用户名: 密码: 验证码:
偏微分方程的小波分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中的许多问题可归类于偏微分方程的求解。传统的各种分析与计算方法在具
    有其特定优点的同时,也均具有其不足之处。例如有限元方法生成稀疏但却病态的刚
    度矩阵;积分方程法需处理满阵,要解决大量的积分,因而计算量大等。如果应用小
    波则上述缺点均可克服。这就是基于小波的算法的优越性。然而在具体应用中仍有许
    多问题需要解决。由于小波定义的开放性,使得首先要处理的是针对不同的问题构造
    或选择合适的小波,使问题的表述变得容易和简单;其次要对算法进行设计和改造,
    以充分利用所选小波基的特点。本文在对小波变换及小波基理论进行研究的基础上,
    主要提出并解决了如下问题:
     1.提出了框架算子族和小波算子族的新概念,它是小波变换的推广。我们讨论了
    框架算子族和小波算子族的性质,证明了连续小波变换归类于小波算子族。在此基础
    上,讨论了电磁小波和通常的小波函数对应的算子族之间的关系,得出了它们之间相
    差一个共轭运算的结论。我们还以声波为例,给出了几种不同参数下声波的共轭小波
    算子族的图形。
     2.我们在小波Galerkin法中用区间小波替代J.Xu用的I.Daubechies的紧支
    正交小波来生成Sobolev空间H_O~1(I)及H~1(I)的小波基,使基的相关性大大减小,进
    一步使刚度矩阵的条件数减少,从而提高了线性方程组求解的速度和精度。在
    Galerkin法基础上,我们利用小波多分辨分析的特性,给出了小波有限元逐层校正
    算法成立的条件,并提出了条件不满足时的全局修正算法。对两点边值问题的计算验
    证了我们的结论。
     3.讨论了利用周期小波进行积分方程矩量法求解的解空间的两种生成方法,在
    此基础上给出了积分方程小波矩量法解空间的收敛性及误差估计。我们提出了多函数
    小波概念,并按照单函数的多分辨分析方法,讨论了多函数小波的一些性质。通过酉
    阵的方式建立了Multiwavelet,并将其成功地应用于二维声波散射问题和非线性
    Hammerstein积分方程。
     4.利用样条函数理论证明了区间样条小波插值是在三次样条函数空间中的最佳
    逼近函数,并在此基础上给出了用尺度函数和用小波函数为基插值的一致性和插值函
    数的误差估计式。我们提出了一种用两个一阶导算子矩阵的乘积替换二阶导算子矩阵
    的替代算法。用两种不同的插值算法对含不同参数的Burgers方程进行了验算,结果
    表明对小参数的Burgers方程,两种算法结果相当;而对稍大的粘性系数,替代算法
    的震荡明显小于原算法,因而替代算法有较大的稳定性范围。
As is well known, many problems in science can be eventually presented in the form of partial differential equation (PDE). While the methods now we using to analysis and compute PDE have their own advantages, they also have some shortcomings, such as the ill condition matrix by FEM and a lot of integrals needed by the BIE. But when wavelets are used, we will not meet the disadvantages mentioned above. Usually applying wavelet to the PDE, we need to solving such problems as follows (1) choose a suitable wavelet basis according to the problem we want to deal with (2) design or modify a good algorithm in order to make use of the characters of the wavelet we choose, etc.
    
     In this dissertation, based on the research of wavelet theory, the following problems are discussed:
    
    1. A new conception. wavelet operator group, is presented, which is the generalization of the wavelet transformation. Having discussed the properties, we prove that the continuous wavelet transformation belongs to the wavelet operator group. We come to the conclusion that the physical wavelet is the conjugate of the wavelet operator group.
    
    2. The substitution is made of the interval wavelet basis for the compact one in order to produce the basis of Sobolev space with the lower condition number, which will improve the speed and the accuracy of the linear system made by wavelet Galerkin method. Also the algorithms based on the local or global correction are presented and their properties are discussed in detail. The numerical results on two point boundary problems test and verify the algorithms.
    
    3. Two ways are discussed to produce solution spaces when the BIE is used with the basis of period wavelet. Based on these, the convergence and the error estimation are given. The MRA with more then one-wavelet function is presented and the multi-wavelet basis is produced by unitary matrix. This basis is used successfully in scattering problem of sonic wave and nonlinear Hanimersterin integral equation.
    
    4. The optimal approximation property is shown when the cubic spline interval wavelet is used in the interpolation with some special points. This property ensures the identical of the interpolation by use of scale basis and of wavelet basis. The interpolation error is also discussed. A new algorithm is presented in which two one-order differential matrixes are used to substitute for the two-order one. This way produces less vibration for the numerical solution of Burgers equation when the coefficient is somewhat larger.
引文
[1] A. Grossmann, J. Morlet, Decomposition of Hardy Functions into Square Integrable wavelets of Constant Shape, SIAM J. Math. Anal., July 1984, Vol. 15, No. 4, pp. 723-736
    [2] P. Gouillaud, A. Grossmann and J. Morlet, Cycle-Octave and Related Transforms in Sesmic Signal Analysis, Geoexploration, 1984/1985, Vol. 23, pp. 85-102
    [3] A. Grossman, J. Morlet and T. Paul, Transforms Associated to Square Integeable Representation, I, General Results, J. Math. Phys., 1985, Vol. 26, No. 10, pp. 2473-2479
    [4] A. Grossman, J. Morlet and T. Paul, Transforms Associated to Square Integeable Representation, Ⅱ, Examples, Am. Inst. Henri Poincare, 1986, Vol. 45, No. 3, pp. 293-309
    [5] 龙瑞鳞著,高维小波分析,1995,世界图书出版公司北京公司出版。
    [6] S. Mallat, Multiresolution Approximation and Wavelet Orthonormal Bases of L~2, Trans. of the America Math. Society, Sept. 1989, Vol. 315, pp. 69-87
    [7] I. Daubechies, Orthogonal Bases of Compactly Supported Wavelets, Comm. Pure Applied Math. 1988, 41, pp. 909-996
    [8] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992, Philadelphia.
    [9] 崔锦泰著,程正兴译,小波分析导论,1995,西安,西安交通大学出版社.
    [10] G. Battle, A Block Spin Construction of Ondelettes: Lemarie Functions, Comm. Math. Phys. 1987, 110, pp. 601-615
    [11] Y.Meyer著,尤众译,小波与算子,1992,世界图书出版公司.
    [12] S. Mallet, Multifrequency Channel Decompositions of Images and Wavelet Models, IEEE Trans. on ASSP. 1989, Vol. 37, No. 12.
    [13] S. Yao and R. J. Clark, Image Sequence Coding Using Adaptive Vector Quantisation in Wavelet Transform Domain, Electronic Letters, 13th, Aug. 1992, Vol. 28, No. 17.
    [14] Mallat, S. A Theory for Multiresolution Signal Decoposition: the Wavelet Representation, IEEE Pattern Anal. And Machine Intel1. 1989, 11, 674-693
    [15] Gangzhu Zhen and Atsunori Yamaguchi, Analysis of Characteristics of Eddy-Current Signals from Steam Generator Tubes Using Wavelets, Proceedings of ASAEM'96 (Ed. X. S. Ma), 1996, Beijing, China, May, pp. 1-6
    [16] H.Ling, H.Kim, Wavelet Analysis of Backscattering Data from an Openended Waveguide Cavity, IEEE, Microwave & Guidewd Wave Letters, 1992, Vol. 2, No. 4, pp. 140-142
    [17] J. C. Goswami, A. K. Chan and C. K. Chui, An Application of Fast Integral Wavelet Transform to Waveguide Mode Identification, IEEE Trans. on MTT, 1995, Vol. 43, No. 3, pp. 655-663
    [18] J. F. Clouet, J. P. Fouque and M. Postel, Spectral Analysis of Randomly Scattered Signals Using the Wavelet Transform. Wave motion 1995, 22, pp. 145-170
    
    
    [19] B.Z. Steinberg and Y. Leviatan, On the Use of Wavelet Expansions in the Method of Moments, IEEE Trans. on Antennas and Propagation, May 1993, Vol. 41, No. 5, pp. 610-619
    [20] B.Z. Steinberg and Y. Leviatan, Periodic Wavelet Expansions for Analysis of Scattering for Metallic Cylinders, Microw. Opt. Techn. Lett. Vol.7, No. 6, pp. 266-268
    [21] Gaofeng Wang, On the Utilization of Periodic Wavelet Expansions in the Moment Methods, IEEE Trans. on Microwave Theory and Techn.. 1995, Vol. 43, No. 10, 1 pp. 2495-2498
    [22] J. C. Goswami, A. K. Chan and C. K. Chui, On Solving First-kind Integral Equations Using Wavelets on a Bounded Interval, IEEE Trans on A. P, Jun. 1995, Vol. 43, No. 6, pp. 614-622
    [23] G. Beylkin, On the Representation of Operators in Bases of Compactly Supported Wavelets, SIAM J Numer. Anal. Dec. 1992, Vol. 6, No. 6, pp. 1716-1740
    [24] 彭玉华,小波分析的若干应用,博士学位论文,1995 西安:西安交通大学.
    [25] 宋玉明,小波在电磁理论中的应用,博士学位论文,1996 南京:东南大学.
    [26] 王先标,积分方程数值解的小波方法,博土学位论文,1997 广州:中山大学.
    [27] Kaiser G, Wavelet Electrodynamics, Physics Letters 1992b A168(1992)28-34.
    [28] 冯象初,徐国华,可用于场问题BEM的多函数小波基,西北大学学报(自然科学版)Apr.1995,Vol.25,Spec.Iss.pp.129-133
    [29] 冯象初,宋国乡,电磁小波的小波算子族表示方法,电工技术学报,已录用,待发表。
    [30] Xiangchu Feng, Gouxiang Song, The Wavelet-based Method for Differential and Integral Equation in Electromagnetic Problems, Proceedings of ASAEM'96(Ed. x. S. Ma), May 1996, Beijing, China, pp. 180-185
    [31] V. Perrier, Towards a Method for Solving Partial Differential Equations Using Wavelet Bases, Comput. Methods Appl. Mech. Engrg. 1994, 116, pp. 301-307
    [32] R. Glowinski etal. Wavelet Solution of Linear and Nonlinear Elliptic, Parabolic and Hyperbolic Problems in One Space Dimension, Proceedings of the 10th international conference on numerical methods in applied science and engineering (SIAM Philadelphia 1990)
    [33] J. Liandrat, et al, Numerical Resolution of Linear Partial Differential Equations Using the Wavelet Approach, preprint
    [34] E. Bacry, S. Mallat, A Wavelet Based Space-time Adaptive Numerical Method for Partial Differential Equations, preprint
    [35] J. Xu, and W. Shann, Galerkin-wavelets Methods for Two-point Boundary Value Problems, Numer. Math. 1992, Vol. 63, pp. 123-144.
    [36] O. Colton and R. Kress, Integral Equation Methods in Scattering Theory, 1983, John Wiley, Newyork.
    [37] Jianzhong Wang, Cubic Spline Wavelet Bases of Sobolev Spaces and Multilevel interpolation, Applied and Computational Harmonic Analysis 1996, 3, pp. 154-163
    
    
    [38] Feng xiangchu, Gan Xiaobin, Notes on the Approximate Space of Cubic Spline Wavelet in H_0~2(I), J. of Xidian Univ., Dec. 1994, Vol. 21, No. 5, pp. 90-95
    [39] 王永中,小波分析在偏微分方程数值解中的应用,[博士学位论文],1997,西安,西安交通大学.
    [40] 叶碧泉等,边界层问题的小波——有限元解,数学杂志,1997,Vol.17,No.1,pp.79-83
    [41] B. Alpert et al. Wavelet-like Bases for the Fast Solution of Second-kind integral Equations, SIAM J. Sci. Comput. 1993, Vol. 14, No. 1, pp. 159-184
    [42] Z. Shen and Y. Xu, Degenerate Kernel Schemes by Wavelets for Nonlinear Equations on the Real Line, preprint
    [43] Tom H. Koorwinder, Fast Wavelet Transforms and Calreron-zygmund Operators, in Wavelets: An Elementary Treatment of Theory and Applications, 1993, pp. 161-182
    [44] W. Dehmen et al, Multi-scale Methods for Pseudo-differential Equations, in Recent Advances in Wavelet Analysis, 1994, pp. 191-235
    [45] Williams JR. Et al, A Multi-scale Wavelet Solver with O(n) Complexity, J. Computer. Physics, 1995, 122
    [46] Wagner R. L. etal, A Study of Wavelet for the Solution of Electromagnetic Integral Equations, IEEE Trans. AP, 1995, 43(8)
    [47] O.V. Vasilyev et al, A Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain, J. Computer. Physics 1995, 120, pp. 33-47
    [48] J. Lindrat et al, Resolution of the ID Regularized Burgers Equation Using a Spatial Wavelet Approximation, Dec. 1990 NASA-CR-187480.
    [49] S. Lazaar et al, Wavelet Algorithms for Numerical Resolution of PDE, Comput. Methods Appl. Mech. Engre. 1994, 116, pp. 309-314
    [50] S. Bertoluzza et al, Wavelet Methods for the Solution of Boundary Value Problems on the Interval, In Wavelets: Theory, Algorithms, and Applications, C.K. Chui (Eds.), 1994, Academic Press, Inc., pp. 425-448
    [51] S. Qian and J. Weiss, Wavelets and the Numerical Solution of Partial Differential Equations, J. Computer. Phys. 1993, 106, pp. 155-175
    [52] S. Jaffard, Wavelet Methods for Fast Resolution of Elliptic Problems, SIAM J. Numer. Anal. Aug. 1992, Vol. 29, No. 4, pp. 965-986
    [53] F. Arandiga, V.F. Candela, Fast Multi-resolution Algorithms for Solving Linear Equations: A Comparative Study, SIAM J. Comput. May 1995, Vol. 16, No. 3, pp. 581-600
    [54] G. Beylkin, On Wavelet-based Algorithms for Solving Differential Equations, in Wavelets: Mathematics and Applications, 1994, CRC Press, inc. pp. 449-466
    [55] F. Heurtaux et al, Scale Decomposition in Burgers Equation, in Wavelets: Mathematics and Applications, 1994, CRC Press, inc. pp. 505-523
    
    
    [56] R. Glowinski et al, A Wavelet Multilevel Method for Dirichlet Boundary Value Problems in General Domains, 1993 Technical Report 93-06, Computational Mathematics Laboratory, Rice Univ.
    [57] L. Greengard and V. Rokhlin, On the Numerical Solution of Two-point Boundary Value Problems, 1989 Technical Report, Yeleu/DCS/RR-692, Yale Univ. New Haven, CT.
    [58] S. Bertoluzza, Adaptive Wavelet Collocation Method for the Solution of Burgers Equation, Trans. Theory and Statistical Physics, to be published
    [59] P. Charton and V. Perrier, Toward a Wavelet Based Algorithm for Two Dimensional Navier-stokes Equations, 1995, in Proc. ICIAM95.
    [60] J. Frohlich and K. Schneider, An Adaptive Wavelet Galerkin Algorithm for One and Two Dimensional Flame Computation, Europe J. Mech. B/Fluids, 1995, Vol. 13, No. 4, pp. 439-471
    [61] Chui C. K. et al, Fast Integral Wavelet Transform on a Dense Set of the Time-Scale Domain, Numer. Math. 1995, Vol. 70, pp. 283-302
    [62] B. Alpert, A Class of Bases in L2 for the Sparse Representation of Integreal Operators, SIAMJ. Bath. Anal. Jan. 1993, Vol. 24, No. 1, pp. 246-262.
    [63] B. Braide, R. Coifman and A. Grossmann, Fast Numerical Computation of Oscillatory Integrals Related to Acoustic Scattering I, Applied and Comput. Harmonic Analysis 1, (1993) pp. 94-99
    [64] G. David, Wavelets and Singular Integral s on Curves and Surfaces, Lecture Notes in Mathematics, 1465, Springer-Verlag
    [65] 邓东皋,震荡积分的快速算法,科学通报,1994,Vol. 39,No.23,pp.2123-2126
    [66] S. Jaffard and P. Laurrenccot, Orthonormal Wavelets, Analysis of Opertors and Applications to Numerical Analysis, in Wavelets-Atutorial in Theory and Applications, C. K. Chui (Et) pp. 1-4
    [67] X. Wang, ID-wavelet Method for Cauchy Singular Integrals, 宁夏大学学报, 1996 第一期.
    [68] X. Wang and W. Lin, ID-wavelet Method for Hammerstein Integral Equations, preprint
    [69] Y. Xu and Y. Yan, Boundary Integral Equation Method for Source Localization with a Continuous Wave Sonar, J. Acoust. Soc. Am. 1992, Vol. 92, No. 2, pp. 995-1002
    [70] P. Auscher and Ph. Tchamitchian, Estimates on Green's Kernel Using Wavelets and Applications, in Recent Advances in Wavelet Analysis, , 1994, pp. 63-86.
    [71] I. Daubechies, Two Recent Results on Wavelet, in Recent Advances in Wavelet Analysis, L.L. Schumaker (eds.), 1994, Academic Press, Inc., pp. 237-258
    [72] I. Daubechioes, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992
    [73] Y. Meyer, Wavelets: Algorithms & Applications, SIAM, Philiadelphia, 1993
    [74] 刘贵中,邸双亮,小波分析及其应用,1992,西安,西安电子科技大学出版社
    [75] 秦前清,杨宗凯,实用小波分析,1994,西安,西安电子科技大学出版社
    [76] M. Ruskai et al, Wavelets and Their Application, 1992, Boston: Jones and Bartlet.
    
    
    [77] C. K. Chui(eds.) Wavelets: A Tutorial in Theory and Applications, 1992, Academic Press, Inc.
    [78] J.J. Benedetto, M. W. Frazier(eds.) Wavelets: Mathematics and aApplications, 1994, CRC Press, Inc.
    [79] S.P. Singh(ed.) Approximation Theory, Wavelets and Application, NATOASI Series C: Mathematical and Physical Sciences, 1995, Vol. 454
    [80] G.G. Water, Wavelets and Other Orthogonal Systems with Applications, 1994 CRC Press, Inc.
    [81] M. Holschneider, Wavelets: An Analysis Tool, 1995, Oxford Science Publications
    [82] 李世雄,刘家琪编著,小波变换和反演数学基础,1994,北京:地质出版社
    [83] I. Daubechies, Orthonormal Bases of Compactly Supported Wavelets Ⅱ, Variations on a Theme, SIAM J>Math. Anal. 1993, 24, pp. 499-519
    [84] I. Daubechies, Orthonormal Bases of Conpactly Supported Wavelets, Comm Pure & Appl. Math. 1988, 41, pp. 909-996
    [85] Auscher, Ondelettes a Support Compact et Conditions aux Limites, J. Funct. Anal. 1993, 111, pp. 29-43
    [86] Auscher, Local Sine and Cosine Bases of Coifman and Meyer and the Construction of Smooth Wavelets, in Wavelets: A Tutorial in Theory and Applications, C. K. Chui (eds.), 1992 Academic Press, Inc., pp. 237-256
    [87] C.K. Chui and E. Quak, Wavelets on the Bounded Interval, Numerical Methods in Approximation Theory, D. Braess(ed.), 1992, Vol. 9, Birkhauser, Boston, pp. 53-75
    [88] L. Andersson et al, Wavelets on Closed Subsets of the Real Line, in Recent Advances in Wavelet Analysis, L. L. Schumaker(ed.) 1994, Academic Press, Inc., pp. 1-61
    [89] Xiaobin Gan, Xiangchu Feng and Chen Xu, Cubic Spline Wavelets in H_0~2(I) and the Multiresolution, PIERS'97, Jan. 1997, HongKong, City Univ.
    [90] Song Guoxiang, Feng Xiangchu, Discussion on Sparse Representation of Integral Equation by Wavelets, EACM'96, , Aug. 1996, Wulumuqi, China
    [91] Feng Xiangchu, Song Guoxiang, Fuyu, On Wavelet-based BEM for Solving PDE in Static Field, PIERS'95, , July, 1995, Seattle, USA
    [92] 王卫卫,甘小冰,解非线性偏微分方程的自适应小波插值方法,西北大学学报(自然科学版),1996,Vol.26,pp.24-30
    [93] Feng Xiangchu,小波有限元逐层算法的校正(英文),J.Xidian Univ.,1995,Vol.22,No.5,pp.126-130
    [94] 张平文等,小波函数值的计算,计算数学,1995(2)
    [95] 邓东皋,彭立中,小波分析,数学进展,1991,20(3)
    [96] 王建中,小波理论及其在物理和工程中的应用,数学进展,1992,21
    [97] C.A.布雷拜,S 沃克著,边界元法的工程应用,陕西科技出版社,1985,10
    
    
    [98] 杨仕友,倪光正,小波及其在电磁场数值计算中的应用,电机与控制学报,1997,3,Vol.1,No.1,
    [99] 胡之光主编,电机电磁场的分析与计算,机械工业出版社,1982,2
    [100] 章文勋编,无线电技术中的微分方程,国防工业出版社,1982,6
    [101] C. T. Tai, Dyadic Green's Function in Electromagnetic Theory, 1971, Intext Educational Publishers, Scratton, Pa.
    [102] 陈惠青著,梁昌洪译,电磁场理论——无坐标方法,1988 北京:电子工业出版社
    [103] 宋文淼,并矢格林函数和电磁场的算子理论,1991,中国科学技术大学出版社
    [104] 宋国乡等,数值泛函及小波分析初步,河南科学技术出版社,1993
    [105] G. Kaiser, Wavelet Electrodynamics, Progress in Wavelet Analysisand Applications, Y. Meyer(ed.), 1993, Editions Frontieres, Paris, pp. 729-734
    [106] G. Kaiser, Wavelet Electrodynamics, PartⅡ: Atomic Composition of Electromagnetic Waves, Applied and Computational Harmonic Analysis 1(1994), pp. 246-260
    [107] Kaiser G. A Friendly Guide to Wavelet, June, 1994
    [108] 徐长发等,小波有限元算法及数值分析,高校计算数学学报,1994,3
    [109] A.Cohen, I. Daubechies and P. Vial, Wavelet on the Interval and Fast Wavelet Transforms, Applied and Computational Harmonic Analysis, 1993, No. 1
    [110] Beylking G. etal. Fast Wavelet Transform and Numerical Algorithm I., Commun. on Pure and Applied Math., 1991, XLⅣ, 141-183
    [111] W. Wendland, Asymptotic Accuracy and Convergence, Progress in Boundary Element Methods, C. A. Brebbia(Ed. ), Pentech Press, London, 1981, pp289-313
    [112] 郭友中,李清溪,数学物理方法,1993,武汉大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700