用户名: 密码: 验证码:
基于生长模型与GIS的小麦生产力预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预测作物生产力、分析未来气候变化对农业生产的影响是评价粮食安全的重要内容之一。作物生长模型由于具有较强地系统综合和定量预测的功能,已成为作物生长动态预测、管理决策以及气候环境影响评估的有力工具。本研究以小麦为对象,首先运用系统分析和动态建模技术,建立了基于生理发育时间(GDD)的籽粒蛋白质组分含量模拟模型;然后基于生长模型区域化应用升尺度化技术,耦合GIS功能与小麦生长模型,构建了小麦空间生产力预测模型;进而利用情景模拟与系统分析方法,模拟与评价了生产水平和气候变化两种情景对区域小麦生产的可能影响;最后运用软构件技术,研制开发了基于生长模型和GIS的小麦生产力预测系统。研究成果为小麦生产力的区域模拟分析提供了基本框架和实验平台,也为生产潜力预测、气候影响评估和适宜对策分析奠定了数字化基础。
     以生长度日为时间尺度,通过定量分析不同年份、不同品种、不同栽培条件下小麦籽粒蛋白质组分含量的变化规律,构建了基于过程的籽粒蛋白质组分含量动态模拟模型。模型采用幂函数方程描述了清蛋白含量随花后GDD的动态变化规律,对数函数方程描述了醇溶蛋白和谷蛋白含量的变化过程;并以籽粒氮素和水分因子定量了不同水氮状况对小麦籽粒蛋白质组分含量动态变化的影响。并利用独立观测资料对所构建的模型进行了初步检验。结果表明模型对不同生长条件下小麦籽粒蛋白质组分含量的变化动态具有较好的预测性。
     针对生长模型区域化应用中的升尺度连接,通过耦合GIS与田块尺度的小麦生长模型(WheatGrow),建立了小麦空间生产力预测模型(Regional Wheat Model).首先借助GIS的空间插值、图层叠加等技术对气象要素、土壤特性、管理措施等模型基本输入数据进行空间栅格化预处理,通过将研究区域划分成许多视为均质的栅格,解决了区域内环境的空间变异;然后以划分好的空间栅格大小为计算单元驱动WheatGrow运行,获得栅格化模拟结果,实现了小麦区域生产力的模拟预测。利用试验观测与统计资料对WheatGrow模型和空间生产力模型进行了测试与检验。结果表明,模型具有较好的预测性与普适性,对温度与CO2变化较为敏感,可用于区域小麦产量、水分生产力、氮素生产力的模拟预测,也可以用于生产潜力分析、环境影响评估。
     基于所建立的小麦空间生产力预测模型,结合情景模拟方法,构建了生产水平和气候变化两种情景分析模式。以黄淮海平原模拟分析为例,不同生产水平情景下小麦光温潜在、气候潜在及土地潜在生产力分别为9386 kg·ha-1-13907 kg·ha-1.7735 kg·ha-1-12020 kg·ha-1和3770 kg·ha-1-6140kg·ha-1之间,三个生产水平下的小麦生产力差异显著,水分对于小麦产量的限制小于氮素的限制;黄淮海平原麦区增产潜力为5534 kg'ha-1-9065 kg'ha-1,合理加大农业投入可大幅增加小麦理论产量。未来气候情景分析显示,温度升高,小麦生育期缩短,生产力形成受到影响。在不考虑CO2施肥效应时,2008年气候情景下黄淮海平原麦区雨养和灌溉小麦总体上呈现减产趋势,虽然灌溉有一定的缓解作用;考虑CO2直接施肥效应时,2080年气候情景下黄淮海平原麦区雨养和灌溉小麦均呈现出增产的趋势。据此情景分析,适当调整播期、培育新品种,可以明显提高小麦籽粒产量,减少由于温度升高而带来的小麦产量负效应。
     在系统工程理论与方法的指导下,综合运用软构件技术的语言无关性、可重用性、易维护等特点,基于Visual Studio2005开发环境,采用Microsoft Visual C#为编程语言和Access数据库,通过集成小麦生长模型WheatGrow组件与SuperMap Objects GIS组件,研制开发了基于生长模型和GIS的小麦生产力预测系统,实现了不同空间尺度下小麦籽粒产量、水分生产力、氮素生产力及光温潜在、气候潜在、土地潜在生产力的动态模拟,及未来气候变化情景对小麦生产的可能性影响的评估与适宜性对策分析,为小麦区域化生产力模拟、土地生产潜力分析、气候变化影响评估、适宜性对策取向及粮食安全研究等提供了数字化支持工具。
Prediction of crop productivity and analysis on climate change impact are of great importance for evaluating future food security situation in agricultural industry. Crop growth model can be a powerful tool for predicting yield production, assisting management decision, and assessing the impacts of environment changes on agriculture. This study, taking wheat as research crop, firstly, built a simulation model on grain protein composition based on growing degree days (GDD). Secondly, a regional wheat productivity model was developed to scale up growth model from site to region levels, by integrating with Geographic Information System (GIS). Then, it was used to evaluate the influences of production levels and climate change scenarios on regional wheat production. Finally, a decision support system was constructed by combing the WheatGrow model with GIS and using component-based technology. The established system provides a digital tool for simulation of regional grain productivity, evaluation of potential productivity, assessment of climate change impacts and formulation of agricultural policy in wheat production.
     Based on time-course observations on grain protein components under varied nitrogen rates and water regimes with different cultivars, the change patterns in the contents of different grain protein components with growth progress and environmental factors were characterized, and a dynamic model was developed to simulate formation processes of grain protein components in wheat grains. The dynamic content of albumin with GDD after anthesis could be described with a power model, and the contents of gliadlin and glutenin could be described with a logarithmic model. The effects of nitrogen and water conditions on grain protein components were quantified with nitrogen and water factors. The model was validated with independent experiment data. The results indicated that the present model had a good performance in predicting dynamic contents of major protein components in wheat grains.
     Considering the approaches to scaling-up the crop model from plot to region level, a regional wheat model was developed by integrating the site-specific wheat model WheatGrow with GIS. To address the spatial variability, grid-based data as model input were generated in advance by interpolation and overlaying with the aid of GIS. When all the necessary input data were available, the target region was partitioned into smaller and relatively homogeneous spatial grids, and crop yields were simulated with WheatGrow for each grid cell. And then all grid results were aggregated to a regional value. Finally, with different experiment and statistical data, the model was operated at site and regional scales, respectively. The results indicated that the present model was accurate and applicable at both scales and the regional wheat model can be used to evaluate grain productivity, water productivity, nitrogen productivity, potential productivity, and climate impacts in wheat production at regional level.
     By linking the established regional model and the method of scenario analysis, the wheat productivity levels in Huanghuaihai region were simulated under different production scenarios, respectively, and the effects of climate change and the adaptable strategies on wheat production were also assessed under 2080 scenario. The results shown that the simulated yields for three production scenarios were 9386 kg·ha-1-13907 kg·ha-1 for photosynthetic level (PS1),7735 kg·ha-1-12020 kg-ha-1 for photo-thermal level (PS2), and 3770 kg·ha-1-614kg·ha-1 for land level (PS3)?, respectively. The yield increasing potential defined as the gap between PSl and PS3 production situations ranged from 5534 kg·ha-1 to 9065 kg·ha-1. The wheat productivity can be enhanced by reasonable increase in agriculture inputs. As the results of climate warming, the wheat development would be accelerated and the growth duration would be shorted significantly. If the direct effect of CO2 elevation was not concerned, the rain-fed and irrigated wheat yields under 2080 scenario would decrease mostly, although irrigation might partially relieve the impacts of climate changes on wheat yield. Involving the direct CO2 effect, the trend would turn opposite. Several strategies could be proposed to offset the negative influences of climate change on wheat productivity, including changing planting date, using new variety, and enhancing agricultural input.
     On the platform of Visual Studio 2005, the growth model and GIS-based wheat productivity prediction system was constructed by adopting C# language and component-based software and using Access database. With integration of growth model with GIS, the system can manage and analyze spatial data and generate fine resolution data as input for growth model, and thus could be used to forecast grain productivity levels under different production situations and at different spatial scales. By further combining with scenario simulation and strategy analysis, the present system can help to evaluate the potential impacts of climate change patterns on grain productivity and suitable management strategies in future wheat production.
引文
1. 李存东,曹卫星,李旭等.论作物信息科技及其发展战略[J].农业现代化研究,1998,19(1):17-20.
    2. 王石立,马玉平.作物生长模拟模型在我国农业气象业务中的应用研究进展及思考[J].气象,2008,34(6):3-10
    3. 孙成明,王余龙.作物模拟技术的研究现状及其发展对策探讨[J].中国农学通报,2005,21(3):131-134.
    4.江敏,金之庆.CERES-Rice模型区域应用中遗传参数升尺度的一种方法[J].中国水稻科学,2009,23(2):172-178.
    5. 王向东,张建平,马海莲等.作物模拟模型的研究概况及展望[J].河北农业大学学报,2003,26(增刊):20-23.
    6. 刘伟明.对数字农业的认识及其基本构想[J].现代农业科技,2008,1:230-231.
    7. 毛竞.我国数字农业发展现状与发转趋势[J].广东农业科学,2007,12:126-128.
    8. 秦斌.数字农业与精细农业[J].山西农业大学学报,2007,27(3):152-154.
    9. 周国民.数字农业综述[J].农业图书情报学刊,2004,15(3):5-7.
    10.俞海红,何勇.数字农业及其发展现状[J].农机化研究,2006,2:14-16.
    11.宋兆杰,张金良.数字农业研究进展及发展趋势[J].现代化农业,2007,5:14.
    12.潘学标.荷兰作物模型的发展与应用[J].世界农业,1998,9:17-19.
    13. Murakami E, Saraiva A M, Ribeiro Junior L C M, et al. An infrastructure for the development of distributed service-oriented information systems for precision agriculture[J]. Computers and Electronics in Agriculture,2007,58(1):37-48.
    14. Zhang N Q, Wang M H and Wang N. Precision agriculture-a worldwide overview[J]. Computers and Electronics in Agriculture,2002,36:113-132.
    15. McKinion J M, Jenkins J N, Akins D, et al. Analysis of a precision agriculture approach to cotton production [J]. Computers and Electronics in Agriculture,2001,32:213-228.
    16.彭桂兰,张学军,张新东.温室环境计算机测控技术的研究现状和发展趋势[J].现代化农业,2002,5:9-11.
    17.杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214-218.
    18.严定春,诸叶平,李世娟等.数字化玉米种植管理系统研究[J].农业网络信息,2006,11:10-12.
    19.牛贞福,冀永杰,国淑海.我国数字农业的现状及发展前景[J].山东省农业管理干部学院学报,2005,21(3):33-34.
    20.王青蓝,徐晓红,毕洪波等.我国数字农业的崛起及其研究进展[J].农业与技术,2005,25(5):4-8.
    21.高万龙.关于我国创建数字农业的几点思考[J].中国信息导报,2005,9:24-25.
    22.天珂,周卫军,龙晓辉等.GPS在精准农业中的应用[J].农业科技通报,2008,8:26-29.
    23.王诗俊,李宁,周东升等.GPS的发展与在农业上的应用[J].内蒙古水利,2008,1:22-23
    24.仝雪芹,杨玉建.农业信息关键技术及其在农业上的应用[J].安徽农学通报,2008,14(11):46-47.
    25.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    26.朱选,刘素霞.地理信息系统原理与技术[M].上海:华东师范大学出版社,2006.
    27. Kersebaum K C, Lorenz K, Reuter H I, et al. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes[J]. Physics and Chemistry of the Earth,2005,30:59-67.
    28. Earl R, Thomas G and Blackmore B S. The potential role of GIS in autonomous field operations [J]. Computers and Electronics in Agriculture,2000,25:107-120.
    29.王正军,程家安,祝增荣.地理信息系统及其在害虫综合治理中的应用[J].浙江农业学报,2000,12(4):233-238.
    30.黄敬峰,王秀珍,王人潮.地理信息系统技术在水稻产量时空变化研究中的应用[J].中国水稻科学,2000,14(4):213-218.
    31.于成江,蔡德利,陈宝政.农业专用GIS组件的探索与研究[J].现代农业科学,2008,8:57-58.
    32.王培,蒋平安,盛建东等.基于WEB的农业基础地理信息系统探索[J].新疆农业大学学报,2008,31(3):65-68.
    33.朱大威,黄耀,金之庆等.基于模型和GIS的江苏省氮肥施用适宜性分析[J].中国农业科学,2008,41(5):1373-1382.
    34.王宗明,张柏,宋开山等.GIS支持下的松嫩平原黑土区作物生产力模拟[J].农业系统科学与综合研究,2007,23(1):27-32.
    35.杨淑芳.遥感技术在农业上的应用与展望[J].农业展望,2008,7:39-42.
    36.邓良基.遥感基础与应用[M].北京:中国农业出版,2002.
    37.刘扬,周清波,刘佳等.基于遥感和WebGIS的冬小麦估产支持系统[J].中国农业科学,2008,41(10):3371-3375.
    38.张娜,于贵瑞,赵士洞等.基于遥感和地面数据的景观尺度生态系统生产力的模拟[J].应用生态学报,2003.14(5):643-652.
    39. Ko, Maas J, Lascano S J, et al. Modification of the GRAMI Model for Cotton [J]. Agronomy Journal,2005,97(5):1374-1379.
    40. Guerif M, Duke C L. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation [J]. Agriculture, Ecosystems and Environment, 2000,81:57-69.
    41.李必成,丁平,张乃华等.决策支持系统(DSS)在农业中的应用[J].农机化研究,2005,5:231-234.
    42.蒋红军,刘小军,汤亮.基于模型和3S技术的数字麦作系统的设计与实现[J].2007,27(5):908-913.
    43.朱艳,曹卫星,王其猛等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    44.曹静,刘小军,汤亮.基于知识模型的网络化作物管理决策支持系统[J].南京农业大学学报,2007,30(3):21-26.
    45.张怀清,郑曼,蒋娴.基于ArcGISEngine的退耕还林决策支持系统研究[J].林业科学研究,2008,21(增刊):65-68.
    46. Sinclair T R, Seligman N G. Crop Modeling:from infancy to maturity [J]. Agronomy Journal,1996, 88:698-704.
    47.高亮之.国际作物生产力研究动态和展望[J].世界农业,1981,11:32-34.
    48.吴连海,韩湘玲.冬小麦生产力估算方法研究[J].自然资源学报,1991,6(1):80-87.
    49.李忠武,蔡国强,唐政洪等.作物生产力模型及其应用研究[J].应用生态学报,2002,13(9):1174-1178.
    50. Gyanendra B, Dhakhwa, C. Campbell L, et al. Maize growth:assessing the effects of global warming and CO2 fertilization with crop models [J]. Agricultural and Forest Meteorology,1997,87: 253-272.
    51. de Wit C T. Photosynthesis of leaf canopies [J]. Agric. Res. Report. Wageningen.1965.
    52. Duncan W G, Loomis R S, Williams W A, et al. A model for simulation photosynthesis in plant communities [J]. Hilgardia,1967,38:181-205.
    53. de wit C T. Dynamic concepts in biology. In Prediction and management of photosynthetic productivity. Proceedings international biological program/Plant production technical meeting. Wageningen, Netherlands:PUDOC,1970,17-23.
    54. Penning de Vries F W T and van laar H H. Simulation of plant growth and crop production [J]. In: Penning de Vries F W T, Van larr H H eds. Simulation Momographs. Wageningen, Netherlands: PUDOC,1982,114-136.
    55. van Keulen H. Crop production under semi-arid conditions, as determined by nitrogen and moisture availability [J]. In Penning de Vries F W T, Van larr H H eds. Simulation Monographs. Wageningen, Netherlands:PUDOC,1982,234-251.
    56. Jones C A, Kiniry F R. CERES-Maize:A simulation model of maize growth and development [M]. College station, US:Tesas S&M Univ. Press,1986.
    57.江敏,金之庆,葛道阔等.CERES-Wheat模型在我国冬小麦主产区的适用性验证及订正[J].江苏农学院学报,1998,19(3):64-67.
    58.马玉平,王石立,张黎.针对华北小麦越冬的WOFOST模型改进[J].中国农业气象.2005,26(3):145-149.
    59. Eitzingera J, Trnka M, Hosch J, et al. Comparsion of CERES, WOFOST and SWAP models in simulation soil water content during growing season under different soil conditions [J]. Ecological Modelling,2004,171(3):223-246.
    60. Hijmans R J, Guiking lens I M, van Diepen C A. Crop Growth Simulation Model WOFOST [M]. Documentation v.4.1, Centre for World food studies, Wageningen, The Netherlands,1988.
    61. Spitters C J T and 、Schapendonk A H C M. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation [J]. Plant and Soil,1990,123:193-203.
    62.黄策,王天铎.水稻群体物质生产的计算机模型[J].作物学报,1986,12:1-8.
    63.高亮之,金之庆,黄耀等.水稻钟模型—水稻发育动态的计算机模型[J].中国农业气象, 1989,10(3):3-10.
    64. Gao L Z, Jin Z Q and Li L. Photo-thermal models of rice growth duration for various types in China[J]. Agr. and Forest Meteo,1987,39:205-213.
    65. Huang Y, Gao L Z, Jin Z Q, et al. Simulating the optimal growing season of rice in the Yangtze River Vally and its adjacent area, China [J]. Agricultural and Forest Meterology,1998,91:251-262.
    66. Lemmon H. COMAX:An expert system for cotton crop management [J]. Science,1986,233:29-33.
    67. Ritchie J T. Soil water balance and plant stress. In:Tsuji G Y, Hoogenboom G, Thornton P K, et al. Understanding Options for Agricultural Prodution. Kluwer Academic Publishers, Dordrecht, The Netherlands,1998:41-54.
    68.高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS)[J].中国农业科技出版社,1992.
    69. Kiniry J R, Knievel D P. Response of maize seed number to solar radiation intercepted soon after anthesis [J]. Agronomy Jounal,1995,87:228-234.
    70.潘学标.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):11-161.
    71.严美春,曹卫星,罗卫红.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(2):1-8.
    72.潘洁,朱艳,曹卫星.基于顶端发育的小麦产量结构形成模型[J].作物学报,2005,31(3):316-322.
    73.李卫国,朱艳,戴廷波等.水稻籽粒直链淀粉含量的生态模型研究[J].应用生态学报,2005,3:491-495.
    74. McCown R L, Hammer G L, Hargreaves J N G, et al. APSIM:a Novel Software System for Model Development, Moedl Testing and Simulation in Agricultural Systems Research [J]. Agricultural System,1996,50:255-271.
    75. Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation [J]. European Journal of Agronomy,2003,18:267-288.
    76. Penning de Vires and Van Laar H H. Simulation of Plant Growth and Crop Prodction[C]. Simulaton Monographs, Pudoe Wageningen,1982,69:87-97.
    77. Ritchie J T and Godwin D C. CERES-Wheat. Michigan State University. US.1988.
    78. McMaster G S, Wilhelm W W, Morgen J A. Simulating winter wheat shoot apex phenology [J]. Journal of Agricultural Science, Cambrige.1992,199:1-12.
    79. Jamieson P D, Semenov M A, Brooking I R, et al. Sirius:a mechanistic model of wheat response to environmental variation [J]. European Journal of Agronomy,1998,8:161-179.
    80.冯利平,高亮之,金之庆等.小麦发育期动态模拟模型的研究[J].作物学报,1997,
    23(4):418-422.
    81.高亮之,金之庆,郑国清等.小麦栽培模拟优化决策系统(WCSODS)[J].江苏农业学报,2000,16(2):65-72.
    82.潘洁.小麦生长模拟与决策支持系统的研究[D].南京:南京农业大学.2003.
    83.严美春,曹卫星,李存东等.小麦发育过程及生育期机理模型的检验和评价[J].中国农业科学,2000,33(2):43-50.
    84.刘铁梅,曹卫星,罗卫红等.小麦物质生产与累积的模拟模型[J].麦类作物学报,2001,21(3):26-30.
    85.刘铁梅,曹卫星,罗卫红等.小麦器官间物质分配动态的定量模拟[J].麦类作物学报,2001,21(1):25-31.
    86.刘铁梅,曹卫星,罗卫红等.小麦茎蘖动态模拟模型的研究[J].麦类作物学报,2001,20(5):416-421.
    87. Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97:322-336.
    88. Pan J, Zhu Y and Cao W X. Modeling plant carbon flow and grain starch accumulation in wheat [J]. Field Crops Research,2007,101(3):276-284.
    89. Hu J C, Cao W X, Zhang J B, et al. Quantifying responses of winter wheat physiological processes to soil water stress for use in growth simulation modeling [J]. Pedosphere,2004,14:509-518.
    90.庄恒扬,曹卫星,蒋思霞等.作物氮素吸收与分配的动态模拟[J].农业系统科学与综合研究,2004,20(1):5-11.
    91.朱艳,刘小军,谭子辉等.冬小麦叶色动态的量化研究[J].中国农业科学,2008,41(11):3851-3857.
    92.伍艳莲,曹卫星,汤亮等.基于OpenGL的小麦形态可视化技术[J].农业工程学报,2009,25(1):121-126.
    93.魏益民.小麦籽粒的蛋白质组分[J].种子,1988,34:1-2.
    94. Zhang P P, He Z H, Chen D S, et al. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread [J]. Journal of Cereal Science,2007, 46:1-10.
    95. Martre P, Porter J R, Jamieson P D, et al. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat [J]. Plant Physiology,2003,133(4):1959-1967.
    96. Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat [J]. European Journal of Agronomy,2006,25:138-154.
    97.赵辉,戴廷波,姜东等.灌浆期温度对两种类型小麦籽粒蛋白质组分及植株氨基酸含量的影响[J].作物学报,2005,31(11):1466-1472.
    98. Kindred D R, Verhoeven T M O and Weightman R M. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat [J]. Journal of Cereal Science,2008,48:46-57.
    99. Dupont F M, Hurkman W J, Vensel W H, et al. Protein accumulation and composition in wheat grains:Effects of mineral nutrients and high temperature [J]. European Journal of Agronomy,2006, 25:96-107.
    100.曹永华.农业决策支持系统研究综述[J].中国农业气象,1997,18(4):46-50.
    101.刘布春,王石立,马玉平.国外作物生长模型区域应用中升尺度问题的研究[J].中国生态农业学报,2003,11(4):89-91.
    102.林忠孝,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56.
    103.于贵瑞,何洪林,刘新安等.中国陆地生态信息空间化技术研究(Ⅰ)—气象/气候信息的空间化技术途径[J].自然资源学报,2004,19(4):537-544.
    104.何洪林,于贵瑞,刘新安等.中国陆地生态信息空间化技术研究(Ⅱ)—太阳辐射要素[J].自然资源学报,2004,19(5):679-687.
    105.刘新安,于贵瑞,范辽生等.中国陆地生态信息空间化技术研究(Ⅲ)—温度、降水等气象要素[J].自然资源学报,2004,19(6):818-825.
    106.任传友,于贵瑞,刘新安等.东北地区热量资源栅格化信息系统的建立和应用[J].资源科学,2003,25(1):66-71.
    107.李正泉,于贵瑞,刘新安等.东北地区降水与湿度气候资料的栅格化技术[J].资源科学,2003,25(1):72-77.
    108.范辽生,刘新安,于贵瑞等.东北地区辐射资源栅格化信息系统的建立[J].资源科学,2003,25(1):59-65.
    109.庄立伟,王石立.东北地区逐日气象要素的空间插值方法应用研究[J],应用气象学报,2003,14(5):606-616.
    110. Hansen J W, Jones J W. Scaling-up crop models for climate variability applications [J]. Agricultural Systems,2000,65:43-72.
    111.Band L E, Peterson D Running S. Forest ecosystem processes at the watershed scale:basis for distributed simulation [J]. Ecological Modeling,1991,56:171-196.
    112. King A W. Translating models across scales in the landscape [M]. In:Turner M G and Gardner R H, Editors. Quantitative Methods in Landscape Ecology:The Analysis and Interpretation of Landscape Heterogeneity, Springer-Verlag, New York.1991.
    113. Iwasa Y, Andreasen V and Levin S. Aggregation in model ecosystems Ⅰ. Perfect aggregation [J]. Ecological Modelling,1987,37:287-302.
    114. Iglesias A, Rosenzweig C and Pereira D. Agricultural impacts of climate change in Spain: developing tools for a spatial analysis [J]. Global Environmental Change,2000,10:69-80.
    115.周治国,孟雅丽,曹卫星.基于知识模型和GIS的作物生产力评价[J].中国农业科学,2005,38(6):1142-1147.
    116.周留根,周治国,曹卫星等.基于知识模型和GIS的棉花生产潜力评价系统[J].棉花学报,2005,17(2):117-121.
    117.潘学标.基于GIS的中国县域棉花生产空间分布与变异研究[J].中国农业科学,2003,36(4):382-386.
    118.Maas S J. Parameterized Model of Gramineous Crop Growth:Ⅰ.Leaf Area and Dry Mass Simulation [J]. Agronomy Journal,1993,85:348-353.
    119. Maas S J. Parameterized Model of Gramineous Crop Growth:Ⅱ.Within-Season Simulation Calibration [J]. Agronomy Journal,1993,85:354-358.
    120. Priya S and Shibasaki R. National spatial crop yield simulation using GIS-based crop production model [J]. Ecological Modelling,2001,135:113-129.
    121. Lal H, Jones J W, Peart R M, et al. FARMSYS-A whole-farm machinery management decision support system. Agricultural Systems,1992,38:257-273.
    122. Thornley J H M and Cannell M G R. Modelling the components of plant respiration:representation and realism [J]. Annals of Botany,2000,85:55-67.
    123. Barcza Z, Kern A, Haszpra L, et al. Modelling the impacts of weather and climate variability on crop periodicity over a large area:A new process-based model development, optimization, and uncertainties analysis [J]. Agricultural and Forest Meteorology,2009,149(5):831-850.
    124. Zanolin A, de Fouquet C, Granier J, et al. Geostatistical simulation of the spatial variability of an irrigated farm plot [J]. Comptes Rendus Geosciences,2007,339(6):430-440.
    125. Xiong W, Holman I, Conway D, et al. A crop model cross calibration for use in regional climate impacts studies [J]. Ecological Modelling,2008,213:365-380.
    126.熊伟,居辉,许吟隆等.气候变化下我国小麦产量变化区域模拟研究[J].中国生态农业学报,2006,14(2):164-167.
    127. Ren J Q, Chen Z X, Zhou Q B, et al. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China [J]. International Journal of Applied Earth Observation and Geoinformation,2008, in press, Corrected Proof, Available online.
    128. Wesseling J G, Feddes R A. Assessing crop water productivity from field to regional scale [J]. Agricultural Water Management,2006,86:30-39.
    129. Hansen J W, Jones J W. Scaling-up crop models for climate variability applications [J]. Agricultural Systems,2000,65:43-72.
    1. 王月福,姜东,于振文等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520.
    2. 苏佩,蒋纪云,王春虎.小麦蛋白质组分的连续提取分离法及提取时间的选择[J].河南职技师院学报,1993,21(2):1-5.
    3. 严美春,曹卫星,李存东等.小麦发育过程及生育期机理模型的检验和评价[J].中国农业科学,2000,33(2):43-50.
    4. Ducheyne S, Schadeck N, Vanongeval L, et al. Assessment of the parameters of a mechanistic soil-crop-nitrogen simulation model using historic data of experimental field sites in Belgium [J]. Agricultural Water Management,2001,51(1):53-78.
    5. Snyder R L, Spano D, Ceasraccio C, et al. Determining degree-day thresholds form field observations [J]. International Journal of Biometeorology,1999,42(2):177-182
    6. Michele R, Nicola L and Zina F. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy [J]. Agricultural Systems,78(1):17-30.
    7. Willmott C J. Some comments on the evaluation of model performance [J]. Bulletin American Meteorological Society,1982,65(11):1310-1313.
    8. Sinclair T T and Seligman N G. Crop modeling:from infancy to maturity [J]. Agronomy Journal, 88(5),698-704.
    9. 朱艳,曹卫星,王绍华等.软构件技术在作物管理智能决策支持系统设计中的应用[J].农业工程学报,2003,19(1):132-136.
    10. Pfleeger S L,Atlee J M著;杨卫东译.软件工程[M].北京:人民邮电出版社,2007.
    1. 魏益民.小麦籽粒的蛋白质组分[J].种子,1988,34:1-2.
    2. 石培春,张薇,曹连莆.小麦籽粒蛋白质组分的研究进展[J].种子,2005,24(10):38-41.
    3. Zhang P P, He Z H, Chen D S, et al. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread [J]. Journal of Cereal Science,2007, 46:1-10.
    4. Wu D X, Wang G X, Bai Y F, et al. Effects of elevated CO2 concentration on growth, water use,
    yield and grain quality of wheat under two soil water levels [J]. Agriculture Ecosystems and Environment,2004,104:493-507.
    5. Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97:322-336.
    6. Martre P, Porter J R, Jamieson P D, et al. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat [J]. Plant Physiology,2003,133(4):1959-1967.
    7. Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat [J]. European Journal of Agronomy,2006,25:138-154.
    8. 赵辉,戴廷波,姜东等.灌浆期温度对两种类型小麦籽粒蛋白质组分及植株氨基酸含量的影响[J].作物学报,2005,31(11):1466-1472.
    9. Kindred D R, Verhoeven T M O, Weightman R M. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat [J]. Journal of Cereal Science,2008,48:46-57.
    10. Dupont F M, Hurkman W J, Vensel W H, et al. Protein accumulation and composition in wheat grains:Effects of mineral nutrients and high temperature [J]. European Journal of Agronomy,2006, 25:96-107.
    11.荆奇,戴廷波,姜东等.小麦籽粒蛋白质组分的生态变异及与植株氮转化的关系研究[J].生态学杂志,2005,24(7):747-750.
    12.王月福,姜东,于振文等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520.
    13.苏佩,蒋纪云,王春虎.小麦蛋白质组分的连续提取分离法及提取时间的选择[J].河南职技师院学报,1993,21(2):1-5.
    14.刘尊英.冬小麦蛋白质组分积累变化动态及优质高产栽培的氮肥调控技术研究[D].郑州:河南农业大学2006.
    15. Pierre C S, Peterson C J, Ross A S, et al. Winter wheat genotypes under different levels of nitrogen and water stress:Changes in grain protein composition [J]. Journal of Cereal Science,2008,47: 407-416.
    16.李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质及组分含量的影响[J].中国粮油学报,2001,16(2):6-8.
    17.许振柱,于振文,王东等.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687.
    18. Katterer T, Eckersten H, Andren O, et al. Winter wheat biomass and nitrogen dynamics under different fertilization and water regimes:application of a crop growth mode[J]. Ecological Modelling,1997,102:301-314.
    19. Hu J C, Cao W X, Zhang J B, et al. Quantifying responses of winter wheat physiological processes to soil water stress for use in growth simulation modeling [J]. Pedosphere,2004,14:509-518.
    20.荆奇,姜东,戴廷波等.基因型与生态环境对小麦籽粒品质与蛋白质组分的影响[J].应用生态学报,2003,14(10):1649-1653.
    1. Ritchie J T and Otter S. Description and performance of CERES-Wheat:A user-orented wheat yield model [J]. USA-ARS. ARS-38.1985:159-175.
    2. Williams J R, Jones C A, Kiniry J R, et al. The EPIC crop growth model. Trans. ASAE,1989, 32:497-511.
    3. Keating B A, Carberry P S, Hammer G L. An overview of APSIM, a model designed for farming systems simulation [J]. European Journal of Agronomy,2003,18:267-288.
    4. Hunt L A and Pararajasingham S. CROPSIM-Wheat:a model describing the growth and development of wheat [J]. Can.J.Plant Sci.,1995,75:619-632.
    5. McMaster GS., Kleepper B., et al. Simulation of shoot vegetative development and growth of unstressed winter wheat [J]. Ecological Modeling,1991,53:189-204.
    6. Weir A H, Bragg, Porter J R, et al. A winter wheat crop simulation model without water or nutrient limitations [J]. J.Agric.Sci.Cambrige,1984,102:371-382.
    7. 刘布春,王石立,马玉平.国外作物生长模型区域应用中升尺度问题的研究[J].中国生态农业学报,2003,11(4):89-91.
    8. Hansen J W, Jones J W. Scaling-up crop models for climate variability applications [J]. Agricultural Systems,2000,65:43-72.
    9. Xiong W, Holman I, Conway D, et al. A crop model cross calibration for use in regional climate impacts studies [J]. Ecological Modelling,2008,213,365-380.
    10. Wesseling J G and Feddes R A. Assessing crop water productivity from field to regional scale [J]. Agricultural Water Management,2006,86:30-39.
    11. Ren J Q, Chen Z X, Zhou Q B, et al. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China [J]. International Journal of Applied Earth Observation and Geoinformation,2008, in press, Corrected Proof, Available online.
    12.曹云者,刘宏,王中义等.基于作物生长模拟模型的河北省玉米生产潜力研究[J].农业环境科学学报,2008,27(2):826-832.
    13. Stehfest E, Heisternann M, Priess J A, et al. Simulation of global crop production with the ecosystem model DayCent[J]. Ecological Modelling,2007,209,203-219.
    14.王石立,马玉平.作物生长模拟模型在我国农业气象业务中的应用研究进展及思考[J].气象,2008,34(6):3-10.
    15.熊伟.用GIS和作物模型对作物生产进行区域模拟方法[J].中国农业气象,25(2):28-32.
    16.朱艳,曹卫星,王绍华等.软构件技术在作物管理智能决策支持系统设计中的应用[J].农业
    工程学报,2003,19(1):132-136.
    17.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    18.严美春,曹卫星,罗卫红等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2002,11(3):355-359.
    19.严美春,曹卫星,李存东等.小麦发育过程及生育期机理模型的检验和评价[J].中国农业科学,2000,33(2):43-50.
    20.潘洁,朱艳,草卫星.基于顶端发育的小麦产量结构形成模型[J].作物学报,2005,31(3):316-322.
    21.刘铁梅,曹卫星,罗卫红等.小麦物质生产与累积的模拟模型[J].麦类作物学报,2001,21(3):26-30.
    22. Goudriaan J and van Laar H H. Modeling potential crop growth processes [M]. Textbook and Exercises, Kluwer Academic Publishers.1994.
    23.刘铁梅,曹卫星,罗卫红等.小麦器官间物质分配动态的定量模拟[J].麦类作物学报,2001,21(1):25-31.
    24.刘铁梅,曹卫星,罗卫红等.小麦茎蘖动态模拟模型的研究[J].麦类作物学报,2001,20(5):416-421.
    25. Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97:322-336.
    26. Jie Pan, Yan Zhu and Weixing Cao. Modeling plant carbon flow and grain starch accumulation in wheat [J]. Field Crops Research,2007,101(3):276-284.
    27. Hu J C, Cao W X, Zhang J B, et al. Quantifying responses of winter wheat physiological processes to soil water stress for use in growth simulation modeling [J]. Pedosphere,2004,14:509-518.
    28.庄恒扬,曹卫星,蒋思霞等.作物氮素吸收与分配的动态模拟[J].农业系统科学与综合研究,2004,20(1):5-11.
    29. Roland S. Transcending Scales of space and time in impact studies of climate and climate change on agro hydrological responses [J]. Agriculture, Ecosystems and Environment,2000,82:185-212.
    30. Wu W B, Ryosuke S, Yang P, et al. Global-scale modeling of future changes in sown areas of major crops [J]. Ecological Modeling,2007,208:378-390.
    31. Tan G X, Ryosuke S. Global estimation of crop productivity and impacts of global warming by GIS and EPIC integration [J]. Ecological Modeling,2003,168:357-370.
    32. Satya P, Ryosuke S. National spatial crop yield simulation using GIS-based crop production model [J]. Ecological Modeling,2001,135:113-129
    33.王宗明,张柏,宋开山等.GIS支持下的松嫩平原黑土区作物生产力模拟[J].农业系统科学与
    综合研究,2007,23(1):27-32.
    34.冯利平,孙宁,刘荣花等.我国华北冬小麦生产影响评估模型的研究[J].中国生态农业学报,2003,11(4):73-76.
    35. Band L E, Peterson D Running S. Forest ecosystem processes at the watershed scale:basis for distributed simulation [J]. Ecological Modeling,1991,56:171-196.
    36. King A W. Translating models across scales in the landscape [M]. In:Turner M G and Gardner R H, Editors. Quantitative Methods in Landscape Ecology:The Analysis and Interpretation of Landscape Heterogeneity, Springer-Verlag, New York.1991.
    37. de Janger J M, Potgierter A B and van den Berg W J. Framework for forecasting the extent and severity of drought in maize in the Free State Province of South Africa[J]. Agricultural Systems, 1998,57:351-365.
    38. Iwasa Y, Andreasen V and Levin S. Aggregation in model ecosystems I. Perfect aggregation [J]. Ecological Modelling,1987,37:287-302.
    39. Rastetter E B, King A W, Cosby B J, et al. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems [J]. Ecological Applications,1992,2:55-70.
    40. Haskett J D, Pachepsky Y A and Acock B. Use of the beta distribution for parameterizing variability of soil properties at the regional level for crop yield estimation [J]. Agricultural Systems,1995,48: 73-86.
    41. Luxmoore R J, King A W and Thar M L. Approaches to scaling up physiologically based soil-plant models in space and time [J]. Tree Physiology,1991:281-292.
    42. de Jager J M, Potgieter A B and van den Berg W J. Framework for forecasting the extent and severity of drought in maize in the Free State Province of South Africa[J]. Agricultural Systems, 1998,57:351-365.
    43. van Lanen H A J, van Diepen C A, Reinds G J, et al. Physical land evaluation methods and GIS to explore the crop growth potential and its effects within the European communities[J]. Agricultural Systems,1992,39:307-328.
    44. Thornton P K, Sake A R, Singh U, et al. Application of a maize crop simulation model in the central region of Malawi [J]. Experimental Agriculture,1995,31:213-226.
    45. Rosenthal W D, Hammer G L and Butler D. Predicting regional grain sorghum production in Australia using data and crop simulation modeling [J]. Agric. And Forest Meteor.,1998,91: 263-274.
    46. Carbone G J, Narumalai S and King M. Application of remote sensing and GIS technologies with physiological crop models [J]. PE & RS,1996,63:171-179.
    47. Thornton P K, Bowen W T, Ravelo A C, et al. Estimating millet production for famine early warning:an application of crop simulation modeling using satellite and ground-based data in Burkina Faso [J]. Agric. and Forest Meteor.,1997,83:95-112.
    48. Addiscott T M. Simulation modelling and soil behaviour [J]. Geoderma,1993,60:15-40.
    49. Heuvelink G B M. Uncertainty analysis in environmental modeling under a change of spatial scale [J]. Nutrient Cycling in Agroecosystems,1998,50:255-264.
    50. Jansen M J W. Prediction error through modeling concepts and uncertainty from basic data [J]. Nutrient Cycling in Agroecosystems,1998,50:247-253.
    51. Easterling W E, Weiss A, Haysl C J, et al. Spatial scales of climate information for simulating wheat and maize productivity:the case of the US Great Plains[J]. Agric. and Forest Meteor.,1998, 90:51-63.
    52.庄立伟,王石立.东北地区逐日气象要素的空间插值方法应用研究[J].应用气象学报,2003,14(5):606-706.
    53.李正泉,于贵瑞,刘新安等.东北地区降水与湿度气候资料的栅格化技术[J].资源科学,2003,25(1):72-77.
    54. Iglesias A, Rosenzweig C and Pereira D. Agricultural impacts of climate change in Spain: developing tools for a spatial analysis [J]. Global Environmental Change,2000,10:69-80.
    55. Bouman B A M, van Keulen H, van Laar H H, et al. The'School of de Wit' crop growth simulation models-A pedigree and historical overview [J]. Agricultural Systems,1996,52:171-198.
    56. Thornley J H M, Cannell M G R. Modelling the components of plant respiration:representation and realism [J]. Annals of Botany,2000,85:55-67.
    57. Barcza Z, Kern A, Haszpra L, et al. Modelling the impacts of weather and climate variability on crop periodicity over a large area:A new process-based model development, optimization, and uncertainties analysis [J]. Agricultural and Forest Meteorology,2009,149(5):831-850.
    58. Zanolin A, de Fouquet C, Granier J, et al. Geostatistical simulation of the spatial variability of an irrigated farm plot [J]. Comptes Rendus Geosciences,2007,339(6):430-440.
    1. 毛竞,关欣,李巧云.我国数字农业发展现状与发展趋势[J].广东农业科学,2007,12:126-128.
    2. 王石立,马玉平.作物生长模拟模型在我国农业气象业务中的应用研究进展及思考[J].气象,2008,34(6):3-10.
    3. Stehfest E, Heisternann M, Priess J A, et al. Simulation of global crop production with the ecosystem model DayCent [J]. Ecological Modelling,2007,209:203-219.
    4. 曹云者,刘宏,王中义等.基于作物生长模拟模型的河北省玉米生产潜力研究[J].农业环境科学学报,2008,27(2):826-832.
    5. Ren J Q, Chen Z X, Zhou Q B, et al. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China [J]. International Journal of Applied Earth Observation and Geoinformation,2008, in press, Corrected Proof, Available online.
    6. Wesseling J G and Feddes R A. Assessing crop water productivity from field to regional scale [J]. Agricultural Water Management,2006,86:30-39.
    7. 刘布春,王石立,马玉平.国外作物生长模型区域应用中升尺度问题的研究[J].中国生态农业学报,2003,11(4):89-91.
    8. Hansen J W and Jones J W. Scaling-up crop models for climate variability applications [J]. Agricultural Systems,2000,65:43-72.
    9. Xiong W, Holman I, Conway D, et al. A crop model cross calibration for use in regional climate impacts studies [J]. Ecological Modelling,2008,213:365-380.
    10.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    11. Goudriaan J. and H.H.van Laar. Modeling potential crop growth processes [M]. Textbook and Exercises, Kluwer Academic Publishers.1994.
    12.秦大河,罗勇.全球气候变化的原因和未来变化趋势[J].科学对社会的影响,2008,2:16-21.
    13.江苏农业统计局.江苏省农村统计年鉴(2001)[M].南京:江苏省农村统计年鉴出版社,2000.
    14.邓振镛,仇化民,方德彪.甘肃东部旱作小麦水分生产力研究[J].气象科技,1996,1:57-60.
    15.冯波,王法宏,刘延忠等.氮肥运筹对小麦氮素利用效率及产量的影响的研究进展[J].山东农业科学,2006(6):103-107.
    16.王宗明,张柏,宋开山等.GIS支持下的松嫩平原黑土区作物生产力模拟[J].农业系统科学与综合研究,2007,23(1):27-32.
    17. Easterling W E, Weiss A, Haysl C J, et al. Spatial scales of climate information for simulating wheat and maize productivity:the case of the US Great Plains[J]. Agricultural and Forest Meteorology, 1998,90:51-63.
    1. 田展,刘纪远,曹明奎.气候变化对中国黄淮海农业区小麦生产影响模拟研究[J].自然资源学报,2006,21(4):598-607.
    2. 毛竞,关欣,李巧云.我国数字农业发展现状与发展趋势[J].广东农业科学,2007,12:126-128.
    3. 吴连海,韩湘玲.冬小麦生产力估算方法研究[J].自然资源学报,1991,6(1):80-87.
    4. 李军,王立祥,绍明安等.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,16(2):161-165.
    5. Horie T, Yajima M and Nakagawa H. Yield forecasting [J]. Agricultural Systems,1992,40:221-236.
    6. Jin Z Q, Zhu D W. Impacts of Changes in Climate and Its Variability on Food Production in Northeast China [J]. Acta Agronomica Sinica,2008,34(9):1588-1597.
    7. 张宇,王石立,王馥棠.气候变化对我国小麦发育及产量可能影响的模拟研究[J].应用气象学报,2000,11(3):264-270.
    8. 刘建栋,王石立,于强等.CO2倍增对黄淮海气候生产力影响的数值模拟[J].自然灾害学报,2001,10(1):17-23.
    9. 张学才,郭瑞雪.情景分析方法综述[J].探索与争鸣,理论月刊2005,8:125-126.
    10.张向龙,王俊,杨新军等.情景分析及其在生态系统研究中的应用[J].生态学杂志,2008,27(10):1763-1770.
    11.岳珍,赖茂生.国外”情景分析”方法的进展[J].情报杂志,2006,7:59-64.
    12.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    13.李艳,王式功,马玉霞.全球气候变暖对我国小麦的影响研究综述[J].环境研究与检测,2006,19(2):11-13.
    14. Lashof D A. The dynamic greenhouse:feedback process that may influence future concentration of atmospheric trace gases and climate change [J]. Climate Change,1989,14:213-242.
    15.熊伟,居辉,许吟隆等.气候变化下我国小麦产量变化区域模拟研究[J].中国生态农业学报,2006,14(2):164-167.
    16.许吟隆.应用Hadley中心RCM发展中国高分辨率区域气候情景[J].气候变化通报,2004,3(5):6-7.
    17. Luo Q Y, Bellotti W, Williams M, et al. Potential impact of climate change on wheat yield in south Australia [J]. Agricultural and Forest Meteorology,2005,132(3-4):273-285.
    18. Tao F L, Yokozawa M and Zhang Z. Modelling the impacts of weather and climate variability on crop productivity over a large area:A new process-based model development, optimization, and uncertainties analysis [J]. Agricultural and Forest Meteorology,2009,149(5):831-850.
    19. Reidsma P, Ewert F, Boogaard H, et al. Regional crop modelling in Europe:The impact of climatic conditions and farm characteristics on maize yields [J]. Agricultural Systems,2009, in press, Corrected Proof, Available online.
    20. Sanchis F M and Bello M L F. Climate change and its marginalizing effect on agriculture [J]. Ecological Economics,2009,3(15):896-904.
    21. Seo S N and Mendelsohn R. An analysis of crop choice:Adapting to climate change in South American farms [J]. Ecological Economics,67(1):109-116.
    1.王向东,张建平,马海莲等.作物模拟模型的研究概况及展望[J].河北农业大学学报,2005,26(增刊):20-23.
    2.高亮之.农业模型学基础[M].香港,天马出版社,2004.
    3. Sinclair T R and Seligman N G Crop Modeling:from infancy to maturity [J]. Agronomy Journal, 1996,88:698-704.
    4. Keating B A, Carberry G L and Hammer G L. An overview of APSIM, a model designed for farming systems simulation [J]. European Journal of Agronomy,2003,18:267-288.
    5. Lashof D A. The dynamic greenhouse:feedback process that may influence future concentration of atmospheric trace gases and climate change [J]. Climate Change,1989,14:213-242.
    6.李存东,曹卫星,李旭等.论信息技术及其发展战略[J].农业现在化研究,1998,19(1):17-20.
    7. Lemmon H. COMAX:An expert system for cotton crop management [J]. Science,1986,233:29-33.
    8. Ritchie J T. Soil water balance and plant stress. In:Tsuji G Y, Hoogenboom G, Thornton P K, et al. Understanding Options for Agricultural Prodution. Kluwer Academic Publishers, Dordrecht, The Netherlands,1998:41-54.
    9. Claudio O S, Marcello D and Roger N. CropSys, acrop systems simulation model [J]. European Agronomy Journal,2003,18:289-307.
    10.高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS)[J].中国农业科技出版社,1992.
    11. Ren J Q, Chen Z X, Zhou Q B, et al. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China [J]. International Journal of Applied Earth Observation and Geoinformation, 2008, in press, Corrected Proof, Available online.
    12. Wesseling J G and Feddes R A. Assessing crop water productivity from field to regional scale[J]. Agricultural Water Management,2006,86:30-39.
    13.刘布春,王石立,马玉平.国外作物生长模型区域应用中升尺度问题的研究[J].中国生态农业学报,2003,11(4):89-91.
    14. Hansen J W, Jones J W. Scaling-up crop models for climate variability applications [J]. Agricultural Systems,2000,65:43-72.
    15. Xiong W, Holman I, Conway D, et al. A crop model cross calibration for use in regional climate impacts studies [J]. Ecological Modelling,2008,213,365-380.
    16.熊伟,许吟隆,林而达等.区域气候模式与作物模型联接的影响评估模拟试验及不确定性分析[J].作物学报,2005,31(6):697-705.
    17. Supermap Objects 5开发教程[M].北京:北京超图地理信息技术有限公司,2004.
    18.高亮之,金之庆,郑国清等.小麦栽培模拟优化决策系统(WCSODS)[J].江苏农业学报,2000,16(2):65-72.
    19.王卷乐,陈沈斌,廖顺宝.基于组件GIS的精准水稻种植信息系统的开发[J].地球信息科学,2004,6(2):27-30.
    20.赵春江,诸德辉,李鸿祥等.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42-49.
    21. Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model [J]. European Journal of Agronomy,2003,18(3-4):235-265.
    22.朱艳,曹卫星,王其猛等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    1. 宋兆杰,张金良.数字农业研究进展及发展趋势[J].现代化农业,2007,5:1-4.
    2. 毛竞.我国数字农业发展现状与发转趋势[J].广东农业科学,2007,12:126-128.
    3. 秦斌.数字农业与精细农业[J].山西农业大学学报,2007,27(3):152-154.
    4. 俞海红,何勇.数字农业及其发展现状[J].农机化研究,2006,2:14-16.
    5. 王青蓝,徐晓红,毕洪波等.我国数字农业的崛起及其研究进展[J].农业与技术,2005,25(5):4-8.
    6. 孙成明,王余龙.作物模拟技术的研究现状及其发展对策探讨[J].中国农学通报,2005,21(3):131-134.
    7. 林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(5):750-758.
    8. 王向东,张建平,马海莲等.作物模拟模型的研究概况及展望[J].河北农业大学学报,2003,26(增刊):20-23.
    9. 刘伟明.对数字农业的认识及其基本构想[J].现代农业科技,2008,1:230-231.
    10.周国民.数字农业综述[J].农业图书情报学刊,2004,15(3):5-7.
    11.李忠武,蔡国强,唐政洪等.作物生产力模型及其应用研究[J].应用生态学报,2002,13(9):1174-1178.
    12. Gyanendra B, Dhakhwa, C. Campbell L, et al. Maize growth:assessing the effects of global warming and CO2 fertilization with crop models [J]. Agricultural and Forest Meteorology,1997,87: 253-272.
    13. Jones C A and Kiniry F R. CERES-Maize:A simulation model of maize growth and development. College station, US:Tesas S&M Univ. Press,1986.
    14. Eitzingera J, Trnka M, Hosch J, et al. Comparsion of CERES, WOFOST and SWAP models in simulation soil water content during growing season under different soil conditions [J]. Ecological Modelling,2004,171(3):223-246.
    15. Hijmans R J, Guiking lens I M and van Diepen C A. Crop Growth Simulation Model WOFOST [M]. Documentation v.4.1, Centre for World food studies, Wageningen, The Netherlands,1988.
    16. Ren J Q, Chen Z X, Zhou Q B, et al. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China [J]. International Journal of Applied Earth Observation and Geoinformation,2008, in press, Corrected Proof, Available online.
    17. Wesseling J G and Feddes R A. Assessing crop water productivity from field to regional scale [J]. Agricultural Water Management,2006,86:30-39.
    18. Hansen J W and Jones J W. Scaling-up crop models for climate variability applications [J]. Agricultural Systems,2000,65:43-72.
    19.曹云者,刘宏,王中义等.基于作物生长模拟模型的河北省玉米生产潜力研究[J].农业环境科学学报,2008,27(2):826-832.
    20.魏益民.小麦籽粒的蛋白质组分[J].种子,1988,34:1-2.
    21.石培春,张薇,曹连莆.小麦籽粒蛋白质组分的研究进展[J].种子,2005,24(10):38-41.
    22. Zhang P P, He Z H, Chen D S, et al. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread [J]. Journal of Cereal Science,2007, 46:1-10.
    23. Wu D X, Wang G X, Bai Y F, et al. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels [J]. Agriculture Ecosystems and Environment,2004,104:493-507.
    24. Kindred D R, Verhoeven T M O and Weightman RM. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat [J]. Journal of Cereal Science,2008,48:46-57.
    25. Martre P, Porter J R, Jamieson P D, et al. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat [J]. Plant Physiology,2003,133(4):1959-1967.
    26. Martre P, Jamieson P D, Semenov M A, et al. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat[J]. European Journal of Agronomy,2006,25:138-154.
    27.荆奇,姜东,戴廷波等.基因型与生态环境对小麦籽粒品质与蛋白质组分的影响[J].应用生态学报,2003,14(10):1649-1653.
    28. Schulze R. Transcending scales of space and time in impact studies of climate and climate change on agro-hydrological responses [J]. Agriculture, Ecosystem and Environment,2000,82:185-212.
    29.刘布春,王石立,马玉平.国外作物模型区域应用研究进展[J].气象科技,2002,30(4):194-203.
    30. Xiong W, Holman I, Conway D, et al. A crop model cross calibration for use in regional climate impacts studies [J]. Ecological Modelling,2008,213,365-380.
    31.刘布春,王石立,马玉平.国外作物生长模型区域应用中升尺度问题的研究[J].中国生态农业学报,2003,11(4):89-91.
    32.王石立,马玉平.作物生长模拟模型在我国农业气象业务中的应用研究进展及思考[J].气象,2008,34(6):3-10.
    33. Heuvelink G B M. Uncertainty analysis in environmental modeling under a change of spatial scale [J]. Nutrient Cycling in Agroecosystems,1998,50:255-264.
    34. Easterling W E, Weiss A, Haysl C J, et al. Spatial scales of climate information for simulating wheat and maize productivity:the case of the US Great Plains[J]. Agric. and Forest Meteor.,1998, 90:51-63.
    35. Luxmoore R J, King A W and Thar M L. Approaches to scaling up physiologically based soil-plant models in space and time [J]. Tree Physiology,1991:281-292.
    36. Iglesias A, Rosenzweig C, Pereira D. Agricultural impacts of climate change in Spain:developing tools for a spatial analysis [J]. Global Environmental Change,2000,10:69-80.
    37.庄立伟,王石立.东北地区逐日气象要素的空间插值方法应用研究[J].应用气象学报,2003,14(5):606-706.
    38.张向龙,王俊,杨新军等.情景分析及其在生态系统研究中的应用[J].生态学杂志,2008,27(10):1763-1770.
    39.陈超,金之庆,郑有飞等.CO2倍增时气候及其变率变化对黄淮海平原小麦生产的影响[J].江苏农业学报,2004,20(1):7-12.
    40.张宇,王石立,王馥棠.气候变化对我国小麦发育及产量可能影响的模拟研究[J].应用气象学报,2000,11(3):264-270.
    41.刘建栋,王石立,于强等.CO2倍增对黄淮海气候生产力影响的数值模拟[J].自然灾害学报,2001,10(1):17-23.
    42.许吟隆.应用Hadley中心RCM发展中国高分辨率区域气候情景[J].气候变化通报,2004,3(5):6-7.
    43.李存东,曹卫星,李旭等.论信息技术及其发展战略[J].农业现在化研究,1998,19(1):17-20.
    44. Lemmon H. COMAX:An expert system for cotton crop management'[J]. Science,1986,233:29-33.
    45. Ritchie J T. Soil water balance and plant stress. In:Tsuji G Y, Hoogenboom G, Thornton P K, et al. Understanding Options for Agricultural Prodution. Kluwer Academic Publishers, Dordrecht, The Netherlands,1998:41-54.
    46. Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model [J]. European Journal of Agronomy,2003,18(3-4):235-265.
    47. Claudio O S, Marcello D and Roger N. CropSys, acrop systems simulation model [J]. European Agronomy Journal,2003,18:289-307.
    48.高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS)[J].中国农业科技出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700