用户名: 密码: 验证码:
基于舒适度研究的中国大陆健康气候评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
政府间气候变化委员会(Intergovernmental Panel on Climate Change, IPCC)近四次公布的评估报告中都多次指出气候变化直接或间接地影响人类健康。一方面,极端天气气候事件发生频率增加,气象灾害的频繁发生和气候异常变化影响的加剧,助长了某些疾病的流行和蔓延;另一方面,一些气象因素的异常变化,导致某些天气敏感性疾病患者病情加重或复发,使某些疾病发病率和死亡率增加、发病地域范围扩大,从而威胁人类的生存和发展。因此,为了有效地适应全球气候变化,减少其对人类自身健康的负面效应和突发疾病事件的影响,就必须探明天气、气候变化及其对相关人群健康的影响,从健康角度合理评估区域气候状况,以便趋利避害。中国大陆是对全球气候变化响应最敏感的地区之一,全面系统地开展此方面的评估研究很有必要。
     已有的研究表明,影响人体健康的主要气象因素有温度、湿度、风速等,它们往往会产生协同效应。以往从单一要素评估气候变化对健康的影响,带有一定的局限性;此外,对长期生活在不同气候类型下的人群体征及其对冷热敏感程度的差异也很少考虑。因此,要从健康角度科学合理地评估气候及其影响,就需要有能反映多要素协同作用及不同气候类型差异的评估指标。
     鉴于此,本文选取以温度为主,多要素协同作用的舒适度指数为切入点,利用常规气象站地面观测资料分析了中国大陆地区近52年的舒适度时空分布特征;研究了有益于人群健康的广义舒适域(微热、舒适和凉爽)的时空变化规律;在此基础上,着重探讨了我国大陆地区对健康危害最大的酷热域(极热不舒适)和严寒域(极冷不舒适)的时空分布特征;进而研究了反映两类极不舒适的典型天气过程。最后,以典型代表城市为例,将气象观测资料与疾病(死亡)资料相结合,研究揭示了气候变化对典型代表城市舒适度的影响及其与循环系统疾病死亡人数的关系;阐述了不同季节诱发典型代表城市循环系统疾病患者死亡的天气类型。主要研究结果如下:
     1.本文采用多要素协同作用的一种新的舒适度指数,能够体现以温度为主、综合反映多种与人体健康密切相关气象要素的协同作用。由此细致确定了各站点每个月人体最佳舒适温度的阈值;考虑了由我国幅员辽阔、气候背景不同引起的体感差异;并客观体现了湿度和风速在高温和低温条件下对人体感觉的放大效应。据此在本研究中,着重探讨了我国大陆对人体健康有益的广义舒适域(微热、舒适和凉爽三个舒适度等级)和体感极不舒适、易诱发相关天气敏感性疾病的酷热域和严寒域的时空分布特征。
     2.对我国大陆健康气候评估结果表明,利于健康生活的广义舒适域空间分布存在明显的地域性和季节性变化的特点。就舒适日数空间分布而言,全年中国大陆地区出现舒适日数最多的10个站点都位于西南地区,且均位于北回归线(23.50N)附近,年均舒适日数均超过259.9d,占全年总日数的71%以上;不同季节广义舒适域空间分布有差异,其中,春季西南地区最舒适;夏季350N以北的区域和西南地区较舒适;秋季350N以南的区域较舒适;冬季华南地区较为舒适。近几十年来,受全球气候变化的影响,我国大陆广义舒适域空间分布也有明显的变化,春季,舒适范围由东南沿海向内陆扩展近10个经(纬)度,其中西南地区的舒适范围向东北方向扩展。夏季,以1050E为界,以西的区域广义舒适域日数向高海拔的青藏高原呈明显的增加趋势;以东的区域中,450N以北的高纬地区广义舒适域日数减少明显。秋季,350N以北的区域舒适范围向高纬扩展;而西南地区舒适范围则向东北和西北方向扩展近2个纬度。冬季,250N以南的区域舒适范围呈现明显向北扩展的趋势,近半个世纪向北推进了近2个纬度。
     3.关于广义舒适域日数的年际变化,我国绝大部分地区(华南除外)均表现为增加趋势,其中以青藏高原增加最为明显(气候倾向率为4.15d/10a)。就各季节而言,春季,除华南地区外,其余地区广义舒适域日数均为增加趋势,且以华中地区增加最为明显;夏季,广义舒适域日数在青藏高原增加明显(气候倾向率为2.27d/10a),其余各地区均有减少;秋季,除华东和华南地区舒适日数呈减少趋势,其余地区均呈增加趋势,以青藏高原增加最为显著(1.38d/10a);冬季,华东、华中、华南和西南地区广义舒适域日数都表现为增加趋势,其中,华南地区增加最明显(1.67d/10a)。不同月份的广义舒适域空间分布特点是:11月至次年3月华南地区较为舒适;4月华东、华中、华南地区较舒适;5月份除华南和青藏高原地区外,全国各地区均体感舒适;6月东北、西南地区较舒适;7月青藏高原地区较为舒适;8月,西南地区较舒适;9月北方地区(青藏高原除外)和西南地区较为舒适;10月华中、华东和西南地区较为舒适。这些研究结果可为广大民众科学择地、择时出行和旅游以及“候鸟式”养生提供参考依据。
     4.研究显示,对健康危害明显的酷热和严寒两个舒适度等级时空分布也有较明显的特征。就酷热日数的年际变化而言,近52年来,除青藏高原外,中国大陆其余地区酷热日数(出现在5-9月)都有不同程度的增加,尤以华东、华中和华南地区增加最为明显,而且华东和华中地区酷热天气的强度比华南地区更大,对相关人群健康危害更大。受全球气候变暖大背景的影响,与酷热日数变化相反,中国大陆地区严寒日数(出现在11月至次年3月)主要出现在中、高纬地区,并呈现减少趋势,其中以东北地区减少最明显,气候倾向率为-3.89d/1Oa。
     5.众所周知,全球气候异常变化的一种强信号,就是极端天气气候事件增多,无疑它对相关人群健康也造成严重威胁。本文通过对一次极热不舒适天气过程(2013年江淮等地区高温热浪天气过程)的研究表明,西太平洋副热带高压(以下简称副高)是造成此次极热不舒适天气的主要影响系统;高温期间副高整体位置异常偏北,面积增大,强度增强,西伸明显,脊线北抬,表明每年盛夏期间,副高持续控制是造成我国江淮流域高温热浪、产生极热不舒适、对相关人群健康造成威胁的主要天气系统。2008年初南方地区低温雨雪冰冻天气过程是一次典型的极冷不舒适天气过程,分析结果表明,此次天气过程中我国大陆最低体感温度呈现大幅度下降(最大距平值为-9.7℃),其原因是对流层中层500hPa上贝加尔湖到西伯利亚处存在一个大横槽,由此不断有冷空气南袭所致;期间,南方地区呈现低温高湿状态,其高湿的原因是对流层中下层有两条水汽输送带,分别来自于孟加拉湾和南海地区,这种低温高湿的搭配效应加剧了当地居民对寒冷的体感程度,对健康极为非常不利,重者可导致死亡,例如南京市循环系统疾病在2008年初由低温雨雪冰冻极端天气事件引起的死亡人数明显多于其他年份。
     6.以南京市为例,对不同研究舒适度等级及相关气象条件与循环系统疾病死亡人数关系的研究结果显示,极冷和极热不舒适是造成循环系统疾病患者死亡的主要原因,具体表现为,在隆冬季节出现循环系统疾病患者死亡的最大峰值;而在盛夏时期,出现死亡的次峰值:此外,体感温度骤升或骤降也是诱发循环系统疾病患者发病、致死的重要原因之一。研究还发现,不同季节导致循环系统疾病患者死亡的主要天气类型也各不相同,夏季高温高湿的闷热天气是诱发循环系统疾病患者死亡的主要天气类型;而秋、冬两季,强冷空气活动是引起循环系统疾病患者发病致死的主要原因。由此也表明,在舒适的季节或阶段患有循环系统疾病的人群则不易发病,其死亡率也是不高。
     综上所述,从舒适度研究入手,对气候的健康效应进行评估是一种有效的尝试,初步解决了研究气候变化对人群健康影响的一个瓶颈问题。可为推动此方面研究的不断深入,倡导广大民众适应气候、趋利避害、促进健康做出应有的贡献。
The last four assessment reports published by Intergovernmental Panel on Climate Change (IPCC) pointed out that human health would be affected by climate change directly or indirectly. On the one hand, more and more extremes climate events and meteorological disasters will make the spread of some diseases more prevalent. On the other hand, variation of some meteorological factors also result in some weather-sensitive diseases or recurrent exacerbations, further more increase the morbidity and mortality, expanded disease's geographical range. As a result, human survival and development will be under threat. Therefore, in order to adapt to the global climate change and reduce its negative effects on human health and emergency disease, we must do some research on the effect among the weather, climate change and its influence on related people's health. Mainland China is one of the most sensitive areas responding to global climate change.In order to avoid disadvantages of climate change, it's important to assess regional climate condition based on human health.
     Previous studies shows that meteorological factors, including temperature, humidity and wind speed, etc, can affect human health, and conform to synergy effect with each other. It is limitations to assess the impact of climate change on health by a single meteorological factor. Moreover, the differences of living for a long time under the different climate types is also rarely considered. Therefore, it is necessary to build a reasonable and scientific method to assessment the relationship between climate changes and human health by using multiple meteorological elements.
     In view of this, multi-element synergy human comfort index based mainly on temperature has been built, and the temporal and spatial distribution of human comfort index and human comfortable degree have been calculated and analyzed by using daily surface observational data over mainland China in recent52years. Then, the extreme heat and cold temporal evolution of the two uncomfortable weather features which have large harm to human health was emphatically analyzed. In addition, abnormal atmospheric circulation during two typical uncomfortable events (Heat wave in2013and Severe Snow and Freezing-Rain in2008) had been explored. Finally, the relationship between weather conditions and circulatory system deaths on typical urban have been analyzed by using the meteorological data and daily circulatory system mortality data. The weather types which can evoke circulatory disease mortality in patients in typical urban have been discerned in different seasons. The main results are as follows:
     1. A new comfort index algorithm what combines with some factors is used to evaluate the impact of climate changes on human health. Measure the most comfortable temperature of each month in every station. Adjust human feelings difference in each station, in which has different climatic ground. Wind reflects the amplification effect in hot and humid conditions, and also role in low humidity conditions on human feelings. Comfort index can be a technical method applied to evaluate healthy climate. In this paper, focused research on of the human health benefits of comfort degrees (degree-warm, degree-comfortable, degree-cool), and extremely uncomfortable (heat and sever cold degree), which easy to induce the relevant weather-sensitive disease.
     2. Results of assessment on healthy climate show that the comfortable days have obvious regional and seasonal differences. Comfortable days most10stations appear in southwest China, and all of them located near the tropic of cancer (23.5(?)), with the days of259.9d/a, accounted for more than71%of the total annual number of days. There are more comfortable days of Southwest China in spring. In summer, more comfortable days occur in north of35(?) and southwest China. But in fall, south of35(?) region are more comfort for life. Southern China has most comfortable days in winter. Comfortable days have obvious changes during recent decades affect by global climate changes. Comfortable range extended from the southeast coast of the continent, nearly10longitude (latitude), and comfortable extension of the scope of the southwest to the northeast region in spring. In summer, to105(?) is bounded, west of the high-altitude Qinghai-Tibet Plateau is a significant increasing trend; east of the region, the number of comfortable days develop to south region, ranging nearly seven latitudes. In fall, days develop to the high latitudes in south of25(?). Comfortable zone to the northeast and northwest expansion in southwest region, changes in nearly two latitudes. In winter, comfort zone is clearly presented the development of the north in south of25(?), and it changes nearly two progressive north latitude from the1960s to the early21st century.
     3. The temporal distribution of comfortable days on interannual scales, number of annual comfortable days showed an upward trend in all of the regions except South China, with the most obvious change in the Tibetan Plateau (4.15d/10a). In spring, more comfortable days occur in center, southern, southwest and eastern China, and all of the regions show an increasing trend except southern China. In summer, comfortable days show a trend of decrease, except Qinghai-Tibet plateau (with rate2.27d/10a). The number of comfortable days in southern and eastern China have trend of decrease in fall, but the rest of region have a trend of increase, especially in Qinghai-Tibet Plateau (1.38d/10a). In winter, the comfortable days appear rising trend in eastern, central, southern, southwest China, especially in southern China, with rate of1.67d/10a. People feel comfortable in southern from November to March; Eastern, central and southern regions are more comfortable in April; All of region over mainland China is comfortable region in May, except for the south and the Tibetan Plateau; In June, people feel more comfortable in northeast and southwest regions; Qinghai-Tibetan Plateau is more comfortable in July; In August, people feel more comfortable in south west China; Northern region (except Tibet Plateau) and Southwest regions are more comfortable in September; The eastern and southwest China is more comfortable region in October.
     4. Analysis of the temporal and spatial distribution of extreme uncomfortable days (heat and sever cold) which threat to human health. Main results are as follow: Heat days in all regions, except Qinghai-Tibet Plateau, are increased, and the phenomenon most obvious in eastern, center and southern China. Furthermore, heat days in southern China not as strength as in eastern and central China, which has large harm to human health. In general, number of annual heat days increase evidently in southern than northern China. Sever cold days has obvious changes compared with changes of heat days, what affected by the background of global warming, especially in northeast China, with downward trend rate of-3.89d/10a. On the whole, sever cold days appear in the middle and high latitude region, with some stations' sever cold degree days are occur from November to March.
     5. A strong signal of global climate anomalies, that is increase in extreme weather events, it is undoubtedly a serious threat to human health related. Analysis of atmospheric circulation of an hot uncomfortable weather (heat wave weather occur in2013), West Pacific Subtropical High(WPSH) is the mainly system of this process. Vice subtropical high index indicates that area of WPSH northerly than average state, intensity increased, ridge line northward obvious inclining to the west. WPSH sustained control in jianghuai valley cause heat wave, thermal uncomfortable days, what threat to people health in each summer. Analyze the atmospheric circulation of an uncomfortable cold weather in2008, There is a large cross between Lake Baikal and Siberia at the middle troposphere, and a continued of cold advection import into China. In addition, High humidity shows in southern China, because there are two main paths to continue the water vapor transport to the south in the lower troposphere, one is from the Bay of Bengal, and other one is from the South China Sea. The collocation of low temperature and humidity effect added to the local residents to the cold feeling, adverse to their health, even lead to death. As a example, circulatory mortality peak has a continuous day is in mid-January to mid-February,2008.
     6. Taking Nanjing as an example, Change of weather conditions and climate comfort are all contact with increased disease recurrence directly. Study on circulatory system diseases deaths and meteorological elements in Nanjing. It can be found that cold effect is one of the main causes of circulatory system diseases death. On the one hand, cold uncomfortable domains (or under extreme cold conditions) circulatory disease deaths are more concentrated. Maximum peak of mortality of circulatory diseases appear in the middle of winter, while in the summer season, the peak occurrences of mortality. On the other hand, apparent temperature changes suddenly also cause circulatory system diseases patients death. Different forms of combination with meteorological factors in different seasons, which has different ways to impact on human health. In summer, higher temperature and higher humidity will aggravate the patients with circulatory diseases. In fall and winter, low temperature is mainly reason. In addition, wind speed maximum in fall and precipitation in winter could not be ignored.
     In conclusion, it's an effective attempt on evaluation of health effect of climate changes by using multi-element synergy human comfort index and the results solved a key problem. The research promote the development of this aspect and make contributions on climatic, avoiding disadvantages and staying health for the public.
引文
[1]Climate change 2001-the physical science basis:Working group Ⅰ contribution to the Third assessment report of the IPCC[M]. Cambridge University Press,2001.
    [2]Climate change 2007-the physical science basis:Working group Ⅱ contribution to the Fourth assessment report of the IPCC[M]. Cambridge University Press,2007.
    [3]Climate change 2013-the physical science basis:Working group Ⅰ contribution to the Fifth assessment report of the IPCC[M]. Cambridge University Press,2013.
    [4]Woodruff R E, Guest C S, Garner M G, et al. Predicting Ross River virus epidemics from regional weather data[J]. Epidemiology,2002,13(4):384-393.
    [5]Hartman J, Ebi K, McConnell K J, et al. Climate suitability:for stable malaria transmission in Zimbabwe under different climate change scenarios[J]. Global Change and Human Health, 2002,3(1):42-54.
    [6]Centers for Disease Control and Prevention (CDC). Seasonal influenza and 2009 H1N1 influenza vaccination coverage among pregnant women--10 states,2009-10 influenza season[J]. MMWR. Morbidity and mortality weekly report,2010,59(47):1541.
    [7]Enquselassie F, Dobson A J, Alexander H M. et al. Seasons, temperature and coronary disease[J]. International journal of epidemiology,1993,22(4):632-636.
    [8]Greenwood B M, Bradley A K, Blakebrough I S, et al. Meningococcal disease and season in sub-Saharan Africa[J]. The Lancet,1984,323(8390):1339-1342.
    [9]Mattsson M, Hygge S. Effect of particulate air cleaning on perceived health and cognitive performance in school children during pollen season[C] Indoor Air 2005:Proceedings of the 10th international conference on indoor air quality and climate.2005:1111-1115.
    [10]Singh R B, Hales S, de Wet N, et al. The influence of climate variation and change on diarrheal disease in the Pacific Islands[J]. Environmental health perspectives,2001,109(2): 155-159.
    [11]Githeko A K, Ndegwa W. Predicting malaria epidemics in the Kenyan highlands using climate data:a tool for decision makers[J]. Global Change and Human Health,2001,2(1): 54-63.
    [12]Schwartz J, Samet J M, Patz J A. Hospital admissions for heart disease:the effects of temperature and humidity[J]. Epidemiology,2004,15(6):755-761.
    [13]Donaldson G C, Seemungal T, Jeffries D J, et al. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease[J]. European respiratory journal,1999, 13(4):844-849
    [14]Pan W H, Li L A, Tsai M J. Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese[J]. The Lancet,1995,345(8946):353-355.
    [15]Curriero F C, Patz J A, Rose J B, et al. The association between extreme precipitation and waterborne disease outbreaks in the United States,1948-1994[J]. American journal of public health,2001,91(8):1194-1199.
    [16]刘梅,于波,姚克敏.人体舒适度研究现状及其开发应用前景[J].气象科技,2002,30(1):11-18.
    [17]Muthers S, Matzarakis A, Koch E. Climate change and mortality in Vienna-A human biometeorological analysis based on regional climate modeling[J]. International journal of environmental research and public health,2010,7(7):2965-2977.
    [18]Lomas K J, Giridharan R. Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of free-running buildings:A case-study of hospital wards[J]. Building and Environment,2012,55:57-72.
    [19]Hoppe P R. Heat balance modelling[J]. Experientia,1993,49(9):741-746.
    [20]Almeida S P, Casimiro E, Calheiros J. Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal[J]. Environ Health,2010,9(1):12-19.
    [21]Holmes M J, Hacker J N. Climate change, thermal comfort and energy:Meeting the design challenges of the 21st century[J]. Energy and Buildings,2007,39(7):802-814.
    [22]Amelung B, Nicholls S, Viner D. Implications of global climate change for tourism flows and seasonality[J]. Journal of Travel research,2007,45(3):285-296.
    [23]Kwok A G, Rajkovich N B. Addressing climate change in comfort standards[J]. Building and Environment,2010,45(1):18-22.
    [24]Patz J A, Campbell-Lendrum D, Holloway T, et al. Impact of regional climate change on human health[J]. Nature,2005,438(7066):310-317.
    [25]Sunyer J, Grimalt J. Global climate change, widening health inequalities, and epidemiology [J]. International journal of epidemiology,2006,35(2):213-216.
    [26]Fischer Q Shah M, Tubiello F N, et al. Socio-economic and climate change impacts on agriculture:an integrated assessment,1990-2080[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2005,360(1463):2067-2083.
    [27]Suarez P, Anderson W, Mahal V, et al. Impacts of flooding and climate change on urban transportation:a systemwide performance assessment of the Boston Metro Area[J]. Transportation Research Part D:transport and environment,2005,10(3):231-244.
    [28]Lonergan S, Difrancesco R, Woo M K. Climate change and transportation in northern Canada: An integrated impact assessment[J]. Climatic Change,1993,24(4):331-351.
    [29]Wilby R L. Uncertainty in water resource model parameters used for climate change impact assessment[J]. Hydrological Processes,2005,19(16):3201-3219.
    [30]Baker A C, Glynn P W, Riegl B. Climate change and coral reef bleaching:An ecological assessment of long-term impacts, recovery trends and future outlook[J]. Estuarine, Coastal and Shelf Science,2008,80(4):435-471.
    [31]Stathopoulos T, Wu H, Zacharias J. Outdoor human comfort in an urban climate[J]. Building and Environment,2004,39(3):297-305.
    [32]Terjung W T. Physiologic climates of the conterminous United States:A bioclimatic classification based on man[J]. Anal Association of American Geographers,1966,5(1): 141-179.
    [33]Guryas A, Unger J, Matzarakis A. Assessment of the microclimatic and human comfort conditions in a complex urban environment:Modeling and measurements[J]. Building and Environment,2006(41):1713-1722.
    [34]景元书,王净.南京地区体感温度气候特征[J].中国科技信息,2008,1:19-20.
    [35]周晓农.气候变化与人体健康[J].气候变化研究进展,2010,6(4):235-240.
    [36]Kunst A E, Looman C W, Mackenbach J P. Outdoor air temperature and mortality in The Netherlands. A time-series analysis[J]. Am J Epidemiol,1993,137:331-341.
    [37]Saez M, Sunyer J, Castellsague J, et al. Relationship between weather temperature and mortality:a time series analysis approach in Barcelona[J]. International Journal of Epidemiology,1995,24(3):576-582.
    [38]Laaidi M, Laaidi K, Besancenot J P. Temperature-related mortality in France, a comparison between regions with different climates from the perspective of global warming[J]. International journal of biometeorology,2006,51(2):145-153.
    [39]Nastos P T, Matzarakis A. The effect of air temperature and human thermal indices on mortality in Athens, Greece[J]. Theoretical and Applied Climatology,2012,108(3-4): 591-599.
    [40]Alberdi J C, Diaz J, Montero J C, et al. Daily mortality in Madrid community 1986-1992: relationship with meteorological variables[J]. European journal of epidemiology,1998,14(6): 571-578.
    [41]McGeehin M A, Mirabelli M. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States[J]. Environmental Health Perspectives,2001,109(Supp12):185.
    [42]Analitis A, Katsouyanni K, Biggeri A, et al. Effects of cold weather on mortality:results from 15 European cities within the PHEWE project[J]. American journal of epidemiology,2008, 168(12):1397-1408.
    [43]Curriero F C, Heiner K S, Samet J M, et al. Temperature and mortality in 11 cities of the eastern United States[J]. American Journal of Epidemiology,2002,155(1):80-87.
    [44]Kjellstrom T, Butler A J, Lucas R M, et al. Public health impact of global heating due to climate change:potential effects on chronic non-communicable diseases [J]. International journal of public health,2010,55(2):97-103.
    [45]Hajat S, Haines A. Associations of cold temperatures with GP consultations for respiratory and cardiovas cular disease among the elderly in London[J]. International Epidemiological Association,2002,31(4):825-830.
    [46]李永红.气象因素对南京市居民健康影响的初步研究[D].东南大学,2005.
    [47]杨贤为,邹旭恺.北京地区脑卒中发病率的气象条件研究[J].气象,1998,24(9):51-54.
    [48]李志斌,邹霞英.广州地区气象因子与呼吸疾病的关系[J].解放军预防医学杂志,1999,17(4):290-292.
    [49]郑杨.北京气温与小儿呼吸道疾病相关性研究[J].环境科学进展,1999,7(2):141-144.
    [50]叶殿秀,杨贤为,张强.北京地区SARS与气象条件关系分析[J].气象,2003,29(10):42-45.
    [51]马玉霞,刘炳杰,王式功,等.甘肃省甲肝的分布特征及与气象条件的关系[J].环境与健康杂志,2009,26(5):429-431.
    [52]Diaz J, Linares C, Tobias A. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group[J]. International journal of biometeorology,2006,50(6): 342-348.
    [53]殷文军,彭晓武,宋世震,等.广州市灰霾天气对城区居民心血管疾病影响的时间序列分析[J].环境与健康杂志,2009,26(012):1081-1085.
    [54]Berggren R E, Curiel T J. After the storm-health care infrastructure in post-Katrina New Orleans[J]. New England Journal of Medicine,2006,354(15):1549-1552.
    [55]Loughnan M E, Nicholls N, Tapper N J. When the heat is on:Threshold temperatures for AMI admissions to hospital in Melbourne Australia[JJ. Applied Geography,2010,30(1): 63-69.
    [56]Smoyer-Tomic K E, Rainham D G. Beating the heat:development and evaluation of a Canadian hot weather health-response plan[J]. Environmental Health Perspectives,2001, 109(12):1241-1248.
    [57]Kalkstein L S, Smoyer K E.The impact of climate change on human health:some international implications[J]. Experientia,1993,49(11):969-979.
    [58]Gover M. Gover M. Mortality during periods of excessive temperature[J]. Public Health Reports (1896-1970),1938:1122-1143.
    [59]Rooney C, McMichael A J, Kovats R S,Coleman M P. Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave[J]. J Epidemiol Community Health,1998, 52:482-486.
    [60]Wolfe M, Kaiser R, Naughton M P, et al. Heat-related mortality in selected United States cities, summer1999. Am J Forensic Med Pathol,2001,22:352-357.
    [61]Brikowski T H, Lotan Y, Pearle M S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci.2008,105:9841-9846.
    [62]Gabriel K, Endlicher W R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany[J]. Environmental Pollution,2011,159(8):2044-2050.
    [63]Matzarakis A, Nastos P T. Human-biometeorological assessment of heat waves in Athens[J]. Theoretical and applied climatology,2011,105(1-2):99-106.
    [64]Worfolk J B. Heat waves:their impact on the health of elders[J]. Geriatric Nursing,2000, 21(2):70-77.
    [65]Kysely J. Mortality and displaced mortality during heat waves in the Czech Republic[J]. International Journal of Biometeorology,2004,49(2):91-97.
    [66]Ostro B D, Roth L A, Green R S, et al. Estimating the mortality effect of the July 2006 California heat wave[J]. Environmental research,2009,109(5):614-619.
    [67]许遐祯,郑有飞,尹继福,等.南京市高温热浪特征及其对人体健康的影响[J].生态学杂志,2011,30(12):2815-2820.
    [68]陆晨.疾病发病与特殊天气过程的相关特征[J].气象科技,2005,32(6):429-432.
    [69]翟红楠,张轩,王艳红.气候变化对华中区域心脑血管疾病的影响及未来趋势预测[J].数理医药学杂志,2012,25(4):441-443.
    [70]宋文燕,刘新华.呼吸与循环系统疾病的发病与气象要素关系的分析与预测[J].中国医院统计,2002,9(2):81-83.
    [71]王衍文,倪学淬.急性心肌梗塞发病气象条件的研究[J].气象学报,1985,43(4):491-494.
    [72]林丁茂.268例心脑血管疾病发病与季节气象关系分析[J].福建医药杂志,1994,16(1):17-18.
    [73]刘寅,付乃宽,梁爽霖.天津地区急性心肌梗塞发病与气象因素关系的探讨[J].中国介入心脏病学杂志,1995,4:023.
    [74]杨贤为,叶殿秀.我国心脑血管病的医学气象研究[J].气象科技,2004,31(6):376-380.
    [75]孟紫强,张剑,耿红,等.沙尘暴对呼吸及循环系统疾病日门诊量的影响[J].中国环境科学,2007,27(1):116-120.
    [76]丁克兰,柳波,马建龙,等.沙尘天气与冠心病发病相关关系的研究[J].社区医学杂志,2009,7(001):3-5.
    [77]Siple P A, Passel C F. Measurements of dry atmospheric cooling in subfreezing temperatures[J]. Proceedings of the American Philosophical Society,1945:177-199.
    [78]Brunt D. Climate and human comfort[J]. Nature,1945,155(3941):559-564.
    [79]Tromp, S. W. Medical biometeorology. Amsterdam:Elsevier,1963.
    [26]Oliver JE. Climate and Man's Environment:An Introduction to Applied Climatology[M] New York:John Wiley & Sons. Inc,1973.
    [81]Fanger P O. Thermal Comfort 2.Malbar Florida:Robert E Krieger Publishing Company,1982: 19-142.
    [82]Thorsson S, Lindberg F, Bjorklund J, et al. Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change:the influence of urban geometry[J]. International Journal of Climatology,2011,31(2):324-335.
    [83]Da Silva V P R, de Azevedo P V, Brito R S, et al. Evaluating the urban climate of a typically tropical city of northeastern Brazil[J]. Environmental monitoring and assessment,2010, 161(1-4):45-59.
    [84]长安,葛全胜,方修琦,等.青藏铁路旅游线气候适宜性分析[J].地理研究,2007,26(3):533-540.
    [85]郑有飞,尹继福,吴荣军,等.热气候指数在人体舒适度预报中的适用性[J].应用气象学报,2010,21(6):709-715.
    [86]唐文君,阂敏,景元书.长江三角洲夏季气候舒适度模糊评判[J].气候与环境研究,2007,12(6):773-778.
    [87]吕伟林.体感温度及其计算方法[J].北京气象,1998.(1):23-25.
    [88]吴兑.多种人体舒适度预报公式讨论[J].气象科技,2004,31(6):370-372.
    [89]张增文,胡景国.德令哈地区人体舒适度预报方法研究[J].青海气象.2006.(1):22-23.
    [90]贾海源,陆登荣.甘肃省人体舒适度地域分布特征研究[J].干旱气象.2010.28(4):449-454.
    [91]沈福,吕长虹,龚建福.酒泉地区人体舒适度指数初探及预报[J].甘肃气象,2001.20(3):34-35.
    [92]李源,袁业畅,陈云生.武汉市人体舒适度计算办法及其预报[J].湖北气蒙,2000.(1):27-28.
    [93]董蕙青,黄海洪,黄香杏,等.南宁市人体舒适度预报系统[J].广西气象.1999.20(3):37-40.
    [94]王远飞,沈愈.上海市夏季温湿效应与人体舒适度[J].华东师范大学学报(自然科学版).1999.3:60-66.
    [95]蒲金涌,姚小英.甘肃省主要城市人居气候舒适性评价[J].资源科学,2010,32(4):679-685.
    [96]于庚康,徐敏,于垫,等.近30年江苏人体舒适度指数变化特征分析[J].气象,2011,37(9):1145-1150.
    [97]马丽君,孙根年.中国热点城市旅游气候舒适度评价[J].陕西师范大学学报:自然科学版,2009,37(2):96-102.
    [98]雷桂莲,喻迎春,刘志萍,等.南昌市人体舒适度指数预报[J].江西气象科技,1999,22(3):40-41.
    [99]余涛,李秀增,吴志彬,等.厦门鼓浪屿疗养区人体舒适度初步分析[J].中国疗养医学,2012(6):482-485.
    [100]孙广禄,王晓云,章新平,等.京津冀地区人体舒适度的时空特征[J].气象与环境学报,2011,27(3):18-23.
    [101]Sun B, Wu T L, Chen Y. A preliminary study on effects of four urban greenbelt types on human comfort in Shenzhen, PR China[J]. Forestry Science and Technology,2006,5(2): 84-92.
    [102]Feng Y R, Wang A Y, Lin Z G. On the design of a new human comfort index [J]. Journal of tropical meteorology,2004,10(1):106-112.
    [l]陈洪滨,范学花.2008年极端天气和气候事件及其他相关事件的概要回顾[J].气候与环境研究,2009,14(3):329-340.
    [2]http://e.hznews.com/paper/djsb/20130804/A08/2/.shtml
    [3]http://zjnews.zjol.com.cn/system/2013/08/09/019524189.shtml
    [4]张维忠.论黄金分割的文化意义[J].浙江师范大学学报(社会科学版),2005,30(1):80-83.
    [5]Cai X. Golden section, the optimization of environmental factors for human body[J]. Chinese Journal of Clinical Rehabilitatio,2006,10(45):227-228.
    [6]王金亮,王平.香格里拉旅游气候的适宜度[J].热带地理,1999,19(3):235-239.
    [7]Stewart I, Oke T. Thermal differentiation of local climate zones using temperature observations from urban and rural field sites. Preprints,9th Symposium, on Urban Environment, Key-stone, CO,2-6 August 2010.
    [8]王式功,马盼,尚可政等.一种基于黄金分割法构建人体舒适度计算方法[P].2012105963660,中国.2013.5.15
    [9]Feng Y R, Wang A Y, Lin Z G. On the design of a new human comfort index[J]. Journal of tropical meteorology,2004,10(1):106-112.
    [10]Sun B, Wu T L, Chen Y. A preliminary study on effects of four urban greenbelt types on human comfort in Shenzhen, PR China[J]. Forestry Science and Technology,2006,5(2): 84-92.
    [11]李源,袁业畅,陈云生.武汉市人体舒适度计算方法及其预报[J].湖北气象,2000,(1):27-28.
    [12]沈福,吕长虹,龚建福.酒泉地区人体舒适度指数初探及预报[J].甘肃气象,2002,20(3):34-35.
    [13]于庚康,徐敏,于堃,等.近30年江苏人体舒适度指数变化特征分析[J].气象,2011,37(9):1145-1150.
    [14]黄嘉佑.气象统计分析与预报方法(第三版)[M].北京:气象出版社.2004.
    [15]王希娟,唐红玉,张景华.近40年青海东部春季降水变化特征及小波分析[J].干旱地区农业研究,2006,24(3):21-25.
    [16]王文圣,丁晶,向红莲.小波分析在水文学中的应用研究及展望[J].水科学进展,2002,13(4):515-520.
    [17]刘德,李永华,何卷雄.重庆市夏季气温即降水变化的小波分析[J].高原气象,2003,22(2):173-178.
    [18]Yao C S. A new method of cluster analysis for numerical classification of climate[J]. Theor. Appl. Climatol.,1997,57:111-118.
    [19]么枕生.用于数值分类的聚类分析[J].海洋湖沼通报,1994,(2):1-12.
    [20]Horel J D. A rotated principal component analysis of t he interannual variability of the Northern Hemisphere 500 mb height field[J]. Mon. Wea. Rev.,1981,109:2080-2092.
    [21]么枕生.载荷相关模式用于气候分类与天气气候描述.气候学研究-气候与环境[M].北京:气象出版社,1998.
    [22]丁裕国,张耀存,刘吉峰.一种新的气候分型区划方法[J].大气科学,2007,31(1):129-136.
    [23]Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,1993,24:417-441,498-520.
    [24]Kalkstein L S, Tan G, Skindlov J A. An evaluation of three clustering procedures for use in synoptic climatological classification[J]. Journal of climate and applied meteorology,1987, 26(6):717-730.
    [25]谭冠日,黄劲松.气候影响评价的两种统计学方法—论广州天气对死亡率的影响[J].南京气象学院学报,1990,13(3):359-369.
    [1]封志明,唐焰,杨艳昭,等.基于GIS的中国人居环境指数模型的建立与应用[J].地理学报,2008,63(12):1327-1336.
    [2]Gong D Y, Pan Y Z, Wang J A. Changes in extreme daily mean temperatures in summer in eastern China during 1955-2000[J]. Theoretical and Applied Climatology,2004,77(1-2): 25-37.
    [3]Weng H, Lau K M, Xue Y. Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability[J]. Journal of the Meteorological Society of Japan,1999,77(4):845-857.
    [4]Zhai P M, Pan X H. Change in extreme temperature and precipitation over northern China during the second half of the 20th century[J]. Acta Geographica Sinica,2003,58(S1):1-10.
    [5]Su B D, Jiang T, Jin W B. Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China[J]. Theoretical and Applied Climatology,2006,83(1-4): 139-151.
    [6]Shi N, Zhu Q. An abrupt change in the intensity of the East Asian summer monsoon index and its relationship with temperature and precipitation over East China[J]. International Journal of climatology,1996,16(7):757-764.
    [7]马柱国,符淙斌,任小波.中国北方年极端温度的变化趋势与区域增暖的联系[J].地理学报,2003,58(增刊):11-20.
    [8]蒋薇.长江三角洲地区近47年来气候变化及其影响因子研究[D].兰州大学,2009.
    [9]张宇,杨德保,王式功,等.1975--2008年青藏高原冬季气温变化[J].兰州大学学报:自然科学版,2010,46(1):72-76.
    [10]Barradas V L. Air temperature and humidity and human comfort index of some city parks of Mexico City[J]. International journal of biometeorology,1991,35(1):24-28.
    [11]Thorn E C. The discomfort index[J]. Weatherwise,1959,12(2):57-61.
    [12]Steadman R G The assessment of sultriness. Part Ⅰ:A temperature-humidity index based on human physiology and clothing science[J]. Journal of Applied Meteorology,1979,18(7): 861-873.
    [13]孙广禄,王晓云,章新平,等.京津冀地区人体舒适度的时空特征[J].气象与环境学报,2011,27(3):18-23.
    [14]唐焰,封志明,杨艳昭.基于栅格尺度的中国人居环境气候适宜性评价[J].资源科学,2008,30(5):648-653.
    [15]范业正,郭来喜.中国海滨城市旅游地气候适宜性评价[J].自然资源学报,1998,10(4):304-305.
    [16]茅艳.人体热舒适气候适应性研究[D].西安建筑科技大学,2007.
    [17]中国气象地理区划手册[M].北京:气象出版社.2006.
    [18]林振耀,吴祥定.青藏高原气候区划[J].地理学报,1981,36(1):22-32.
    [19]赵昕奕,张惠远,万军.青藏高原气候变化对气候带的影响[J].地理科学,2002,22(2): 190-195.
    [20]胡开喜,陆日宇,王东海.东北冷涡及其气候影响[J].大气科学,2011,35(1):179-191.
    [21]艾丽坤,郭维栋.从地-气温差的长期变化检测中国北部土壤荒漠化[J].地理学报,2003(z1):108-116.
    [22]余卫红,方修琦.李新周,等.中国北方干旱化年代际特征与大气环流的关系[J].大气科学,2006,30(2):277-284.
    [23]余卫红,方修琦.近50年我国北方地区旱涝的时空变化[J].北京师范大学学报:自然科学版,2001,37(6):838-842.
    [1]Conlon K C, Rajkovich N B, White-Newsome J L, et al. Preventing cold-related morbidity and mortality in a changing climate[J]. Maturitas,2011,69(3):197-202.
    [2]Voorhees A S, Fann N, Fulcher C, et al. Climate change-related temperature impacts on warm season heat mortality:a proof-of-concept methodology using BenMAP[J]. Environmental science & technology,2011,45(4):1450-1457
    [3]刘清春,王铮,许世远.中国城市旅游气候舒适性分析[J].资源科学,2007,29(1):133-141.
    [4]茅艳.人体热舒适气候适应性研究[D].西安:西安建筑科技大学,2007.
    [5]范业正,郭来喜.中国海滨旅游地气候适宜性评价[J].自然资源学报,1998,13(4):306-311.
    [6]Maddison D. In search of warmer climates? The impact of climate change on flows of British tourists[J]. Climatic change,2001,49(1-2):193-208.
    [7]Mendelsohn R, Dinar A. Climate change, agriculture, and developing countries:does adaptation matter?[J]. The World Bank Research Observer,1999,14(2):277-293.
    [8]Hamilton J M, Maddison DJ, Tol RSJ. Effects of climate change on international tourism[J]. Climate Research,2005,29(3):245-254.
    [9]Hamilton J M, Maddison D J, Tol R S J. Climate change and international tourism:a simulation study[J]. Global environmental change,2005,15(3):253-266.
    [10]Adams R M, Rosenzweing C, Peart R M, et al. Global climate change and US agriculture[J]. Nature,1990,345,219-224.
    [11]Richardson R B, Loomis J B. Adaptive recreation planning and climate change:a contingent visitation approach[J]. Ecological Economics,2004,50(1):83-99.
    [12]Hamilton J M, Tol R S J. The impact of climate change on tourism in Germany, the UK and Ireland:a simulation study[J]. Regional Environmental Change,2007,7(3):161-172.
    [13]朱亚芬.530年来中国东部早涝分区及北方早涝演变[J].地理学报,2003(z1):100-107.
    [14]蔡敏,丁裕国,江志红.我国东部极端降水时空分布及其概率特征[J].高原气象,2007,26(2):309-318.
    [15]屠其璞,邓自旺,周晓兰.中国近117年年平均气温变化的区域特征研究[J].应用气象学报,1999.10(增刊):34-42.
    [16]Preisendorfer R W, Mobley C D. Principal component analysis in meteorology and oceanography[M]. Elsevier Science Ltd,1988.
    [17]Horel J D. A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field[J]. Monthly Weather Review,1981,109(10): 2080-2092.
    [18]Yao C S. A new method of cluster analysis for numerical classification of climate[J]. Theoretical and applied climatology,1997,57.1-2:111-118.
    [19]向旬,王冀,王绪鑫,等.我国极端气温指数的时空变化与分区研究[J].气象,2008,34(9):73-80.
    [1]Gong D Y, Pan Y Z, Wang J A.Changes in extreme daily mean temperatures in summer in eastern China during 1955-2000[J].Theor Appl Climatol,2004,77(5):25-37.
    [2]马柱国,符淙斌,任小波,等.中国北方年极端温度的变化趋势与区域增暖的联系[J].地理学报,2003,58(增刊):11-20.
    [3]李林,朱西德,秦宁生,等.青藏高原气温变化及其异常类型的研究[J].高原气象,2003,22(5):524-533.
    [4]Climate change 2007-the physical science basis:Working group I contribution to the Fourth assessment report of the IPCC[M|. Cambridge University Press,2007.
    [5]Martin B, David B S. Future extreme events in European climate:an exploration of regional climate model projections[J]. Climatic Change,2007,81:71-95.
    [6]Victorian Chief Health Office. January 2009 Heat wave in Victoria:An Assessment of Health Impacts. Melbourne, Australia:Victorian Government Department of Human Services; 2009.
    [7]Rooney C, McMichael A J, Kovats R S, et al. Excess mortality in England and Wales, and in Greater London, during the 1995 heat wave[J]. Journal of Epidemiology and Community Health,1998,52:482-486.
    [8]郭维栋,马柱国,姚永红.近50年中国北方土壤湿度的区域演变特征[J].地理学报,2003,58(增刊):84-90.
    [9]Seneviratne S I, Donat M G, Mueller B, et al. No pause in the increase of hot temperature extremes[J]. Nature Climate Change,2014,4(3):161-163.
    [10]Barwick R S, Levy D A, Craun G F, et al. Surveillance for waterborne-disease outbreaks-United States,1997-1998[J]. MMWR CDC Surveill Summ,2000,49(4):1-21.
    [11]Semenza J C, Rubin C H, Falter K H, et al. Heat-related deaths during the July 1995 heat wave in Chicago[J]. New England Journal of Medicine,1996,335(2):84-90.
    [12]李永红.气象因素对南京市居民健康影响的初步研究[D].南京:东南大学,2005.
    [13]Sheridan S C. The redevelopment of a weather-type classification scheme for North America[J]. International Journal of Climatology,2002,22(1):51-68.
    [14]王远飞,沈愈.上海市夏季温湿效应与人体舒适度[J].华东师范大学学报:自然科学版,1998(3):60-66.
    [15]陈荣芬,阿不都,茹苏里.吐鲁番盆地干热气候的形成及其利用[J].新疆大学学报(自然科学版),1987,1:19.
    [16]李新,尹景原.吐鲁番盆地的干热环境特征[J].干旱区地理,1993,16(2):63-70.
    [17]Farge M. Wavelet transforms and their applications to turbulence[J]. Annual Review of Fluid Mechanics,1992,24(1):395-458.
    [18]张志薇,王式功,尚可政,等.华中地区近50年高温事件及大气环流成因分析[J].兰州大学学报:自然科学版,2011,47(2):50-55.
    [19]黄卓,陈辉,田华.高温热浪指标研究[J].气象,2011,37(3):345-351.
    [20]吴国雄,丑纪范,刘屹岷,等.副热带高压研究进展及展望[J].大气科学,2003,27(4): 503-517.
    [21]Beniston M. The 2003 heat wave in Europe:A shape of things to come? An analysis based on Swiss climatological data and model simulations[J]. Geophysical Research Letters,2004, 31(2). doi:10.1029/2003GL018857.
    [22]韦道明,李崇银,谭言科.夏季西太平洋副热带高压南北位置变动特征及其影响[J].气候与环境研究,2011,16(3):255-272.
    [23]侯伟芬,王谦谦.江南地区近50年地面气温的变化特征[J].高原气象,2004,23(3):400-406.
    [24]杨辉,李崇银.2003年夏季中国江南异常高温的分析研究[J].气候与环境研究,2005,10(1):80-85.
    [25]林建,毕宝贵,何金海.2003年7月西太平洋副热带高压变异及中国南方高温形成机理研究[J].大气科学,2005,29(4):594-599.
    [26]卫捷,杨辉,孙淑清.西太平洋副热带高压东西位置异常与华北夏季酷暑[J].气象学报,2004,62(3):308-316.
    [27]高守亭,周玉淑,雷霆,等.北京城市夏季高温高湿天气过程分析及动力识别[J].中国科学:D辑,2006,35(A01):107-114.
    [28]李艳.欧亚大陆关键区阻塞高压及其与我国冬季灾害性天气气候关系的研究[D].兰州:兰州大学,2010.
    [29]Medina-Ramon M, Zanobetti A, Cavanagh D P, et al. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis[J]. Environmental health perspectives,2006,114(9):1331.
    [30]王亚非,李琰,李萍云,等.2008年初中国南方雪灾大尺度环流背景分析[J].2008,66(5):826-835.
    [31]黎惠金,韦江红,覃昌柳,等.2008年广西罕见低温雨雪冰冻天气成因及数值预报产品性能分析[J].气象研究与应用,2008,29(1):16-19.
    [32]苗春生,赵瑜,王坚红.080125南方低温雨雪冰冻天气持续降水的数值模拟[J].大气科学学报,2010,(1):25-33.
    [33]钱维宏,张宗婕.南方持续低温冻雨事件预测的前期信号[J].地球物理学报,2012,55(5):1501-1512.
    [34]赵琳娜,马清云,杨贵名,等.2008年初我国低温雨雪冰冻对重点行业的影响及致灾成因分析[J].气候与环境研究,2008,13(4):556-566.
    [35]李崇银,杨辉,顾薇.中国南方雨雪冰冻异常天气原因的分析[J].气候与环境研究,2008,13(2):113-122.
    [36]李艳,王式功,金荣花,等.我国南方低温雨雪冰冻灾害期间阻塞高压异常特征分析[J].高原气象,2012,31(1):94-101.
    [37]杨贵名,孔期,毛冬艳,等.2008年初“低温雨雪冰冻”灾害天气的持续性原因分析[J].气象学报,2009,66(5):836-849.
    [38]赵思雄,孙建华.2008年初南方雨雪冰冻天气的环流场与多尺度特征[J].气候与环境研究,2008,13(4):351-367.
    [39]高安宁,陈见,李生艳.2008年华南西部罕见低温冷害天气成因分析[J].热带气象学报,2009,25(1):110-116.
    [1]Kuo Y H, Guo Y R, Westwater E R. Assimilation of precipitable water measurements into a mesoscale numerical model[J]. Mon. Wea. Rev.1993,121:1215-1237.
    [2]Arnold C P, Dey C H. Observing-systems simulation experiments:Past, present, and future. Bull[J]. Amer. Meteor. Soc.,1986,67:687-695.
    [3]闵俊杰,张金池,张增信,等.近60年来南京市人体舒适度指数变化及其对温度的响应[J].南京林业大学学报(自然科学版),2012,36(1):53-58.
    [4]张艳,闵锦忠,王体健.南京城区夏季低层逆温对人体舒适状况影响初探[J].南京气象学院学报,2002,25(3):413-419.
    [5]徐大海,朱蓉.人对湿度、温度、风速的感觉与着衣指数的分析研究[J].应用气象学报,2000,11(4):431-439.
    [6]赵小艳,申双和,孙虎声.南京旅游气候舒适度的探讨[J].南京气象学院学报,2008,31(2):250-256.
    [7]马丽君,孙根年,谢越法,等.50年来东部典型城市旅游气候舒适度变化分析[J].资源科学,2010,32(10):1963-1970.
    [8]唐文君,闵敏,景元书.长江三角洲夏季气候舒适度模糊评判[J].气候与环境研究.2007,12(6):773-778.
    [9]靳宁,景元书,武永利.南京市区不同下垫面对人体舒适度的影响分析[J].气候与环境研究,2009,14(4):445-450.
    [10]张莉娟.南京旅游气候舒适度评价研究[J].苏州大学学报(自然科学版),2012,4:019.
    [11]景元书,王净.南京地区体感温度气候特征[J].中国科技信息,2008,1:19-20.
    [12]周启星.气候变化对环境与健康影响研究进展[J].气象与环境学报,2006,22(1):38-44.
    [13]潘晓华,翟盘茂.气温极端值的选取与分析[J].气象,2002,28(10):28-31.
    [14]王亚非,李琰,李萍云,等.2008年初中国南方雪灾大尺度环流背景分析[J].气象学报,2008,66(5):826-835.
    [15]陶诗言,卫捷.2008年1月我国南方严重冰雪灾害过程分析[J].气候与环境研究,2008,13(4):337-350.
    [16]Barnett A G, Tong S, Clements A C A. What measure of temperature is the best predictor of mortality?[J]. Environmental research,2010,110(6):604-611.
    [17]Barreca A I. Climate change, humidity, and mortality in the United States[J]. Journal of Environmental Economics and Management,2012,63(1):19-34.
    [18]Guo Y, Bamett A G, Pan X, et al. The impact of temperature on mortality in Tianjin, China:a case-crossover design with a distributed lag non-linear model[J]. Environmental health perspectives,2011.
    [19]Nastos P T, Matzarakis A. The effect of air temperature and human thermal indices on mortality in Athens, Greece[J]. Theoretical and Applied Climatology,2012,108(3-4): 591-599.
    [20]Gosling S N, Lowe J A, McGregor G R, et al. Associations between elevated atmospheric temperature and human mortality:a critical review of the literature[J]. Climatic Change,2009, 92(3-4):299-341.
    [21]Kalkstein L S, Valimont K M. An evaluation of summer discomfort in the United State using a relative climatological index[J]. Bulletin of the American Meteorological Society,1986, 67(7):842-848.
    [22]谈建国.气候变暖,城市热岛与高温热浪及其健康影响研究[D].南京:南京信息工程大学,2008.
    [23]周家斌,徐永福,王喜全,等.关于气象与人体健康研究的几个问题[J].气候与环境研究,2010,15(1):106-112.
    [24]Kassomenos P, Gryparis A, Samoli E, et al. Atmospheric circulation types and daily mortality in Athens, Greece[J], Environmental Health Perspectives,2001,109 (6):591-596.
    [25]谈建国,黄家鑫.热浪对人体健康的影响及其研究方法[J].气候与环境研究,2004,9(4):680-686.
    [26]Kalkstein L S, Jamason P F, Libby J, et al. The Philadelphia hot weather-health watch-warning system:development and application, summer 1995[J], Bulll Amerl Meteorl Socl 1996,77:1519-1528.
    [27]Kalkstein L S, Nichols M C, Barthel C D, et al. A new spatial synoptic classification: application to air mass analysis[J]. International Journal of Climatology,1996,16(9): 983-1004.
    [28]Kalkstein, L S. Activities within Study Group 6 of the international society of biometeorology [J], Int J Biometeorol,1998,42 (1):8-9.
    [29]谈建国,殷鹤宝,林松柏,等.上海热浪与健康监测预警系统[J].应用气象学报,2002,13(3):356-363.
    [30]Kalkstein L S, Sheridan S C, Graybeal D Y. A determination of character and frequency changes in air masses using a spatial synoptic classification[J]. International Journal of Climatology,1998,18(11):1223-1236.
    [31]Hanna A F, Yeatts K B, Xiu A, et al. Associations between ozone and morbidity using the Spatial Synoptic Classification system[J]. Environmental Health,2011,10(1):49.
    [32]谭冠日,黄劲松,郑昌幸.一种客观的天气气候分类方法[J].热带气象,1991,7(1):55-62.
    [33]Kalkstein L S, Tan G R, Skindlov J A. An evaluation of three clustering procedures for use in synoptic climatological classification[J]. Journal of climate and applied meteorology,1987, 26(6):717-730.
    [34]谭冠日.气候分析应用聚类方法的评价[J].气象学报,1988,2-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700