用户名: 密码: 验证码:
小波参数化与小波神经网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多小波和非分离小波是小波分析的研究热点。正交、紧支撑、对称性、消失矩、平衡性、时频局域性等是小波理论和应用研究广泛关注的性质。将他们参数化以建立统一的多小波或非分离小波函数库,能使不同应用对象针对不同应用要求选取最优小波基函数,对促进小波应用意义重大。
     小波神经网络是近年发展起来的一种高效的非线性信号处理新模型,根据被处理问题自适应最优化小波神经网络的系统性能,能为神经网络广泛的实际应用提供科学的模型设计指南和系统的理论保证。
     本课题拟对比较广泛的一类多小波及相对特殊但具有十分强烈应用背景的几类非分离小波建立关于小波各种内在性质的参数化函数库,并试图揭示非分离小波的本质特征;通过最优化小波元和小波基函数,建立面向问题的自适应小波神经网络系统,并应用于相关的信号处理问题。
In recent years,the research in the field of wavelets analysis has focused on Multiwavelets and Nonseparable wavelets. Symmetry,Orthogonality,Vanishing moment,Balacing and finite supported are the properties concerned widely of the wavelets theory and their applied research.
    It is significant for the application of wavelts to parameterize them and construct a class of function banks of Multiwavelets and Nonseparable wavelets which could supply the most optimized bases of wavelets based on the different applied object and the different applied demands.
    The Wavelets Neural Network is the novel and efficient model of nonlinear signal processing developed in latest years. Optimized wavelet networks adaptively according to the handled question could offer the scientific guide of model design and the systemic theoretic guarantee.
    This project intends to construct a parameterized function banks about the internal properties of wavelets aimed at a extensive kind of Multi-wavelets and some categories of relatively specific Non-separable wavelets with significant practical background, and disclose the essential characters of Non-separable wavelets. Through optimizing the bases of wavelets, it will build a problems oriented system of self-adaptive Wavelets Neural Network and apply it to the relative problems of signal processing.
引文
[1] A.haar. Zur Theorie der Orthogonalen Funktionen, Systeme. Math.Ann,1910(69):331-371
    [2] J.E.Littlewood and R.E.A.C.Paley. Theorems on Fourier Series and Power Series, (Ⅰ),1931(6):230-233 (Ⅱ), 1936(42):52-89 (Ⅲ),1937(43):105-126
    [3] A.P.Caldern. An Automic Decomposition of Distributions in Parablic H_p Spaces, Adv. In Math, 1977(25):216-225
    [4] J.Stromberg. A Modified Haar System and Higher Order Spline on R~n as Uncondi-tional Bases for Hardy Space. In:Conference inharmonic analysis in honor of Antoni Zygmund Ⅱ, W.Becher et al (eds.), Belmont, California,1981:475-493
    [5] A.Grosses and J.Morlet. Decomposition of Hardy Functions into Square Wavelets of Constant Shape. SIAM J Math. Anal, 1984(15):723-726
    [6] Y.Meyer. Principle D'incertitude, Bases Hilbertiennes et Algebra D'operataur. Seminaire Bourbaki. 1985~1986(662)
    [7] I.Daubechies, A.Grossmann and Y.Meyer. Painless nonorthogonal expansions, J.Math. Phy, 1986,27(5):1271-1283
    [8] S.Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989,11(7):674-693
    [9] S.Mallat. Multifrquency channel decompositions of images and wavelet model. IEEE Trans. Acoust. Speech.Signal Processing, 1989,37:2091-2110
    [10] I.Daubechies. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl, 1988,41:909-996
    [11] R.Coifman, Y.Meyer, R.Quake and M.Wickerhauser. Signal Processing and Compression with Wavepackets. In: Proceedings of the Conference on Wavelets. Marseills, Spring, 1989
    
    
    [12] C.K.Chui and J.Z.Wang. A Cardinal Spline Approach to Wavelets. Proc. Amer. Math. Soc, 1991(113):785-793
    [13] A.Cohen, I.Daubechies and D.Feauuveau. Biorthogonal Bases of Compactly Supported Wavelets. Comm. Pure. And Appli. Math, 1992:485-560
    [14] S.Mallat. Multiresolution approximations and wavelet orthonormal bases of L~2(R). Trans.Amer.Math.Soc, 1989,315:69-87
    [15] I. Daubechies. Ten Lectures on Wavelets.Philadelphia:SIAM,1992
    [16] W. Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet bases. J.Math.Phys, 1991,32:57-61
    [17] R.O.Wells,Parameterizing smooth compactly supported wavelets. Trans. Amer. Math. Soc, 1993,338:919-931
    [18] M. J. Lai and D. Roach. Parameterizations of univariate orthogonal wavelets with short support. In: Approximation Theory ⅹ: Wavelets, Splines, and Applications, edited by C. K. Chui, L. L. Schumaker, J. Stoeckler, Vanderbilt Univ. Press, 2002, 369--384.
    [19] W. J. He and M. J. Lai, A new sufficient condition for the orthonormality of refinable functions.In: Approximation Theory Ⅸ: computational Aspects, C. K. Chui and L. L. Schumaker eds., Vanderbilt University Press, Nashville, 1998, 121-128
    [20] I.Daubechies and J.C.Lagarias. Two-scale difference equations is Existence and global regularity of solutions. SIAM J. Math. Anal,1993,22:1388-1410
    [21] P.Teffen, P.N.Heller, R. A. Gopinath and C.S. Burrus. Theory of regular mrand wavelet bases. IEEE. Trans. signal processing, 1993,41(12)
    [22] W.Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet bases. J.Math.Phys, 1993,32:57-61
    [23] Xieping Gao, Jian Wang, Jianshe Yu (高协平、王键、庚建设). Parameterization of univariate orthogonal wavelets with any finite support. preprint, 2003
    [24] 朱长青,小波分析理论与影像分析.测绘出版社,1988
    
    
    [25] 秦前清,杨宗凯,实用小波分析.西安电子科技大学出版社,1994
    [26] 崔锦泰,小波分析导论.西安交通大学出版社,1995
    [27] T.N.T. Goodman, and S.L.Lee. Wavelets of muiticity. Trans. Amer. Math.Soc, 1994,1:307-324
    [28] T.N.T. Goodman, S.L.Lee, and W.S.Tang. Wavelets in wandering subspaces, Trans. Amer. Math. Soc, 1993,338:639-654
    [29] J.Geronimo,D.Hardin and P.Massopust. Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory,1994,373-401
    [30] G.Donovan, J.S.Geronimo and D.P.Hardin. Interwing multiresolution analysis and the construction of piecewise polynomial wavelets. SIAM J.Math.Anal, 1996,27:1791-1815
    [31] G.Donovan, J.Geronimo, D.Hardin and P.Massopust. Construction of orthogonal wavelets using fractal interpolation function. SIAM J.Math.Anal, 1996,27:1158-1192
    [32] I.W. Selesnick. Multiwavelets bases with extra approximation properties. IEEE Trans. Signal Process,1998,46:2898-2908
    [33] I.W. Selesnick. Balanced multiwavelet bases based on symmetric FIR filters. IEEE Trans. Signal Process,2000,48:184-191
    [34] J.Lebrun and M.Vetterli.Balanced muitiwavelets, In:Proc. IEEE. Int. Conf. Aconst. Speech, Signal Process.(ICASSP).Munich, Germany, 1997
    [35] J.Lebrun and M.Vetterli.Balanced multiwavelet theory and design. IEEE.Trans. Signal Process, 1998,46(4):1119-1125
    [36] J.Lebrun and M.Vetterli.High order balanced multiwavelets. In:Proc. IEEE ICASSP, Seattle, WA,1998
    [37] Qingtang J.On the design ofmultifiiter banks and orthonormal multiwavelet bases. IEEE Trans. Signal Process,1998,46(12):3292-3302
    [38] Qingtang J. Paramerzations of symmetric orthogonal muitifilter banks with different filter lengths. Linear Algebra and its Applications, 2000,311:79-96
    [39] Tien D.Bui and Guangyi Chen. Translation-invariant denoising using multiwavelets. IEEE Trans, Signal Process, 1998, 46(12):3414-3420
    
    
    [40] V.Strela, P.N. Heller, G.Strang, P.T. Wala, and C. Heil. The application of multi-wavelet fiiterbanks to image processing. IEEE. Trans. Image Process,1999,8(4):548-563
    [41] X.G.Xia, J.S.Geronimo, D.P.Hardin and B.W.Suter. Design of prefilters for discrete multiwavelet transform. IEEE Trans. Signal Process, 1996,44:25-35
    [42] X.G.Xia. A new prefilter design for discrete multiwavelet transform. IEEE Trans. Signal Process, 1996,46:1791-1815
    [43] Z.Shen, Refinable function vector. SIAM J. Math.Anal, 1998,29:235-250
    [44] Charles K.Chui and Jian-ao Lian. A study of orthonormal multiwavelets. Appl. Num. Math, 1996,20:639-298
    [45] Xieping Gao, Xiaolan Lee (高协平、李笑岚). Balanced Multiwavelet and Multi-filter Bank.Natural Science Journal Of Xiangtan University, 2001, 23(4):92-103
    [46] 唐春明、高协平.同样对称性质的2重尺度函数及其多小波构造.系统工程与电子技术,2002,24(9):70-74
    [47] M. J. Lai. Methods for Constructing Nonseparable Compactly Supported Ortho-normal Wavelets. Wavelet Analysis: Twenty Year's Development, edited by D. X. Zhou, World Scientific, 2002:231--251
    [48] W. He and M. J. Lai. Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets. IEEE Trans. Image Processing, 2000,9:949--953
    [49] W. J. He and M. J. Lai. Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets. In: Wavelet Applications in Signal and Image Processing Ⅳ, proceedings of SPIE, 1997,3169:303--314
    [50] M. J. Lai and D. W. Roach. Nonseparable symmetric wavelets with short support. In: Proceedings of SPIE Conference on Wavelet Applications in Signal and Image Processing Ⅶ, 1999,3813:132-146
    [51] M.J.Lai and D.W.Roach. Construction of bivariate symmetric orthonormal wavelets with short support. Preprint
    [52] W. J. He and M. J. Lai. Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities. Applied Computational Harmonic Analysis, 1999,6:53—74
    
    
    [53] A.Cohen and I.Daubechies. Nonseparable bidimensional wavelet bases. Rev. Mat. Iberoamericana, 1993,51-137
    [54] J.Kovacevic and W.Sweldens. Wavelet families of increasing order in arbitrary dimensions. IEEE Trans. Image processing, 2000,9(3)
    [55] J.Kovacevic and M.vetterli. Nonseparable multi-dimensional perfect reconstruction filter and wavelet bases for R~n. IEEE.Trans.Inform. Theory, 1992,38:533-555
    [56] J. Kovacevic and M.Vetterli. Nonseparable two-and three-dimensional wavelets. IEEE Transactions on signal processing, 1995,33(5)
    [57] E.Belogay,Y.Wang. Arbitrarily smooth orthogonal non-separable wavelets in R~2. SIAM J.Math.Anal, 1999,30(3):678-697
    [58] D.Stanhill and Y.Y.Zeevi. Two-dimensional orthogonal wavelets with Vanishing Moments. IEEE. Trans. signal processing, 1996, 44(10):2579-2589
    [59] D.Stanhill and Y.Y.Zeevi.Two-dimensional orthogonal Filter Banks and wavelets with Linear Phase. IEEE. Trans. signal processing, 1998,46(1):183-190
    [60] G.Karlsson, M.Vetterli and J.Kovacevic. Non-separable two-dimensional perfect reconstruction filter banks. In: Proc. SPIE Conf. Vis. Commun. Image Processing.Cambridge,MA, 1988:187-199
    [61] P.P.Vaidyanthan, T.Q.Nguyen, Z.Doganata and T.Saramaki. Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices. IEEE Trans. Acoust. Speech Signal Processing, 1990,37
    [62] P.N.Heller,H.L.Resnikoff, and R.O.Wells. Wavelet matrices and the representation of discrete functions. In: Wavelets:A Tutorial in Theory and Applications (C.K.Chui eds.). New York:1992
    
    
    [63] P.P.Vaidyanathan. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993
    [64] S.Venkataraman and B.C.Levy. State space representations of 2-D FIR lossless transfer matrices. IEEE Trans. Circuit and System Ⅱ: Analog and Digital Signal Processing, 1994,43:117-132
    [65] M. J. Lai and D. W. Roach. The nonexistence of bivariate symmetric wavelets with short support and two vanishing moments. In: Trends in Approximation Theory, K. Kopotun, T. Lyche, and M. Neamtu (eds.). Nashville:Vanderbilt University Press,2001:213—223
    [66] M.Newman. Integral Matrics. New York,1972
    [67] K.Grochenig and W.R.Madych. Muitiresolution analysis, Haar bases, and selfsimilar tilings of R~n. IEEE Trans. Information Theory, 1993,38(3)
    [68] W.M.Lawton and H.L.Resnikoff. Multidimensional wavelet bases. Tech. Rep. Aware Inc. Cambridge MA,1993
    [69] S.Malassiotis and M.G.Strintzis. Optimal biorthogonal wavelet decomposition of wire-frame meshes using box splines, and its application to the hierarchical coding of 3-D surfaces. IEEE Trans. Image processing, 1999,8(1)
    [70] 龙瑞麟,高维小波分析.世界图书出版公司,1995
    [71] Xieping Gao, Hua Zhong (高协平、钟华). Some Results on Bivariate Nonseparable Wavelets. Wavelet Analysis and Its Applications, World Scientific Publishing, 2003,1:393-398.
    [72] Xieping Gao, Jianshe Yu, Jian Wang (高协平、庚建设、王键).Parameterization of Nonseparable bidimensional orthogonal wavelets with any finite support and the nonexistence of bivariate symmetric wavelets with two vanishing moments, preprint, 2003
    [73] 钟华,高协平.一类二元非分离小波的参数化.计算机工程与科学,2003,己接收,将发表
    
    
    [74] Mclulloch W., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysis, 1943
    [75] B.Delyon, A.Juditsky, A.Benveniste. Accuracy analysis for wavelet approximation. IEEE Trans. Neural Net, 1995,6(2):332-348
    [76] Chuang He and Jose M.G.Moura. Focused detection via multiresolution analysis. IEEE. Trans, Singnal Process, 1998,46:1094-1104
    [77] D.E.Rumelhart, G.E.Hinton, R.J.Williams. Learning internal representations by error propagation. Parallel Distributed Processing, J.L.McClellard and D.E.Rumelhart, Eds.Cambridge, MA:MIT Press, 1996
    [78] J.J.Hopfield. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc.Natl.Acad.Sci. USA,1982
    [79] J.J.Hopfield. Neurons with Graded Respone Have Collective Computational Properties Like Those Two-state Neurons. Proc.Natl.Acad.Sci. USA,1982
    [80] D.W.Tank and J.J.Hopfield. Simple Neural Optimization Networks:An A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit. IEEE Trans. CAS, 1986,33:533-541
    [81] J.Zhang, G.G.Waiter, Yubo Miao, and WanNgai Wayne Lee. Wavelet Neural networks for function learning. IEEE., Signal Process, 1995,43:1485-1497
    [82] Q.Zhang. Using wavelet network in nonparametric estimation. IEEE Trans. Neural Net, 1997,8(2):227-236
    [83] Q.Zhang and A.Benveniste. Wavelet networks. IEEE Trans. Neural Net, 1992,3
    [84] Y.C.Pati, P.S. Krishnaprosad. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformation. IEEE Trans. Neural Net, 1993,4:73-85
    [85] Poggio T., Girosi F. Networks for approximation and learning. Process of the IEEE, 1990,78(9):1481-1497
    [86] Hornik K., Stinchcombe M., White H. multiplayer feedforward networks are universal approximator. Neural Net, 1989,2(5):359-366
    [87] Hwang J.N., Lay S.R., Maechler M.et al., Regrssion modeling in backpropagation and projection pursuit learnin. IEEE Trans. Neural Net, 1994,5(3):342-353
    
    
    [88] 高协平,张钹.区间小波神经网络(Ⅰ)——理论与实现.软件学报,1998,9(3)
    [89] 高协平,张钹.区间小波神经网络(Ⅱ)——性质与模拟.软件学报,1998,9(4)
    [90] Xieping Gao(高协平). A Comparative Research on Wavelet Neural Networks. In:Proceeding of the 9th International Conference on Neural Information Processing,4:1699-1703
    [91] Xiaolan Lee and Xieping Gao(李笑岚、高协平). Multiwavelet Neural Network: A Novel Model. In: Proceeding of the 2003 IEEE International Conference on Systemes, Man & Cybernetics, 2003
    [92] Xieping Gao, Caiyan Jia(高协平、贾彩燕). Research on Construction of Multi-wavelets Using Neural Networks. In:Proceeding of the 6th World Multi-conference on Systemics, Cybernetics and Informatics ,2002
    [93] Xieping Gao, Lipo Wang and Wet Ser(高协平、王力波、徐唯).Wavelet Neural Networks for Prediction of Chaos Time Series. submitted to IEEE Trans. Neural Networks, 2003
    [94] Xieping Gao, Lipo Wang and Wet Ser(高协平、王力波、徐唯).Nonseparable wavelet Neural Networks: An Novel Model.submitted to IEEE Trans. Neural Networks, 2003
    [95] 高协平、贾彩燕.广义插值多小波函数及其神经网络构造研究.计算机研究与发展,2003,40(6):861-868
    [96] 焦李成.神经网络系统理论.西安电子科技大学出版社,1990
    [97] 焦李成.神经网络计算.西安电子科技大学出版社,1993
    [98] 袁曾任.人工神经网络及其应用.清华大学出版社,1999
    [99] 张铃,张钹.人工神经网络理论及应用.浙江科学技术出版社,1995
    [100] 张立明.人工神经网络的模型及其应用.复旦大学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700