用户名: 密码: 验证码:
中国东部季风湿润区大气水分收支特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用NECP/NCAR1、NECP/NCAR2、ECMWF(ERA40)的再分析资料,以及中国160台站月平均降水资料和中国757台站夏季(6~8月)月平均降水资料,运用经验正交函数分解(EOF)、小波分析、奇异值分解(SVD)、M-K检验等统计方法以及相关、合成诊断方法,对中国东部季风湿润区大气水分收支的气候特征,水汽输送及降水的时空分布特征进行了较为系统的分析研究。其中着重分析了冬季、夏季大气水分收支高低值年(代)对应的水汽输送异常、大气环流异常、冬夏季风强弱、经向风异常和降水异常等问题。运用RegCM3模式对中国东部季风湿润区冬夏大气水分收支高低值年(代)对应的水汽输送、水汽通量散度及降水进行了模拟试验。全文主要结论归纳如下:
     ⑴中国东部季风湿润区多年平均的大气水分收支,年总和与四季均为水分收入。水汽输送在春季和夏季最强,大气水分收入最多,对净收入的贡献最大;秋季和冬季的水汽输送较弱,大气水分收入较少。
     ⑵多年平均的季风湿润区南边界为主要的水汽输入区;西边界全年水汽输入,东边界水汽输出。水汽输送计算得到的大气水分收支年循环在2~10月为水分收入,水汽通量散度和P? E计算得到的大气水分收支在2~9月为水分收入。
     ⑶水汽输送和水汽通量散度计算的大气水分收支垂直分布情况较为接近。四季的大气水分收支垂直分布各不相同,在对流层低层,春季和夏季以水分收入为主,秋季和冬季以水分支出为主;在对流层中上层,四季均以水分收入为主。整个区域在850hPa为水分支出外,其余各层均为水分收入。四季大气水分收支的长期变化趋势明显,在几十年里表现出显著的线性趋势。
     ⑷对年总和及四季大气水分收支时间序列进行M-K检验,揭示了存在的突变现象;通过小波分析,发现上述时间序列的周期表现为2~4年。
     ⑸运用EOF方法对冬、夏季降水场,水汽输送场进行分解,揭示了冬、夏季水汽输送及降水的异常时空分布特征。运用SVD分解,发现冬、夏季经纬向水汽输送与降水的第一对奇异向量场具有同相变化关系。
     ⑹冬季大气水分收支时间序列的高低指数年能够指示季风湿润区经向风的异常变化,还能够指示东亚冬季风的强弱和降水的异常变化。高值年,蒙古冷高压和阿留申低压偏弱,东亚大陆对流层低层盛行异常偏南风。季风湿润区30°N以南有强烈地上升运动,配合南海、孟加拉湾的暖湿水汽输送,可使大气水分收入增多,造成降水异常增加;而低值年则相反。合成的异常水汽输入集中在900~600hPa之间,其中西、南边界为水汽输入区,而东、北边界为水汽输出区。合成的大气水分收入的经向变化占净收入变化的91.3%。合成的异常降水中心量值可达40mm以上,而水分收支年代际变化合成的异常降水中心量值可达30mm以上。冬季的平均流造成季风湿润区水汽辐合,瞬变波造成水汽辐散。高值年季风湿润区的瞬变偏南水汽输送强,南海的瞬变偏南水汽输送弱;低值年则相反。
     ⑺夏季大气水分收支时间序列的高低指数年能够指示中国东部季风湿润区经向风的异常变化,对季风湿润区的降水变率具有指示意义。合成的整层水汽输送在东亚–西太平洋区表现为经向三极子型。不同层次的大气环流异常有利于外部的异常水汽输入,可造成大气中的水分增多,降水增加。降水的差异由经向水分收入与支出的变化造成,纬向的收支变化对此差异贡献只有经向的1/4。
     ⑻夏季高值年代,东亚夏季风偏弱,副热带高压偏西、偏强,亚洲热低压偏弱,对流层低层为异常气旋式辐合,异常偏南风盛行,外界有较多水汽输入,上升运动强烈,有利于降水的产生;低值年代则相反。合成的边界水汽异常输入输出主要集中在900~500hPa之间。高值年代,5月以前的降水偏少,对应经纬向水汽输送负异常,6~8月偏多,对应经纬向水汽输送正异常,10月以后经纬向水汽输送正异常,降水负异常;低值年代则相反。
     ⑼夏季瞬变水汽通量高值区较冬季北抬,瞬变波造成水汽辐散。夏季高值年代季风湿润区的瞬变偏南水汽输送强,南海的偏西水汽输送强。根据NECP1、NECP2、ERA-40资料得出的大气水分收支时间序列具有相同的变化趋势,在水汽输送、水汽通量散度的合成场上分布形式较为一致。
     ⑽RegCM3模式对于冬、夏季季风湿润区降水的分布具有较好的模拟能力。SWT2模拟结果的水汽输送场比SWT1与再分析资料结果相似性更好,揭示了夏季更大的海陆热力差异可能是影响大气环流发生异常的原因之一。
Using daily and monthly means of the reanalysis datasets from the NCAR/NCEP1、NECP/NCAR2、ECMWF(ERA40),rainfall data from 160 and 757(June~August)surface stations in China for the period 1958 to 2007 and referring to atmospheric circulations in eastern China monsoon wetness region. We use the empirical orthogonal function decomposition (EOF), wavelet analysis, singular value decomposition (SVD), Mann-Kendall test and other statistical methods and related synthetic、composite diagnosis methods, systematic analyzing the climatic character of moisture budgets in Eastern China monsoon wetness region and the spatial temporal distribution of precipitation and water vapor transport. We analyze the winter and summer moisture balance in high and low values years(decadal years) which corresponding to water vapor transport anomaly, atmospheric circulation anomalies, winter and summer monsoon strength, the meridional wind anomalies, precipitation anomalies and so on. At the same time, we use the RegCM3 mode to simulation the winter and summer anomaly of water vapor transport、moisture flux divergence and precipitation in high and low values years(decadal years) in Eastern China monsoon wetness region.
     The major conclusions can be summarized as follows:
     ⑴For yearly moisture budgets in this area, moisture has incoming, and the same results for spring, summer, autumn, winter. Based on different method to calculate moisture balance, we have got that water vapor transport and moisture budgets are stronger in spring and summer, while in winter and autumn are relative weak.
     ⑵For the meridional water wapor transport, water vapor enters this area mainly in south boundary, and enters through west boundary and departs from east boundary all the year For the zonal. For whole area, the moisture budget which is calculated by water wapor transport method is positive from February to October. Meanwhile, moisture budgets which are calculated by moisture flux divergence method or P ? Emethod, the results are positive in February to September in the same time.
     ⑶Based on water wapor transport and moisture flux divergence methods which calculate the vertical distribution of moisture budgets under climatically, the values manifest positive anomaly between 800~500hPa. We have got that moisture output at 850hPa, other layers input under climatically. The vertical distribution of moisture budgets is different for seasons, the values manifest positive in the lower troposphere in spring and summer, while manifesting negative in autumn and winter. The values manifest positive in the upper troposphere for seasons. The interannual variability of four seasons is explicitly and shows a significant linear trend in the decades.
     ⑷Using M-K tests to analyze the the time series of moisture budgets for annual and four seasons, revealed the existence of abrupt change from each time series; Using wavelet analysis, revealed the period of each time series mainly in 2 to 4 years.
     ⑸Using EOF method in winter and summer to analyze precipitation and water vapor transport field, revealed the character of the temporal and spatial distribution. Using SVD method in winter and summer to analyze precipitation and water vapor transport field, found out that there have a relationship with the phase change.
     ⑹The high values of moisture budgets are not only reflecte the variations of the anomaly of meridional winds but also indicate an intensity of winter monsoon and an anomaly of rainfall along the valleys in the Eastern China monsoon wetness region. Corresponding to the higher value years, the high and cold pressure centering in Mongolia and the low pressure centering in Aleutian are weaker. Meanwhile, the southerly wind anomalies prevail in the lower troposphere and anomaly cyclone circulation in the vertical troposphere over the mainland of China, therefore intensifying the convergence and upward motion in south of 30°N and coordinating with the water vapor transport of Bay of Bengal and South China Sea. It causes the moisture budgets and anomaly rainfall to increase, but the lower value years are oppositely. The difference in composites for water vapor transport importes between 900 to 600 hPa, western or southern boundary is the major input region, the remains are the contrary. The larger difference in composites for moisture budgets is in meridional, accounting for 91.3% for net incoming change, the difference in composites for the zonal moisture budgets is smaller. The difference in composites for rainfall is above 40mm in center. The difference in composites for decadal rainfall is above 30mm in center. The mean flow brings about moisture convergence, and transient eddy brings about divergence. In higher value years, the southerly transient eddy of water vapour transport is weaker in the South China Sea, and stronger in the eastern China.
     ⑺The moisture budgets sequence display the significant interannual variations in summer, Not only reflecte the variations of the anomaly of meridional winds but also indicate an intensity of summer monsoon and an anomaly of rainfall along the valleys in the Eastern China monsoon wetness region. The difference between high and low values of integrated water vapor transport to East Asia-Western Pacific Region shows the three-pole type. Different levels of atmospheric circulation anomalies in composite are conducive to water vapor input, increaseing the moisture and precipitation. Differences between high and low values of precipitation in composite mainly causes to the change of income and expenditure meridional moisture budgets, but the change of zonal budget contributes to this difference only by 1/4.
     ⑻The interdecadal variations of summer moisture budgets, in high value era, the summer monsoon is weak, subtropical high is wester and stronger; Asian thermal low pressure is weak, the lower troposphere appears anomalous cyclonic circulation, and prevails anomalous southerly wind, as more water vapor enter from the outside, accompanies with the strong upward motion, so it is easy to the generation of precipitation. The difference in composite for water vapor transport importes between 900 to 500 hPa, Accompanying with the difference and significant anomaly for rainfall, the main reason is changes by the incoming and expenditure in meridional moisture budgets. Before May, the precipitation is less than normal, corresponding to the negative anomaly of water vapor transport in meridional and zonal; between June to August, the precipitation is more than normal, corresponding to the positive anomaly of water vapor transport; after October, the precipitation is negative and water vapor transport is positive. But the low value era is oppositely.
     ⑼The high values region of water vapor flux by transient eddy northerly in summer than winter. In higher value era, the southerly and westerly transient eddy of water vapour transport is stronger in the eastern China and the South China Sea. The interdecadal variability of moisture budgets can reflect from NECP1、NECP2、ERA-40 reanalysis datasets, and the same difference of distribution in composite for water vapor transport and moisture flux divergence.
     ⑽RegCM3 model has a good ability to simulate the interdecadal variation of precipitation, the difference in composite for SWT2 is better than SWT1, it can reveal one of the reasons that land-sea thermal difference will affect the atmospheric circulation anomalies in summer.
引文
[1] Tao S Y, Chen L X. A review of recent research of the East Asian summer monsoon in China. Monsoon Meteorology. Oxford:oxford University Press, 1987:60—92.
    [2] Ding Y H. Summer monsoon rainfall in China. Journal of Meteorology society of Japan, 1992, 70:373—396.
    [3]赵平,南素兰.气候和气候变化领域的研究进展.应用气象学报, 2006, 17(6):725—735.
    [4]孙颖,丁一汇.青藏高原热源异常对1999年东亚夏季风异常活动的影响.大气科学, 2002, 20(6):817—828.
    [5] Huang R H, Zhou L T, Chen W. The progresses of recent studies of the variabilities of the East Asian monsoon and their causes. Advance Atmospheric Sciences, 2003 , 20:55—69.
    [6]高由禧,徐淑英.关于东亚季风区域的气候的研究.气象学报, 1959, 30(3):258—262.
    [7] Lin H, Wang B. The time–space structure of the Asian–Pacific summer monsoon:A fast annual cycle view. Journal of Climate, 2002, 15(15):2001—2019.
    [8]孙林海,赵振国,许力,等.中国东部季风区夏季雨型的划分及其环流成因分析.应用气象学报, 2005, 16(3):56—62.
    [9]赵平,周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报, 2006, 17(5):548—556.
    [10]陈隆勋,朱乾根,罗会邦,等.东亚季风.北京:气象出版社, 1991.
    [11]王劲松,陈发虎,靳立亚,等.亚洲中部干旱区在20世纪两次暖期的表现.冰川冻土, 2008, 30(2):224—233.
    [12] Wang B, Lin H. Rainy season of the Asian–Pacific summer monsoon. Journal of Climate, 2002, 15:386—398.
    [13]钱维宏.全球气候系统.北京:北京大学出版社, 2009.
    [14]徐淑英.我国的水汽输送和水分平衡.气象学报, 1958, 29:33—43.
    [15] Starr V P, Peixoto J P. On the global balance of water vapour and the hydrology of deserts. Tellus, 1958, 10:189—194.
    [16] Starr V P, Peixoto J P, Livadas G C. On the meridional flux of water vapor in the Northern Hemisphere. Geof.Purae Appl, 1958, 39:174—185.
    [17] Starr V P, Peixoto J P. The hemisphere eddy flux of water vapor and its implications for the general circulation. Arch. Meteorol. Geophys. Bioklimatol, 1964, A14:111—130.
    [18] Lufkin D. Atmospheric water divergence and the water balance at the Earth’s surface. General Circulation Project Science Rept. Cambridge Mass, 1959, MIT Press, (4):44.
    [19]郑斯中.我国东部地区的水汽辐合场.科学出版社, 1962, 111—120.
    [20]谢义炳,戴武杰.中国东部地区夏季水汽输送个例计算.气象学报, 1959, 30(2):173—185.
    [21] Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part I:Characteristics of the water vapor flux field. Monthly Weather Review, 1967, 95:403—426.
    [22] Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part II:Large-scale water balance investigations. Monthly Weather Review, 1968, 96:720—724.
    [23]施永年.我国7月份夏季风的大气水分平衡.云南人民出版社, 1962:147—155.
    [24] Newell R E. The General Circulation of the Tropical Atmosphere and Interaction with Extratropical Latitudes, 1972, Volume I.
    [25]高国栋,陆渝蓉,翟盘茂,等.淮河流域大气水汽输送特征及其对旱涝形成的影响.淮河流域能量与水分循环研究.北京:气象出版社, 1999:75—81.
    [26]刘国伟,崔一峰.中国上空的涡动水汽输送.水科学进展, 1991, 2(3):144—153.
    [27] Serreze M C, Roger G. Atmospheric water vapor characteristics at 70°N. Journal of Climate, 1995:719—731.
    [28]吴国雄,刘还珠.全球大气环流时间平均统计图集.北京:气象出版社, 1987.
    [29]周天军,张学洪,王绍武.全球水循环的海洋分量研究.气象学报, 1999, 57 (3):264—282.
    [30] Judah L C, David A S, Richard D R. Interannual variability in the meridional transport of water vapor. Journal of Hydrometeorology, 2000, 1(6):547—553.
    [31]徐祥德,陶诗言,王继志,等.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系.气象学报, 2002, 3:257—267.
    [32] Roads J O, Chen A K, Georgakakos K P. Large-scale aspects of the United States hydrological cycle. Bulletin of the American Meteorological Society, 1994,75:1589—1610.
    [33] Zangvil A, Portis D H, Lamb P J. Investigation of the large-scale atmospheric moisture field over the Midwestern United States in relation to summer precipitation. Part I:Relation2ships between moisture budget components on different time scales. Journal of Climate, 2000, 14:582—597.
    [34]张洁,周天军,宇如聪,等.中国春季典型降水异常及相联系的大气水汽输送.大气科学, 2009, 33(1):121—134.
    [35]蒋兴文,李跃清,王鑫.中国地区水汽输送异常特征及其与长江流域旱涝的关系.地理学报, 2008, 63(5):482—490.
    [36]赵瑞霞,吴国雄.黄河流域中上游水分收支以及再分析资料可用性分析.自然科学进展, 2006, 16 (3):316—324.
    [37]赵瑞霞,吴国雄.长江流域水分收支以及再分析资料可用性分析.气象学报, 2007, 65 (3):416—427.
    [38] Zhang R h. Relations of water vapor transport from Indian monsoon with that overEast-Asia and the summer rainfall in China. Advances in Atmospheric Sciences, 2001, 18(5):l005—1017.
    [39] Zhou T J, Yu R C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. Journal of Geophysical Research, 2005, (110):D08104.
    [40]翟盘茂,高国栋.长江流域旱涝时期大气水汽输送与收支.气象学报, 1992, 50(4):511—513.
    [41] Arraut J M, Satyamurty P. Precipitation and water vapor transport in the Southern hemisphere with emphasis on the South American region. Journal of Applied Meteorolog and climatology, 2009, 48(9):1902—1912.
    [42] Knippertz P, Wernli H. A lagrangian climatology of tropical moisture exports to the Northern Hemispheric Extratropics. Journal of Climate, 2010, 23(2):987—1003.
    [43]叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究.山东科学技术出版社, 1996.
    [44] Daniel L, Steve G. Water vapor transport over the Indian Ocean during the 1979 summer monsoon. Part I:Water vapor fluxes. Monthly Weather Review, 1987, 115(3):653—663.
    [45]徐建军,何金海,朱伟军,等.亚洲夏季风季节与季节内平均水汽输送的分析.海洋学报, 1994, 4:48—54.
    [46]伊兰,陶诗言.定常波和瞬变波在亚洲季风区大气水分循环中的作用.气象学报, 1997, 5:532—544.
    [47]黄荣辉,张振洲,黄刚,等.夏季东亚季风区水汽输送特征及其与南亚季风区水气输送的差别.大气科学, 1998, 22 (4):460—469.
    [48]谢安,宋焱云,毛江玉,等.南海夏季风期间水汽输送的气候特征.气候与环境研究, 2001, 4:425—434.
    [49]柳艳菊,丁一汇,宋艳玲. 1998年夏季风爆发前后南海地区的水汽输送和水汽收支.热带气象学报, 2005, 1:55—62.
    [50] Schmitz J T, Mullen S L. Water vapor transport associated with summertime North American monsoon as depicted by ECWMF analyses. Journal of Climate, 1996, 9:1621—1634.
    [51] Trenberth K E, Guillemot C J. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalysis. Climate Dynamics, 1998, 14:213—231.
    [52] Bisslink B, Dolman A J. Precipitation recycling:Moisture sources over Europe using ERA-40 data. Journal of Hydrometeorology, 2008, 9(10):1073—1083.
    [53] Simmonds I, Daohua Bi, Hope P. Atmospheric water vapor flux and its association with rainfall over China in summer. Journal of Climate, 1999, 12(5):1353—1367.
    [54] Ninomiya K. Moisture balance over China and the South China Sea during the summer monsoon in relation to the intense rainfalls over China. Journal of Meteorology Society of Japan, 1999, 77(3):737—751.
    [55]范广洲,吕世华,程国栋.华北地区夏季水量丰、枯年大气水分收支对比分析.兰州大学学报(自然科学版) , 2001, 37 (3):134—141.
    [56]苗秋菊,徐祥德,张胜军.长江流域水汽收支与高原水汽输送分量“转换”特征.气象学报, 2005, 63(1):93—99.
    [57]赵瑞霞,吴国雄,张宏.夏季风期间长江流域的水汽输送状态及其年际变化.地球物理学报, 2008, 51(6):1670—1681.
    [58]张文君,周天军,宇如聪.中国东部水分收支的初步分析.大气科学, 2007, 31(2):329—345.
    [59]施小英,施晓晖,毛嘉富.夏季东亚地区水汽输送年代际变化特征及其对中国东部降水的影响.地理学报, 2009, 64(7):861—870.
    [60]施小英,施晓晖.夏季青藏高原东南部水汽收支气候特征及其影响.应用气象学报, 2008, 19(1):41—46.
    [61]陈际龙,黄荣辉.亚洲夏季风水汽输送的年际年代际变化与中国陆地旱涝的关系.地球物理学报, 2008, 51(2):352—359.
    [62]索渺清,丁一汇.冬半年副热带南支西风槽结构和演变特征研究.大气科学, 2009, 33(3):425—442.
    [63]丁一汇,孙颖,李跃凤,等. 20世纪90年代东亚严重旱涝事件的大尺度条件分析.见:我国旱涝重大气候灾害及其形成机理研究.北京:气象出版社, 2003:260—275.
    [64] Draper C, Mills G. The atmospheric water balance over the Semiarid Murray–Darling river basin. Journal of Hydrometeorology, 2008, 6:521-534.
    [65] Liu J, Stewart R. Water vapor fluxes over the Saskatchewan River basin. Journal of Hydrometeorology, 2003, 11(4):944—959.
    [66] Leung L R, Qian Y, Han J, et al. Intercomparison of global reanalysis and regional simulations of cold season water budgets in the Western United States. Journal of Hydrometeorology, 2003, 12(4):1067—1087.
    [67] Ralph F, Neiman P, Wick G. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 2004, 132(7):1721—1745.
    [68] Todd M, Washington R, Palmer P. Water vapour transport associated with tropical temperature trough systems over southern Africa and southwest Indian ocean. International Journal of Climatology, 2004, 24:555—568.
    [69] Munoz E, Busalacchi A, Nigam S, et al. Winter and summer structure of the Caribbean low-level jet. Journal of Climate, 2008, 23(2):87—1003.
    [70] Sch?fler A, D?rnbrack A, Kiemle C, et al. Tropospheric water vapor transport as determined from airborne lidar measurements. Journal of Atmospheric and Oceanic Technology, 2010, 27(12): 2017—2030.
    [71] Sohn B J, Park S C. Strengthened tropical circulations in past three decades inferred from water vapor transport. Journal of Geophysical Research, 2010, 115, D15112, doi :10.1029/2009JD013713.
    [72]施晓晖,徐祥德,程兴宏. 2008年雪灾过程高原上游关键区水汽输送机制及其前兆性“强信号”特征.气象学报, 2009, 67 (3):478—487.
    [73] He J H, Sun C H, Liu Y Y, et al. Seasonal transition feature of large-scale moisture transport in the Asian-Australian monsoon region. Advances in Atmospheric Sciences, 2007, 24(1):1—14.
    [74]范广洲,程国栋.青藏高原隆升对西北干旱气候形成影响的模拟(Ⅱ):水汽收支及高原动力、热力作用的影响.高原气象, 2003, 22(增刊):58—66.
    [75] Zhang R H,Sumi A. Moisture circulation over east Asia during El Nino episode in northern winter, spring and autumn. Journal of the Meteorological Society of Japan, 2002, 80(2):213—227.
    [76]周长艳,蒋兴文,李跃清,等.高原东部及邻近地区空中水汽资源的气候变化特征.高原气象, 2009, 28(1):55—63.
    [77]周长艳,李跃清,李薇,等.青藏高原东部及邻近地区水汽输送的气候特征.高原气象, 2005, 24(6):880—888.
    [78] Yang W X, Li H Y, Li Z T, et al. Analysis on vapour field for the drought causes in Beijing, Tianjin and Hebei districts in recent years. Agricultural Science & Technology, 2010, 11(1):117—121.
    [79]简茂球,陈蔚翔,乔云亭,等.广东大尺度大气水汽汇的年际及年代际变化特征.热带气象学报,2007, 23(6):545—552.
    [80]周连童,黄荣辉.关于我国夏季气候年代际变化特征及其可能成因的研究.气候与环境研究, 2003, 8(3):274—290.
    [81]赵声蓉,宋正山,纪立人.华北汛期降水与亚洲季风异常关系的研究.气象学报, 2002, 60(l):68—75.
    [82]严中伟,季劲钧,叶笃正. 60年代北半球夏季气候跃变.降水和温度变化.中国科学(B辑), 1990, 1:97—103.
    [83] Wang H J. The weakening of the Asian monsoon circulation after the end of the 1970’s. Advances in Atmospheric Sciences, 2001, 18(3):376—386.
    [84] Wang H J. The Instability of the East Asian Summer Monsoon-ENSO Relations. Advances in Atmospheric Sciences, 2002, 19(1):1—11.
    [85]杨修群,谢倩,朱益民,等.华北降水年代际变化特征及相关的海气异常型.地球物理学报, 2005, 48(4):789—797.
    [86]郭其蕴.东亚夏季风的变化与中国降水.热带气象, 1985, 1(1):44—52.
    [87]郭其蕴,蔡静宁,邵雪梅,等.东亚夏季风的年代际变率对中国气候的影响.地理学报,2003, 58(4):569—576.
    [88]黄刚.东亚夏季风环流指数与夏季气候变化关系的研究.应用气象学报, 1999, 10:61—66.
    [89]黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势.高原气象, 1999, 18(4):465—476.
    [90]张庆云,卫捷,陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征.气候与环境研究, 2003, 8:307—318.
    [91] Kwon M H, Jhun J G, Wang B, et al. Decadal change in relationship between East Asian and WNP summer monsoons. Geophysical Research Letters, 2005, 32, L16709, doi:10.1029/2005GL023026.
    [92] Kwon M H, Jhun J G, Ha K J. Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophysical Research Letters, 2007, 34, L21706, doi :10.1029/2007GL031977.
    [93] Yao C, Yang S, Qian W, Lin Z, et al. Regional summer precipitation events in Asia and their changes in the past decades. Journal of Geophysical Research, 2008, 113, D17107, doi:10.1029/2007JD009603.
    [94] Wu R G, Wen Z P, Yang S, et al. An interdecadal change in Southern China rainfall around 1992/1993. Journal of Climate, 2010, 23(1):2389—2403.
    [95] Ding Y H, Wang Z Y, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. PartI: Observed evidences. International Journal of Climatology, 2008, 28:1139—1161.
    [96]陈烈庭.华北各区降水年际和年代际变化的地域性特征.高原气象, 1999, 18(4):477—485.
    [97]陆日宇.华北夏季不同月份降水的年代际变化.高原气象, 1999, 18(4):509—519.
    [98]孙力.中国东北地区夏季降水异常的气候分析.气象学报, 2000, 58(1):70—81.
    [99]杨志刚.近年来黄河下游断流的干旱背景分析.气象学报, 2000, 58(6):751—758.
    [100]戴新刚,汪萍,丑纪范.华北汛期降水多尺度特征与夏季风年代际衰变.科学通报, 2003, 48(23):2483—2487.
    [101] Zhai P M, Zhang X B, Wang H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate, 2005, 18:1096—1108.
    [102]钱维宏,陆波,梁浩原.年际和年代际冷暖变化是人类活动碳排放量增减的诱因.科学通报. 2011, 56(1):68—73.
    [103]高学杰,石英, Giorgi F.中国区域气候变化的一个高分辨率数值模拟.中国科学D, 2010, 40(7):911—922.
    [104] Gao X J, Zhao Z C, Ding Y H, et al. Climate change due to greenhouse effects in China as simulated by a regional climate model. Advances in Atmospheric Sciences, 2001, 18(6):1224—1230.
    [105]高学杰,徐影,赵宗慈,等.数值模式不同分辨率和地形对东亚降水模拟影响的试验.大气科学. 2006, 30(2):185—192.
    [106]谢坤,任雪娟,张耀存.区域海气耦合模式对华北夏季大气水汽输送模拟结果的检验及其与单独气候模式的比较分析.气象学报, 2009, 67(6):1002—1012.
    [107]赵平,蒋品平,周秀骥,等.春季东亚海–陆热力差异对我国东部西南风降水影响数值试验.科学通报, 2009, 54(16):2372—2378.
    [108]丁一汇,李巧萍,董文杰.植被变化对中国区域气候影响的数值模拟研究.气象学报, 2005, 63(5):614—621.
    [109]闵莉,张志刚,刘文菁,等.区域气候模式对地形影响东亚大气环流季节变化的数值模拟研究.气象科学, 2008, 28(2):155—162.
    [110]倪文琪,蒋国荣.东亚夏季风过程大气低频振荡的数值模拟研究.热带气象学报, 2010, 26(1):93—97.
    [111]周建玮.王咏青.区域气候模式RegCM3应用研究综述.气象科学, 2007, 27(6):155—162.
    [112]李辑,王小桃,李菲,等.区域气候模式RegCM_NCC在东北地区的应用研究.气象与环境学报, 2010, 26(3):1—6.
    [1] Kalnay E, Kanamitsu M, Kistler R, et al. The NECP/NCAR 40year reanalysis project. Bulletin of the American Meteorological Society, 1996, 77(3):437—471.
    [2]赵瑞霞,吴国雄.黄河流域中上游水分收支以及再分析资料可用性分析.自然科学进展, 2006, 16(3):316—324.
    [3]赵瑞霞,吴国雄.长江流域水分收支以及再分析资料可用性分析.气象学报, 2007, 65(3):416—427.
    [4] Rasmusson E M, Mo K C. Large-scale atmospheric moisture cycling as evaluated from NMC global analysis and forecast products. Journal of Climate, 1996, 9:3276—3297.
    [5]丁一汇.高等天气学.北京:气象出版社, 2005.
    [6]吴国雄,刘辉.气候物理学.北京:气象出版社, 1995.
    [7] Peixoto J P, Kettani M A. The control of the water cycle. Scientific American, 1973, 228:46—61.
    [8] Peixoto J P, Oort A H. The atmosphereic branch of the hydrological cycle and climate. In Variations of the Globle Water Budget. Reidel, London, 1983, pp:5—65.
    [9] Yanai M, Esbensen S, Chu J H. Determination of average bulk properties of tropical cloud clusters from larger-scale heat and moisture budgets. Journal of Atmospheric Science, 1973, 30(4):611—627.
    [10] Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part I:Characteristics of the water vapor flux field. Monthly Weather Review, 1967, 95:403—426.
    [11] Roads J O, Chen S C, Guetter A K, et al. Large-scale aspects of the United States hydrological cycle. Bulletin of the American Meteorological Society, 1994, 75:1589—1610.
    [12] Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part II:Large-scale water balance investigations. Monthly Weather Review, 1968, 96:720—724.
    [13] Barry R G. Variations in the content and flux of water vapor over north-eastern North America during two winter seasons. Quarterly Journal of the Royal Meteorological Society, 1967, 93:535—543.
    [14] Zangvil A, Portis D H, Lamb P J. Investigation of the large-scale atmospheric moisture field over the Midwestern United States in relation to summer precipitation. Part I:Relationships between moisture budget components on different time scales. Journal of Climate, 2000, 14:582—597.
    [15]周天军,张学洪,王绍武.全球水循环的海洋分量研究.气象学报, 1999, 57(3):264—282.
    [16]赵瑞霞.中国长江、黄河流域水分收支与水分循环[博士学位论文].北京:中国科学院研究生院, 2005.
    [17]周晓霞.亚洲夏季风水汽输送特征及其与中国降水关系的研究[博士学位论文].南京:南京信息工程大学, 2007.
    [18]魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 1999.
    [19]施能.气象科研与预报中的多元分析方法.北京:气象出版社, 1995.
    [20]黄嘉佑.气象统计与预报方法.北京:气象出版社, 1990.
    [21] Bretherton C S, Smith C, Wallace J M. An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 1992, 5:541—560.
    [22] Wallace J M, Smith C, Bretherton C S. Singular value decomposition of winter time sea surface temperature and 500-mb height anomalies. Journal of Climate,1992, 5:561—576.
    [23]丁裕国,江志红. SVD方法在气象场诊断分析中的普适性.气象学报, 1995,54 (3):365—371.
    [24] Prohaska J. A technique for analyzing the linear relationships between two meteorological fields. Monthly Weather Review, 1968, 1004:1345—1353.
    [25] Cherry S. Singular value decomposition analysis and canonical correlation analysis. Journal of Climate, 1996, 9:2003—2009.
    [26] Visser H, Folkert R J M, Hoekstra J, et al. Identifying key sources of uncertainty in climate change projections. Climate Change, 2000, 45:421—457.
    [27] Giorgi F, rancisco R F. Evaluating uncertainties in the prediction of regional climate change. Geophysical Research Letter, 2000, 27:1295—1298.
    [28] Giorgi F, Mearns L O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the“reliability ensemble averaging”(REA)method. Journal of Climate, 2002, 15:1141—1158.
    [29] Tebaldi C, Smith R L, Nychka D, et al. Quantifying uncertainty in projections of regional climate change:a Bayesian approach to the analysis of multimodel ensembles. Journal of Climate, 2005, 18:1524—1540.
    [30]王秀荣.西北地区年代际气候变化及其空中水资源特征[博士学位论文].北京:中国气象科学研究院, 2002.
    [31] Dickinson R E, Errico R M, Giorgi F, et al. A regional climate model for the western United States. Climate Change, 1989, 15:383—422.
    [32] Giorgi F. Simulation of regional climate using a limited area model nested in a general circulation model. Journal of Climate, 1990, 3:941—963.
    [33] Cullen M J P. The unified forecast/climate model. Meteorolgy Mag, 1993, 122:81—94.
    [34]高学杰,赵宗慈.丁一汇.区域气候模式对温室效应引起的中国西北地区的气候变化的数值模拟.冰川冻土, 2003, 25(2):165—169.
    [35]吕世华,陈玉春.区域气候模式对华北夏季降水的气候模拟.高原气象, 1999, 18(4):632—640.
    [36]刘洪利,李维亮,周秀骥,等.长江三角洲地区区域气候模式的发展和检验.应用气象学报, 2005, 16(1):24—34.
    [37] Giorgi F, Marinuci M R, Bates G T. Development of a second generation regional climate model (RegCM2)I:Boundary layer and radiation transfer process. Monthly Weather Review, 1993, 121:2794—2813.
    [38] Giorgi F, Marinuci M R, De Canio G, et al. Development of a second generation regional climate model(RegCM2)II:Convective processes and assimilation of lateral boundary conditions. Monthly Weather Review, 1993, 121:2814—2832.
    [39] Grell G A, Dudhia J, Stauffer D R. A description of the fifthgeneration Penn State/NCAR Mesoscale Model(MM5).NCAR Technical Note NCAR/TN-3981STR, 1994, 1—12.
    [40] Dickinson R, Kennedy P, Henderson S A, et al. Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model.Technical report, National Center for Atmospheric Research, 1986.
    [41] Anthes R. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Monthly Weather Review, 1977, 105(3):270—286.
    [42]施晓辉.全球变化背景下东亚区域气候年代际时空演变的统计–动力特征[博士学位论文].北京:中国气象科学研究院, 2006.
    [43] Hsie E, Anthes R, Keyser D. Numerical simulation of frontogenisis in a moist atmosphere. Journal of Atmospheric Sciences, 1984, 41:2581—2594。
    [44] Holtslag A M, Boville B A, Local versus nonlocal boundary layer diffusion in a global climate model. Journal of Climate, 1993, 6:1825—1842.
    [45] Dickinson R E, Henderson-Sellers A, Kennedy P. Biosphere–atmosphere transfer scheme (BATS) version 1 as coupled to the NCAR community climate model.NCAR Technical NoteNCAR/TN-3871STR, 1993, 72.
    [46] Qian J H, Giorgi F. Fox-Rabinovitz M. Regional stretched grid generation and its application to the NCAR regcm, Journal of Geophysical Research, 1999, 104:6501—6513
    [47] Betts A K, Miller M, Eds K A, et al.The Betts-Miller scheme, the representation of cumulus convection in numerical models of the atmosphere. Journal of Climate,1993, 107—121.
    [48] Pal J, Small E, Eltahir E. Simulation of regional-scale water and energy budgets:Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research, 2000, 105, 24:29579—29594.
    [49] Small E, Sloan L. Simulating the water balance of the aralsea with a coupled regional climate-lake model, Journal of Geophysical Research, 1999, 104:6583—6602.
    [50] Anthes RA, Kuo Y H, Hsie E Y, et al. Estimation of episodic and climatological skill anduncertaintly in regional numerical models. Quarterly Journal of the Royal Meteorological Society. 1989, 115:763—806.
    [51] Seth A, Giorgi F. The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. Journal of Climate, 1998, 11:2698—2712.
    [1]郑斯中.我国东部地区的水汽辐合场.科学出版社, 1962:111—120.
    [2]高国栋,陆渝蓉,翟盘茂,等.淮河流域大气水汽输送特征及其对旱涝形成的影响.淮河流域能量与水分循环研究,北京:气象出版社, 1999:75—81.
    [3]黄荣辉,张振洲,黄刚,等.夏季东亚季风区水汽输送特征及其与南亚季风区水气输送的差别.大气科学, 1998, 22(4):460—469.
    [4]赵瑞霞,吴国雄,张宏.夏季风期间长江流域的水汽输送状态及其年际变化.地球物理学报, 2008, 51(6):1670—1681.
    [5] Rasmusson E M. Atmospheric water vapor transport and the water balance of North America. Part I:Characteristics of the water vapor flux field. Monthly Weather Review, 1967, 95:403—426.
    [6] Rasmusson E M, Mo K C. Large-scale atmospheric moisture cycling as evaluated from NMC global analysis and forecast products. Journal of Climate. 1996, 9:3276—3297.
    [7] Roads J, Chen O S, Guetter A K, et al. Large-scale aspects of the United States hydrological cycle. Bulletin of the American Meteorological Society, 1994,75:1589—1610.
    [8] Schmitz J T, Mullen S L. Water vapor transport associated with summertime North American monsoon as depicted by ECWMF analyses. Journal of Climate, 1996, 9:1621—1634.
    [9] Trenberth K E, Guillemot C J. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalysis. Climate Dynamics, 1998,14:213—231.
    [10] Bisslink B, Dolman A J. Precipitation recycling: moisture sources over Europe using ERA-40 data. Journal of Hydrometeorology, 2008, 9(10):1073—1083.
    [11] Serreze M C, Roger G. Atmospheric water vapor characteristics at 70°N. Journal of Climate. 1995:719—731.
    [12] Zangvil A, Portis D H, Lamb P J. Investigation of the large-scale atmospheric moisture field over the Midwestern United States in relation to summer precipitation. Part I:Relationships between moisture budget components on different time scales. Journal of Climate, 2000, 14:582—597.
    [13] Simmonds I, Daohua Bi, Hope P. Atmospheric water vapor flux and its association with rainfall over China in summer. Journal of Climate, 1999, 12(5):1353—1367.
    [14] Ninomiya K. Moisture balance over China and the South China Sea during the summer monsoon in relation to the intense rainfalls over China. Journal of Meteorology Society of Japan, 1999, 77(3):737—751.
    [15] Knippertz P, Wernli H. A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 2010, 23(2):987—1003.
    [16]周天军,张学洪,王绍武.全球水循环的海洋分量研究.气象学报, 1999, 57 (3):264—282.
    [17]谢安,毛江玉,宋焱云,等.长江中下游地区水汽输送的气候特征.应用气象学报, 2002, 13(1):67—77.
    [18]范广洲,吕世华,程国栋.华北地区夏季水量丰、枯年大气大气水分收支对比分析.兰州大学学报(自然科学版), 2001, 37 (3):134—141.
    [1]陈际龙,黄荣辉.亚洲夏季风水汽输送的年际年代际变化与中国陆地旱涝的关系.地球物理学报, 2008, 51(2):352—359.
    [2]张蓬勃,管兆勇,蔡佳熙. SVD分析揭示的澳大利亚高压年际变化对中国夏季气温的可能影响.大气科学学报, 2010, 33(1):58—66.
    [3]毛文书,朱克云,黄可蔚,等.川渝地区夏季降水异常水汽输送差异.自然资源学报,2010,25(1):58—66.
    [4]王宝鉴,黄玉霞,何金海.东亚夏季风期间水汽输送与西北干旱的关系.高原气象, 2004,23(6):913—918.
    [5]王庆,刘诗军,陈延玲.南海到西太平洋地区水汽输送和山东夏季降水量奇异值分解分析.气象科技, 2003,31(1):17—18.
    [6]钱永甫,张艳,郑益群.青藏高原冬春季积雪异常对中国春夏季降水的影响.干旱气象, 2003,21(3):1—7.
    [7]刘晓东.水汽输送对中国东部夏季雨带变化影响的诊断模拟.气象与减灾研究, 2006,29(4):12—16.
    [8]张天圣,尤卫红.我国春季降水的分布特征及其与环流异常的关系.云南大学学报(自然科学版), 2010 , 32 (5):553—560.
    [9]齐庆华.西北太平洋水汽输送异常及其与中国夏季降水的耦合模态.海洋科学, 2009, 33(9):35—41.
    [10]施小英,施晓晖,毛嘉富.夏季东亚地区水汽输送年代际变化特征及其对中国东部降水的影响.地理学报, 2009, 64(7):861—870.
    [11]施小英,施晓晖.夏季青藏高原东南部水汽收支气候特征及其影响.应用气象学报, 2008, 19(1):41—46.
    [12]朱玲,左洪超,李强.夏季南亚高压的气候变化特征及其对中国东部降水的影响.高原气象, 2010, 29(3):671- 679.
    [13]乔云亭,罗会邦,简茂球.亚澳季风区水汽收支时空分布特征.热带气象学报, 2002, 18(3):203—210.
    [14]周晓霞,丁一汇,王盘兴.影响华北汛期降水的水汽输送过程.大气科学, 2008, 32(2):345—357.
    [15]吴俊杰,袁卓建,钱钰坤.热带季节内振荡对2008年初南方持续性冰冻雨雪天气的影响.热带气象学报, 2009, 25:103—112.
    [16]张洁,周天军,宇如聪,等.中国春季典型降水异常及相联系的大气水汽输送.大气科学, 2009, 33(1):121—134.
    [17]蒋兴文,李跃清,王鑫.中国地区水汽输送异常特征及其与长江流域旱涝的关系.地理学报, 2008, 63(5):482—490.
    [1]叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究.山东科学技术出版社, 1996.
    [2]陈烈庭,吴仁广.中国东部的降水区划及备区旱涝变化的特征.大气科学, 1994, 18(5):586—595.
    [3]陆春松,牛生杰,杨军,等.南京冬季一次雾过程宏微观结构的突变特征及成因分析.大气科学, 2010, 34(4):681—690.
    [4]何洁琳,管兆勇,万齐林,等.冬季登陆我国的0428和7427号台风过程的冷空气作用和水汽特征.热带气象学报, 2009, 25(5):541—550.
    [5]于恩涛,向伟玲,师庆东.艾比湖流域大气水汽时空分布特征及收支.干旱区地理, 2009, 32(2):218—225.
    [6]魏凤英,张婷.东北地区干旱强度频率分布特征及其环流背景.自然灾害学报, 2009, 18(3):1—7.
    [7]杨莲梅,史玉光,汤浩.新疆北部冬季降水异常成因.应用气象学报, 2010, 21(4):491—499.
    [8]刘传熙,王海平,刘毅. 2003—2004年冬季北半球爆发性增温期间极地平流层甲烷、水汽的演变特征.自然科学进展, 2009, 4:425—433.
    [9]索渺清,丁一汇.冬半年副热带南支西风槽结构和演变特征研究.大气科学, 2009, 33(3):425—442.
    [10]黄艳,蔡敏,夏晓丰,等. 2008年长江中下游地区持续性暴雪天气的过程简析及其水汽输送特征分析.科技通报, 2010, 26(5):786—794
    [11]施晓晖,徐祥德,程兴宏. 2008年雪灾过程高原上游关键区水汽输送机制及其前兆性“强信号”特征.气象学报, 2009, 67(3):478—487.
    [12] Liu J, Stewart R. Water vapor fluxes over the Saskatchewan River basin. Journal of Hydrometeorology, 2003, 11(4):944—959.
    [13] Leung L R, Qian Y, Han J, et al. Intercomparison of global reanalyses and regional simulations of cold season water budgets in the Western United States. Journal of Hydrometeorology, 2003, 12(4):1067—1087.
    [14] Ralph F, Neiman P, Wick G. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 2004, 132(7):1721—1745.
    [15] Todd M, Washington R, Palmer P. Water vapour transport associated with tropical temperature trough systems over southern Africa and southwest Indian ocean. International Journal of Climatology, 2004, 24:555—568.
    [16] Munoz E, Busalacchi A, Nigam S, et al. Winter and summer structure of the Caribbean low-level jet. Journal of Climate, 2008, 23(2):987—1003.
    [17]张文君,周天军,宇如聪.中国东部水分收支的初步分析.大气科学, 2007, 31(2):329—345.
    [18] Huang R H, Zhou L T, Chen W. The progresses of recent studies of the variabilities of the East Asian monsoon and their causes. Advance Atmospheric Sciences, 2003, 20:55—69.
    [19]况雪源,张耀存,刘健.对流层上层副热带西风急流与东亚冬季风的关系.高原气象, 2008, 27(4):701—712.
    [20]王启,丁一汇,江滢.亚洲季风活动及其与中国大陆降水关系.应用气象学报, 1998,增刊(9):84—89.
    [21]王会军,姜大膀.一个新的东亚冬季风强度指数及其强弱变化之大气环流场差异.第四纪研究, 2004, 24(1):19—27.
    [22]布和朝鲁,纪立人.东亚冬季风活动异常与热带太平洋海温异常.科学通报, 1999, 44(3): 252—259.
    [23]崔晓鹏,孙照渤.东亚冬季风强度指数及其变化的分析.南京气象学院学报, 1999, 22(3):321—325.
    [24]徐建军,朱乾根,周铁汉.近百年东亚冬季风的突变性和周期性.应用气象学报, 1999, 10(1):1—8.
    [25]施晓晖,徐祥德,谢立安.近40年来东亚冬季风的年代际时空变化趋势.大气科学, 2007, 31(4):747—756.
    [26]施能,杨永胜. 1873~1996年东亚冬、夏季风强度指数及其主要特征.南京气象学院学报, 1998 , 21(2):208—214.
    [27]施能,鲁建军,朱乾根.冬亚冬、夏季风百年强度指数及其气候变化.南京气象学院学报, 1996, 19(2):168—177.
    [28]赵瑞霞.中国长江、黄河流域水分收支与水分循环[博士学位论文].北京:中国科学院研究生院, 2005.
    [29]周晓霞.亚洲夏季风水汽输送特征及其与中国降水关系的研究[博士学位论文].南京:南京信息工程大学, 2007.
    [30]吴国雄.大气水汽的输送和收支及其对副热带干旱的影响.大气科学, 1990, 14(l):53—63.
    [31]伊兰,陶诗言.定常波和瞬变波在亚洲季风区大气水分循环中的作用.气象学报, 1997, 55(5):532—544.
    [1]叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究.山东科学技术出版社, 1996.
    [2]陈烈庭,吴仁广.中国东部的降水区划及备区旱涝变化的特征.大气科学, 1994, 18(5):586—595.
    [3]赵平,周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报, 2006, 17(5):548—556.
    [4]叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究.山东科学技术出版社, 1996.
    [5]周秀骥,赵平,刘舸.近千年亚洲-太平洋涛动指数与东亚夏季风变化.科学通报, 2009, 54(20):3144—3146.
    [6] Zhang R h. Relations of water vapor transport from Indian Monsoon with that over East-Asia and the summer rainfall in China. Advances in Atmospheric Sciences, 200l, 18(5):l005—1017.
    [7]费建芳,乔全明.梅雨前后亚洲季风区平均散度风环流和水汽输送的研究.气象学报, 1994, 52(4):452—459.
    [8]乔全明,罗坚,杨信杰,等. 1991年江淮梅雨暴雨与亚洲季风的关系.热带气象学报, 1994, 10(1):64—68.
    [9] Kwon M H, Jhun J G, Wang B, et al. Decadal change in relationship between East Asian and WNP summer monsoons. Geophysical Research Letters, 2005, 32, L16709, doi:10.1029/2005GL023026.
    [10] Kwon M H, Jhun J G., Ha K J. Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophysical Research Letters, 2007, 34, L21706, doi :10.1029/2007GL031977.
    [11] Yao, C, Yang S, Qian W, Lin Z, et al. Regional summer precipitation events in Asia and their changes in the past decades. Journal of Geophysical Research., 2008, 113, D17107, doi:10.1029/2007JD009603.
    [12] Wu R G, Wen Z P, Yang S, et.al. An interdecadal change in Southern China rainfall around 1992/1993. Journal of Climate, 2010, 23(1):2389—2403.
    [13] Ding Y H, Wang Z Y, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I:Observed evidences. International Journal of Climatology, 2008, 28:1139—1161.
    [14] Huang R H, Zhou L T, Chen W. The progresses of recent studies of the variabilities of the East Asian monsoon and their causes. Advance Atmospheric Sciences, 2003, 20:55—69.
    [15]陈际龙,黄荣辉.亚澳季风各子系统气候学特征的异同研究Ⅱ:夏季风水汽输送.大气科学, 2007, 31:766—778.
    [16] Simmonds I, Bi D, Hope P. Atmospheric water vapor flux and its association with rainfall over China in summer. Journal of Climate, 1999, 12:1353—1367.
    [17]陈际龙,黄荣辉.亚洲夏季风水汽输送的年际年代际变化与中国陆地旱涝的关系.地球物理学报, 2008, 51 (2):352—359.
    [18] Zhang Y C, Kuang X Y, Guo W D, et al. Seasonal evolution of t he upper tropospheric westerly jet core over East Asia. Geophysical Research Letters, 2006, 33(11):L11708, doi:10.1029/2006GL026377.
    [19] Wang H, Xue F, Zhou G. The spring monsoon in south china and it s relationship to large scale circulation features. Advances in Atmospheric Sciences, 2002, 19(4): 651—664.
    [20]张洁,周天军,宇如聪,等.中国春季典型降水异常及相联系的大气水汽输送.大气科学, 2009, 33(1):121—134.
    [21]赵瑞霞.中国长江、黄河流域水分收支与水分循环[博士学位论文].北京:中国科学院研究生院, 2005.
    [22]周晓霞.亚洲夏季风水汽输送特征及其与中国降水关系的研究[博士学位论文].南京:南京信息工程大学, 2007.
    [23]吴国雄.大气水汽的输送和收支及其对副热带干旱的影响.大气科学, 1990, 14(l):53—63.
    [24]伊兰,陶诗言.定常波和瞬变波在亚洲季风区大气水分循环中的作用.气象学报, 1997, 55(5):532—544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700