用户名: 密码: 验证码:
黑龙江省北部巨型推覆构造和金矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推覆构造的存在对矿产资源的分布有一定的控制作用。在推覆体变形强烈的两端和前缘的岩层,是固体矿产分布的主要场所。
     研究推覆构造体的结构和分布方式,确定推覆体中的强应变带,对区域地质问题进行深入的研究是进行找矿评价和资源预测的重要的基础性工作。
     本研究论文分析横跨俄、中、蒙三国的中—晚侏罗世巨型推覆构造。指出了推覆构造的根部带、中部带和前锋带的分布。深入研究了位于我国东北北部地区的推覆构造体存在,指出了我国东北北部地区及内蒙东部地区,是区域性巨型推覆构造的中部带和前锋带;确定了推覆构造原地系统和外来系统;研究了推覆造山山麓相的特征及分布。分析研究了东北北研究区域内的七个一级推覆构造主断裂面。建立了推覆构造成矿系统,并在东北地区典型矿床研究的基础上,提出六种与推覆构造有关的矿床模型。
     以建立的矿床模型为标准,将综合信息矿产预测与推覆构造体系相结合,对东北北部地区推覆构造所影响的区域进行了金矿资源预测。指出7、13号单元为具有中型或大型成矿规模的重点找矿单元;6、10、14、16、21号为具有中型式小型成矿规模的重点找矿单元。为今后金矿找矿工作开展指明方向和提供选择的靶区。
North Heilongjiang Province is our country's important gold ore minerogenic belt. The author take the giant nappe structure system's metallogenic theory and the synthesis information minerals prediction theory as the instruction for the first time, has carried on the prediction research work in this area.
     The paper discusses the geological feature which the giant nappe structure active environment the time when the giant nappe structure becomes and forms, and the pattern that the giant nappe structure golden ore deposit. The author divided 21 geological units, extracted optimized 37 geological variables and evaluated it, used many kinds of mathematical models has scored the unit resources characteristic, has carried on the quota prediction to this area gold ore. It has obtained following main achievement through the research:
     1. feature of giant nappe structure in Heilongjiang northern
     In the northern part of Heilongjiang has established the giant nappe structure in existence, and along the direction of nappe structure thrust it’s mark off the nappe of the root zone, central zone and brought forward.
     The nappe of root zone is distributing between Kentewula and Tatale in Mongolia, namely in the line of Jiemichefushika mountain, Suoluokang mountain, Damubuji mountain, Tuopuke mountain in Russia. The whole root is divided into western, middle and eastern three parts, and total length is 1950 km.
     The central zone generally is not Kerulen - Ergun - mamyn matching massifs.
     In the western of Striker is distributed between Mongolia Kentewula mountains and Tatale-Mongolia and Mongolia Khan-China Tuquan-Tailai- Xunke-Russian Saluoli Hill-Yamadayev River, and the striker with 2000 km long, the width of 50 km to 825 km.
     It's Pointed out that the main fracture surfaces of Jurassic giant nappe structure in the northern part of Heilongjiang make up of seven 1st class tectonic system components. it’s determine residual strain rock erosion average thickness of 627 meter, the largest thickness in Sunwu through magnetotelluric sounding section.
     in northern of Heilongjiang giant nappe structure the autochthonous system made up of Archaean, The Upper Sinian-lower Cambrian , Ordovician, Silurian, Devonian, the Lower Carboniferous and Early Carboniferous alkali feldspar granite, the Upper Carboniferous and the Late Carboniferous intrusive rocks, lower-middle Permian, Early Permian granitic rocks and miscellaneous nappe product ,Upper Permian-lower Triassic(P_3~3-T_1~1),Ruiti bands of the Upper Triassic-Arias bands(T_3~3-J_1~1) of Lower Jurassic, Indo-chinese epoch granite (YJ_3~3-YJ_1~1), the Early Jurassic granite category(YJ_1), the middle Jurassic granodiorite porphyry(YJ_2), the construction of middle Jurassic volcanic rocks (J_2V) , the middle Jurassic sedimentary (J_2S) and rock formation.
     alien system of giant nappe structure in northern Heilongjiang distributed in the central zone of giant nappe, namely the West from yimuhe-menduli- fulahan-baiyinna-Heihe-baihualinchang-beian-arongqi-Wulanhaote-Huolinguole-wuka-yimuhe confining region. External system is mainly composed of Baluoyi regional metamorphic rocks in Xinghuadukou Group, mixed complex Proterozoic(MgPt) and mixed granite diorite(MdPt), komatiite, the Lower Devonian and archean quartz spot rock.
     2.giant nappe structure operating environment in northern Heilongjiang
     Under the nappe of the main faults, the autochthonous system was reformed the angle of the rock due to the heating , Kraft belt was transformed into diopside-garnet-epidote hornfels, galena, light-colored sphalerite, yellow Copper typical temperature in combination with calcium-silicon hornfels, clastic rock and mudstone had been transformed for andalusite, cordierite, garnet hornfels, biotite quartz rock angle more generally.
     Above the fracture surface on the external system from nappe structure had been transformated early mylonite of biotite-muscovite in particular the mixed granite and mixed complex. Under the main section, the super-iron and iron-magnesia can also be transformed into rock angle, which belong to the middle temperature product. Therefore, it's speculated formation temperature conditions of giant nappe structure was middle temperature.
     Stress average of giant nappe structure formed is about 110 MPa.
     From the mylonite, the transformation of feldspar and brittle deformation, rock fragments mylonite and more mylonite been transformed for the brittle deformation of the rock and gold mineralization examples,it's infered the activities time of giant nappe structure continuing is much longer.
     3. Determine giant northern Heilongjiang nappe mineralization era
     From the giant nappe autochthonous system rock formation and geological era, Nappe orogeny formed in the foothills of the geology, the rock groups of the isotope data and ductile deformation in metamorphic rocks of the isotope data analysis and judgement, the geological time of the giant nappe structure should be late Jurassic.
     4. Establishing the geological model of mineralization by the ore-forming system of nappe
     With J2-3 nappe of the mineralization contain at least mylonitic, contained the relation of the role of mylonite deposit with nappe thermal effect of the angle rock type deposits; including the deposits of nappe stacking role with volcanic, and the depsits related to the rock with ultramafic and mafic magmatic, the model related to the large rocks and the possible composition of the light-coloured seats of the quartz vein type such as tungsten and molybdenum ore mineralization. Distribution of the more general, multi-metal deposit can be summarized in the following five categories of deposit mode: A: Shabaosi-rock gold deposit model: B: Shabaosi gold-silver deposit and Cheng Paper kiln type gold deposit model; C: Walali - Heilonggang groove type of gold deposit model; D: Guliku type gold deposit model; E: Universal-Gaxian type of cents polymetallic ore deposit model;
     5. The prediction technique has made the new progress
     For the first time application giant nappe structure mineralization system's new theory and synthesis information minerals prediction theory and method, have carried out the mineralization background deep research and the gold ore appraisal forecast research work in the research area. Has divided 21 geological units, has extracted 45 geological variables and evaluates, the optimization is 37 geological variables and evaluates; With the characteristic analysis, Q mathematics evaluation model quotas and so on cluster analysis, corresponding analysis and logic information method have melted the geological unit resources characteristic.
     6.The gold ore prediction has obtained the new effect
     Carries on the mineralization analysis to the geological unit, and to the ore deposit position, the rank and the amount of resources carries on the prediction that has made the good progress. There is 2 I level mineralization unit, 2 II level mineralization unit and 5 III level mineralization unit in 12 predicted units; there are 2 large-scale golden deposit, 3 medium-scale golden deposit and 10 small-scale golden deposit in 15 non-model units, in 15 non-model units A level mineralization prospect area 2, B level mineralization prospect area 5, C level mineralization prospect area 8.
引文
[1] 黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社。1993.
    [2] 彭少梅.粤北淅洲褶皱式逆冲推覆构造与金矿成矿系列[J].广东有色金属地质,1991,2:36-44.
    [3] 傅俊彧,于荣文,宋亚芹等.黑龙江西北洪业家推覆剪切构造带地质特征及其意义[J].地质力学学报,2005,11(2):145-152.
    [4] 方向池,蔡学林.推覆构造的控矿成矿规律:以武当山推覆构造为例[J].成都地质学院学报.1993,20(4):34-37.
    [5] 黄仲权.滇东南推覆造山带金成矿作用与找矿前景[J].黄金科学技术,1995,3(6):25-30.
    [6] 李岩峰,曲国胜,张进.弧形构造研究进展[J].地球科学进展, 2007,22(07):708-715.
    [7] 叶培盛.拉萨地块中部蛇绿岩与逆冲推覆构造[D].中国地质科学院,2004.
    [8] 程三友.中国东北地区区域构造特征与中、新生代盆地演化[D].中国地质大学(北京),2006.
    [9] 张家声,劳秋元,李燕.航磁异常的构造解释和华北-塔南-扬子超陆块演化[J].地学前缘,1999,6(4):379-390.
    [10] 地质矿产部.综合水文地质图编图方法与图例[M].北京:地质出版社,1979.
    [11] 郑步连.淮南推覆构造原地系弘前期断裂对前缘主滑脱面的影响[J].徐煤科技,1997,1:31-32.
    [12] 翟裕生,姚书振,崔彬等.成矿系列研究[M].北京:中国地质大学出版社,1996.
    [13] 汪劲草,夏斌.中国阿尔泰造山带大型逆冲推覆构造[J].桂林工学院学报,2005,25(2):135-140.
    [14] 郑亚东,王涛.中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析[J].中国科学:D 辑,2005,35(4):291-303.
    [15] 汪德,杜晋锋,赵祯祥.五台山东部吕梁期逆冲推覆构造[J].地质调查与研究,2005,28(1):9-15.
    [16] 李占奎,丁燕云.大巴山推覆构造特征的探讨[J].物探与化探,2007,31(6):495-498.
    [17] 罗碧华,秦启荣.逆冲推覆构造的研究类型和方法[J].内蒙古石油化工,2007,33(5):263-265.
    [18] 吴珍汉,叶培盛,赵文津等.东昆仑南部晚新生代逆冲推覆构造系统[J].地质通报,2007,26(4):448-456.
    [19] 崔学军,刘春根.井冈山逆冲推覆构造基本特征及找矿意义[J].大地构造与成矿学,2003,27(1):43-47.
    [20] 杨绍祥,余沛然.浦市—辰溪浅层叠瓦状推覆构造特征及地质找矿意义[J].湖南地质,1995,14(1):31-33.
    [21] 卢清池.福建尤溪西华—龙门场推覆构造的发现及其找矿意义[J]. 福建地质,1990,9(4):312-316.
    [22] M.A.EL Sharkawi,洪景鹏.通过海绿石组合认识古海岸和海水进退变化—来自埃及北部的实例[J].世界地质,1993,12(1):5.
    [23] 李亚林,王成善,伊海生等.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报,2006,88(8):1118-1130.
    [24] 朱华平,付静茹.南秦岭中新生代逆冲推覆构造事件与金矿的形成[J].地学前缘,2004,11(1):168-168.
    [25] 张宏远,侯泉林,曹代勇.胶东东部中生代逆冲推覆构造研究[J].中国科学:D 辑,2006,36(6):497-506.
    [26] 吴新伟,刘正宏,徐仲元.大青山逆冲推覆构造带中劈理特征及其成因[J].吉林大学学报(地球科学版),2005,35(5):564-569.
    [27] 李天斌.鄂尔多斯盆地西缘逆冲推覆构造特征及演化[D].中国地质大学(北京),2006.
    [28] 和政军,王宗起,任纪舜.华北北部侏罗纪大型推覆构造带前缘盆地沉积特征和成因机制初探[J].地质科学,1999,34(02):186-195.
    [29] 宋鸿林.燕山式板内造山带基本特征与动力学探讨[J]地学前缘, 1999,6(04):309-316.
    [30] A.E.Armitage,R.S.James,S.P.Coff.Gold Mineralization in Archean Banded Iron Formation,Third Portage Lake Area,Northwest Terrtories,Canada[J].Explor.Mining Geol. 1996, 5(1);1-15.
    [31] 赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社,1994.
    [32] 翟裕生,秦长兴.矿床学参考书(下册)—关于成矿系列及成矿模式问题[M].北京:地质出版社,1986.
    [33] 邹光华,欧阳宗圻,李惠等著.中国主要类型金矿找矿模型[M].北京:地质出版社,1996.
    [34] 李亚东.白龙江地区逆冲推覆构造及其与金矿的关系[J].贵金属地质,1994,3(4):262-269
    [35] 冯明伸,杨建东.安康地区北部韧性推覆构造基本特征及对金矿成矿控制作用[J].陕西地质,1994,12(1):17-26.
    [36] 彭少梅.一个新的金矿成矿系列:论粤北新洲褶皱式逆冲推覆构造与金矿化的关系[J].黄金, 1992,13(2):7-10.
    [37] 王世称,成秋明,范继璋.金矿资源综合信息评价方法[M].长春:吉林科学技术出版,1990.
    [38] 王世称,范继璋,杨永华.矿产资源评价[M].长春:吉林科学技术出版社,1990.
    [39] 周宏坤,丁宗强,雷祖志等.金属矿床大比例尺定量预测[M].北京:地质出版社,1993.
    [40] 卡. MД,刘吉成.大比例尺定量预测[J].地质科技动态,1994,6:15-17.
    [41] 胡惠民,谈大比例尺矿产预测[J].中国地质,1992,10:4-7.
    [42] 胡惠民.大比例尺铜矿预测原则与方法[J].矿产与勘查,1991,5:71-90.
    [43] 高章红.大比例尺找矿预测及 GIS 应用[J].安徽地质,2006,16(3):197- 203.
    [44] 王世称等.内生矿产成矿系列中比例尺预测方法研究[M].北京:地质出版社,1993.
    [45] J Harff and J.C.Davis.Regionalization in Geology by Multivariate Classifica-tion[J].Mathematical Geology,1990,22(5)25-30.
    [46] D.P.F.Darbyshire,P.E.J.Pitfied.S.D.G.Gampbell.Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean:Rb-Sr and Sm-Nd isotope constraints[J].Geology,1996,24(1):19-22.
    [47] 王世称,王於天,成秋明.综合信息矿产资源定量评价(地质技术人员培训教材)[M].长春,1987.
    [48] 李随民,姚书振,周宗桂.矿产资源定量预测的研究现状[J]. 地质找矿论丛,2007,22(1):9-12.
    [49] 邹光华,欧阳宗圻,李惠等.中国主要类型金矿床找矿模型[M].北京:地质出版社,1996.
    [50] 程玉明等.吉辽地区绿岩带金矿成矿找矿模型[M].北京:地震出版社,1996.
    [51] 梅友松,汪东波.铜矿找矿中若干问题的研究[M].矿产地质系列丛书,1993.
    [52] 北京矿产地质研究所.中国铜矿找矿新进展[M].北京:中国有色金属工业总公司地质勘查总局,1993.
    [53] 潘国成.地质统计学中的估值技术和条件模拟[J].世界地质,1997,16(3):83-100.
    [54] 侯景儒等.实用地质统计学[M].北京:地质出版社,1993.
    [55] 周光亚,夏立显.非定量数据分析及其应用[M].北京:科学出版社,1993.
    [56] 潘国成.地质统计学中结构分析的理论与方法[J].世界地质,1997,16(3):70-82.
    [57] 王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    [58] 陈天与,吴锡生.数学地质方法[M].长春:吉林人民出版社,1980.
    [59] Guocheng Pan.Regionalized Favorability theory for Information synthesis in mineral exploration[J].Math Geology,1993,25(5):603-631.
    [60] Guo cheng Pan. Practical issues of geostatistical reserve estimationin the mining industry[J].CIMBulletin,1995,88(993) :31-37 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700