用户名: 密码: 验证码:
高海拔换流站空气间隙放电特性及海拔修正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为获得高海拔地区换流站空气间隙放电特性及海拔修正方法,结合我国±400kV青藏直流联网工程,在平原地区和4000m左右高海拔地区开展换流站内典型相地、相间间隙、棒-板间隙冲击放电特性以及软母线直流叠加操作冲击放电特性真型试验研究。获得了在2.5m-4.0m间隙距离内换流站内交流侧典型间隙操作、雷电冲击以及直流侧直流叠加操作冲击放电特性曲线。
     分析比较了多级法和升降法两种冲击试验方法,通过两种方法分别计算了空气间隙50%放电电压和标准偏差,给出了两种统计方法的对比结果。在充分研究分析了现有操作冲击放电计算模型的基础上,开展了标准操作冲击放电电压计算模型研究,利用该模型计算了典型间隙相地、相间操作冲击50%放电电压。
     通过开展海拔高度对放电电压影响的研究,以及对现有标准中海拔、气象修正方法的修正误差和相应修正因数的计算分析,推荐了相地冲击海拔修正方法,并给出了线性和指数两种型式的相间操作冲击放电电压海拔修正推荐方法。
     研究结果表明,在相同的间隙距离下,棒-板间隙的冲击放电电压较软母线、均压环低,开展真型试验研究可以优化工程设计,降低制造成本。预先存在的直流电压对直流叠加操作冲击电压放电特性有一定影响,即直流叠加操作冲击放电的平均击穿场强随直流电压成分增大而增大,且棒-板间隙受影响程度大于软母线相地间隙。本文推荐的间隙放电弹性系数模型计算结果和试验结果基本吻合。在进行高海拔地区换流站外绝缘最小空气间隙选择设计时可以参考本文推荐的海拔修正方法及相关结论。
For the purpose of getting air-gap discharge characteristics and altitude correction method of high altitude converter station, in accordance with±400kV DC Connection Project of Qing-Tibet Plateau, the real structure test research of the typical air-gap of converter station and rod-plane air-gap under switching impulse, lightning impulse and DC voltage superimposed with switching impulse voltage were experimentally performed at flat area and about4000m high altitude area. Discharge characteristic curves of switching and lightning impulse at AC side of converter station and DC voltage superimposed with switching impulse at DC side were given between air-gap of2.5m~4.0m.
     Multistage method and up and down method were studied, by which50%discharge voltage and standard deviation were calculated. Calculation model based on elastic coefficient of standard switching impulse discharge voltage was discussed and air-gap discharge voltage of phase-to-ground, phase-to-phase were calculated by the given model.
     The research work of altitude influence to discharge voltage was analysised and correction errors of test data by the exsiting standards and correction factors were calculated. Altitude correction methods for phase-to-ground were recommended and correction methods with linear and exponent form formulas of phase-to-phase switching impulse voltage were also given by this paper.
     The test results indicated that discharge voltage of rod-plane air gap were lower than that of soft line and grading ring at the same distance and it is feasible to reduce the construction cost and optimize structure by performing real structure test research. The average discharge field intensity of pre-exist DC voltage superimposed with switching impulse voltage increases with increasing DC composition and rod-plane was more influenced than soft line. The calculation results based on elastic coefficient model were approximatively equal to experimental results. The recommened correction methods and conclusions could be used as a reference during the least air-gap design of high altitude converter station.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [2]舒印彪.我国特高压输电的发展与实施[J].中国电力,2005,38(11):1-8.
    [3]虞菊英.我国特高压交流输电研究现状[J].高电压技术,2005,31(12):23-25.
    [4]胡毅.特高压输电试验线段及相关技术问题的探讨[J].高电压技术,2004,30(12):37-39.
    [5]李小建.高海拔典型空气间隙直流放电特性试验研究[J].高电压技术,2007,33(7):52-56.
    [6]蒋兴良,于亮,苑吉河,等.低气压棒-板间隙操作冲击放电特性及电压校正[J].高电压技术,2007,33(11):70-74.
    [7]孙昭英,李庆峰,宿志一,等.±800kV直流输电空气间隙外绝缘特性研究[J].中国电力2006,39(10):47-51.
    [8]英大网.青藏交直流联网工程投入运行.互联网,2011,12.
    [9]俞祁浩,刘厚健,钱进,等.青藏直流联网工程±400kV输电线路的工程问题分析[J].工程地球物理学报,2009,6(6),806-812.
    [10]宿志一.±500kV葛南支流输电设备外绝缘运行概况及分析[J].电网技术,2001,25(2):57-60.
    [11]汪吉健.青藏铁路海拔4000m以上短空气间隙校正研究[J].冰川冻土,2003,25(S1):153-156.
    [12]曹晶,陈勇,万启发,等.青藏直流工程换流站交流侧外绝缘特性[J].高电压技术,2009,35(10):2411-2415.
    [13]严璋,朱德恒.高电压绝缘技术[M].北京:中国电力出版社,2001.
    [14]宿志一,尚涛,王代荣.换流站直流场空气间隙放电特性的高海拔校正[J].电力设备,2005,6(8):25-28.
    [15]王煜,曹晓珑,宿志一.特高压换流站空气间隙放电特性的海拔修正比较研究[J].电工技术学报,2006,21(6):7-10.
    [16]曹晶,万启发,张勤,等.高海拔换流站相间操作冲击放电特性分析[J].高电压技术,2010,36(12):2896-2901.
    [17]孙昭英,李斌.±500kV直流拉线杆塔空气间隙放电特性的研究[J].电网技术,1993,17(5):32-35.
    [18]Nichols D K, Booker JR, Larzelere W. Testing and commissioning of a modular UHV AC outdoor test system[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(7): 1916-1922.
    [19]谷琛,张文亮,范建斌.超/特高压输电工程典型间隙操作冲击放电特性试验研究综述[J].电网技术,2011,35(1):11-17.
    [20]Georghiou G E, Morrow R, Metaxas A C. The effect of photoemission on the streamer development and propagation in short uniform gaps[J]. Journal of Physics D:Applied Physics, 2001,34(2):200-208.
    [21]Gallimberti I, Bacchiega G, Anne B C, et al. Fundamental processes in long air gap discharges[J]. C. R. Physique,2002,3(13):1335-1359.
    [22]蒋兴良,于军,胡建林,等.1m棒-板间隙正极性操作冲击放电特性及电压校正[J].中国电机工程学报,2006,26(16):137-142.
    [23]王军.低气压下棒-板空气间隙正极性操作冲击放电特性及校正的研究[硕士学位论文].重庆大学,2006.
    [24]万启发,陈勇,孟刚,等.特高压交流变电设备相间操作冲击的放电特[J].高电压技术,2007,33(11):20-22.
    [25]范建斌,谷琛,李军,等.±800kV典型直流设备电晕起始电压的海拔校正方法[J].中国电机工程学报,2008,28(25):8-13.
    [26]陈勇,孟刚,谢梁,等.750 kV同塔双回输电线路空气间隙放电特性研究[J].高电压技术,2008,34(10):2118-2123.
    [27]张文亮,廖蔚明,丁玉剑,等.不同海拔地区同塔双回±660 kV直流线路杆塔空气间隙距离的选择[J].中国电机工程学报,2008,28(34):1-6.
    [28]严璋,朱德恒.高电压绝缘技术[M].北京:中国电力出版社,2001.
    [29]周洋存,沈其工,方瑜,等.高电压技术[M].北京:中国电力出版社,2008.
    [30]Sun Caixin, Jiang Xingliang, Sima Wenxia, et al. Study of flashover performance and voltage correction of DC insulator in icing districts of altitude of 2500m and below[C]. International Conference on power, Kunming,2002,3:1871-1874.
    [31]Jiang Xingliang, Sun Caixin, Sima Wenxia, et al. AC flashover performance and voltage correction of 27.5 and 110kV iced copposite insulator at 4000-5500m high altitude districts[C]. International Conference on power, Kunming,2002,3:1890-1894.
    [32]Boutlendj M, Allen N L, Lightfoot H A, et al. Positive DC corona and sparkover in short and long rod-plane gaps under variable humidity conditions[J]. IEE Proceedings on Science Measurement and Technology,1991,138(1):31-36.
    [33]Nellis C L, Sarkinen S. H, Bradley D. A. Electrical test results of UHV airgaps and insulator configurations[J]. IEE Proceedings,1986,133(8):493-500.
    [34]Menemenlis C, Harbec G. Switching impulse breakdown of EHV transmission[C]. IEEE Transactions on Power Apparatus and Systems,1974,93(1):255-263.
    [35]刘振,周春雨,余芳,等.长空气间隙长波前操作冲击放电特性[J].高电压技术,2009,35(10):2401-2406.
    [36]Davies A J, Davies C S, Evans C J. Computer simulation of rapidly developing gaseous discharges[J]. IEE Proceedings on Science Measurement and Technology,1971,118(6): 816-823.
    [37]Boutlendj M, Allen N L. Dielectric strength of air insulation for coordination of minimum clearances of overhead lines:a review[J]. IEE Proceedings on Science Measurement and Technology,1994,141(6):449-463.
    [38]Anderson J G. 345kV and super high voltages transmission lines[M]. Beijing, China:Electric Power Industry Press,1981.
    [39]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [40]IEC60071-2 2000 Insulation co-ordination-Part2:Application guide[S],2000.
    [41]Pancheshnyi S V, Starikoskaia S M, Starikovskii A Y. Role of the photoprocesses in the positive streamer propagation[C].13th Internation Conference on Gas Discharge and their Applications. Glasgow,2000:470-473.
    [42]Alexandrov G N, Podporkyn G V. Control of the Electric Strength of Long Air Gaps [J]. IEEE Transactions on Power Apparatus and Systems,1982,101(11),4395-4398.
    [43]Paris L, Cortina R. Switching and Lightning Impulse Discharge Characteristics of Large Air Gaps and Long Insulator Strings [J]. IEEE Transactions on Power Apparatus and Systems, 1968,87(4):947-957.
    [44]朱德恒,谈克雄等.高电压绝缘[M].北京:电力工业出版社,1980.
    [45]Vaisman R, Fonseca J R, Andrade V H G, et al. Swiching Impulse Strength of Compact Transmission Lines [J]. IEEE Transactions on Power Delivery,1993,8(3),1570-1576.
    [46]Kachler A J, Laforest J J, Zaffanella L E. Switching Surge Flashover of UHV Transmission Line Insulation [J]. IEEE Transactions on Power Apparatus and Systems,1971,90(3), 1604-1611.
    [47]Cortina R, Garbagnati E, Pigini A, et al. Switching impulse strength of phase-to-earth UHV external insulation [J]. IEEE Transactions on Power Apparatus and Systems,1985,104(11): 3161-3168.
    [48]Farouk A M Rizk. Effect of floating conducting objects on critical switching impulse breakdown of air insulation[J]. IEEE Transactions on Power Delivery,1995,10(3):1360-1370.
    [49]万启发,霍锋,谢梁,等.长空气间隙放电特性研究综述[J].高电压技术,2012,38(10):2499-2505.
    [50]Thione L. Evaluation of switching impulse strength of external insulation [J]. Electra,1983,94: 77-95.
    [51]Harada T, Aihara Y, Aoshima Y. Influence of switching impulse waveshape on flashover voltages of air gaps[J]. IEEE Transactions on Power Apparatus and Systems,1973,92(3): 1085-1093.
    [52]Gallet G, Leroy G, Lacey R. General expression for positive switching impulse strength valid up to extra long air gaps[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(6): 1989-1995.
    [53]Kishizima I, Matsumoto K, Watanabe Y. New Facilities for Phase-to-Phase Switching Impulse Tests and Some Test Results[J]. IEEE Transactions on Power Apparatus and Systems,1984, 103(6),1211-1216.
    [54]Farouk A M Rizk. A model for switching impulse leader inception and breakdown of long air gaps [J]. IEEE Transactions on Power Delivery,1989,4(1):596-606.
    [55]Farouk A M Rizk. Switching impulse strength of air insulation:leader inception criterion[J]. IEEE Transactions on Power Apparatus and Systems,1989,4(4):2187-2195.
    [56]Luigi Paris, Rosatio Cortina. Switching and lightning impulse discharge characteristics of large air gaps and long inlulator strings[J]. IEEE Transactions on Power Apparatus and Systems, 1968,87(4):947-957.
    [57]杨迎建.外绝缘试验电压与校正因数[J].高电压技术,2003,29(2):9-10.
    [58]孙才新,司马文霞,舒立春.大气环境与电气外绝缘[M].北京:中国电力出版社,2002.
    [59]Farouk A M Rizk. Critical switching impulse strength of long air gaps:Modeling of air density effects[J]. IEEE Transactions on Power Delivery,1992,7(3),1507-1515.
    [60]Eriksson A J, Geldenhuys H J, Meal D V. Study of airgap breakdown characteristics under ambient conditions of reduced air density[J]. IEE Proceedings on Science Measurement and Technology,1986,133(8):485-492.
    [61]Mikropoulos P N, Stassinopoulos C A. Influence of humidity on the breakdown mechanism of medium length rod-plane gaps stressed by positive impulse voltages[J]. IEE Proceedings on Science Measurement and Technology,1994,141(5):407-417.
    [62]Allen N L, Boutlendj M. Study of the electric fields required for streamer propagation in humid air[J]. IEE Proceedings on Science Measurement and Technology,1991,138(1):37-42.
    [63]Raj Mohan Bharadwaj, Parbhakar B R. Effect of humidity on the breakdown of air gaps under oscillatory switching impulse voltages[C]. Conference Record of IEEE Internaltional Symposium on Electrical Insulation,1996, Vol.1:320-323.
    [64]Allibone T E, C B E., D. Sc., et al. Influence of humidity on the breakdown of sphere and rod gaps under impulse voltages of short and long wavefronts [J]. IEE Proceedings on Science Measurement and Technology,1972,119(9):1417-1422.
    [65]龙玉华.高海拔地区的空气湿度对操作波放电的影响[J].高电压技术,1994,20(2):58-60.
    [66]Yoshinori Aihara, Yasuo Watanabe, Isamu Kishizima. Analysis of new phenomenon regarding effects of humidity on flashover characteristics for long air gaps[J]. IEEE Transactions on Power Apparatus and Systems,1983,102(12):3778-3782.
    [67]P A Calva Chavarria, A Robledo-Martinez. Effect of humidity on DC breakdown voltages in ambient air at high altitude[C]. IEEE Annual Report-Conference on Electrical Insulation and Dielectric Phenomena,1996,567-570.
    [68]Philips T A, Robertson L M, Rohlfs A F, et al. Influence of air density on electrical strength of transmission line insulation[J]. IEEE Transactions on Power Apparatus and Systems,1967, 86(8):948-961.
    [69]Harada T, Aoshiima Y, Ishida Y, Ichihara Y, et al. Influence of air density on flashover voltage of air gaps and insulators[J]. IEEE Transactions on Power Apparatus and Systems,1970,89(6): 1192-1202.
    [70]Pigini A, Sartorio G, Moreno M, et al. Influence of air density on the impulse strength of external insulation[J]. IEEE Transactions on Power Apparatus and Systems,1985,104(10): 2888-2900.
    [71]Ramirez M, Moreno M, Pigini A, et al. Air density influence on the strength of external insulation under positive impulses:Experimental investigation up to an altitude of 3000m a. s. 1[J]. IEEE Transactions on Power Delivery,1990,5(2):730-737.
    [72]Jiang X L, Xie S J, Wang Q, et al. DC flashover performance and voltage correction of HV insulators at high altitude districts with icing[C]. Proceedings of International Conference on Properties and Applications of Dielectric Meterials,2003,1:146-149.
    [73]王秉钧,王昌长,谈克雄.数理统计在高电压技术中的应用[M].北京:水利电力出版社,1990.
    [74]全国高电压试验技术和绝缘配合标准化技术委员会.GB/T 16927.1-2011高电压试验技术第一部分:一般试验要求[s].北京:中国标准出版社,2011.
    [75]Dixon W J, Mood A M. A Method for Obtaining and Analysing Sensitibity Data[J]. Journal of the American Statistical Association,1948,43:109-126.
    [76]谈克雄.升降法准确度研究[J].高压电器,1987,9:3-8.
    [77]Farouk A M Rizk. Critical switching impulse strength of phase-to-phase air insulation[J]. IEEE Transactions on Power Delivery,1993,8(3):1492-1506.
    [78]Yoshibumi Yamagata, Akio Oe, Kunihiko Miyake, et al. Phase-to-ground and phase-to-phase sparkover characteristics of external insulation at the entrance of a UHV subatation[J]. IEEE Transactions on Power Delivery,2002, Vol.17, No.1:223-232.
    [79]Albert S. Paulson, Ian S. Grant. Phase-phase switching surge flashovers:design data[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(7):3666-3672.
    [80]Miyake K, Watanabe Y, Ohsaki E. Effect of Parameters on the phase-to-phase flashover characteristics of UHV transmission lines[J]. IEEE Transactions on Power Delivery,1987, Pwrd-2(4):1285-1291.
    [81]Romuald Kosztaluk, Robert Lanoie, Ryazard Malewski et al. Effect of time shift between the two voltage components on phase-to-phase insulation strength [J]. IEEE Transactions on Power Apparatus and Systems,1981,100(7):3379-3386.
    [82]Watanabe Y. Influece of pre-existing dc voltage on switching surge flashover characteristics[J]. IEEE Transactions on Power Apparatus and Systems,1968,87(4):964-969.
    [83]Knudsen N, Iliceto F. Flashover tests on large air gaps with DC voltage and with switching surges superimposed on DC voltage[J]. IEEE Transactions on Power Apparatus and Systems, 1970,89(5):781-788.
    [84]Toshio Suzuki, Kunihiko Miyake. Breakdown process of long air gaps with potitive switching impulses[J]. IEEE Transactions on Power Apparatus and Systems,1975,194(3):1021-1033.
    [85]Menemenlis C, Isaksson K. Influence of the various parts of the switching impulse front on discharge development[J]. IEEE Transactions on Power Apparatus and Systems,1975,94(5): 1725-1733.
    [86]王来,项立人,来小康.临界电荷法在确定相间绝缘强度中的应用[J].电网技术,1985,9(3):7-12.
    [87]陈勇,刘云鹏,孟刚,等.750 kV输电线路相间操作冲击放电特性的研究[J].高电压技术,2007,33(7):40-43.
    [88]宝光.敏感度数据分析与可靠性评定[M].北京:国防工业出版社,1995.
    [89]褚宝增,王翠香.概率统计[M].北京:北京大学出版社,2010.
    [90]国际电工委员会.IEC60071-2:1996绝缘配合第二部分:应用导则[S].北京:中国标准出版社,1996.
    [91]高电压试验技术和绝缘配合标准化技术委员会.GB311.1-1997高压输变电绝缘配合[S].北京:国家技术监督局,1997.
    [92]电力工业部绝缘配合标准化技术委员会.DL/T 620-1997交流电气装置的过电压保护和绝缘配合[S].北京:中国标准出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700