [64] 吴根茂.采用流量位移力反馈新原理的电液比例调速罚.液压与气动,1983(1):1~7
    [65] 王庆丰,韩波,顾临怡,路.电液比例速度控制抗干扰的数字压力补偿方法.机械工程学报,1997,33(6):81~85
    [66] 顾临怡,王庆丰.采用计算流量反馈的流量控制方法及特性研究.机械工程学报,1999,35(4):96~98
    [67] 金以慧.过程控制.北京:清华大学出版社,1993
    [68] 谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社,2001:76~118
    [69] 图雍等著,田立生译.系统辨识的理论与实践.北京:科学出版社,1989:5~9
    [70] 朱磊,周彬.Windows下的C/C++高级编程.北京:人民邮电出版社,2002:145~150
    [71] Raj Raijagopal,Subodh Monica著,天宏工作室译.Windows 2000程序设计.北京:清华大学出版社,2002:272~291
    [72] 苏晓生.掌握MATLAB 6.0及其工程应用.北京:科学出版社,2002
    [73] 张成乾,张国强.系统辨识与参数估计.机械工业出版社,1986:
    [74] 吴今培.系统辨识.北京:中国铁道出版社,1994:
    [75] 程云鹏主编.矩阵论.西安:西北工业大学出版社,2001:109~112
    [76] Mathworks. System Identification: compare. Matlab Help file System, 2000
    [77] 王锦标,方崇智.过程计算机控制.北京:清华大学出版社,1992:26~30
    [78] 李友善.自动控制原理.北京:国防工业出版社,1980:
    [79] 蔡廷文编著.液压系统现代建模方法.北京:中国标准出版社,2002:140~159
    [80] 王孙安,杜海峰,任华.机械电子工程.北京:科学出版社,2003:11~14
    [81] 梁志刚等著.C++ Builder 5开发人员指南.北京:机械工业出版社,2000:3~4
    [82] 陈周造,陈灿煌.C++ Builder 4 彻底研究.北京:中国铁道出版社,2000:1~2
    [83] 胡士强,张云松,张小英.基于C++ Builder的实时测控软件.仪器仪表用户,2001(6):18~31
    [84] 高庆,谭业双,石春和.C++ Builder环境下数据采集系统的开发应用.电脑开发与应用,2001(6):30~33
    [85] 范玉刚,魏薇,刘志坚.基于C++ Builder环境的锅炉效率在线监测系统的开发.昆明理工大学学报(理工版),2003(1):20~27
    [86] 刘庆华,张维强,赵芙生.基于C++ Builder的汽油发动机数据采集系统.农业机械学报,2003(1):13~17
    [87] 肖峻,江先志,莫易敏.C++ Builder在机车轮轴自动拆装中的应用.制造业自动化,2003(6):31~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700