用户名: 密码: 验证码:
云南白马寨镍矿区煌斑岩地球化学及其成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白马寨镍矿区煌斑岩位于哀牢山断裂带的南段,是该条带上新生代富钾火成岩的重要组成部分。通过对其进行详细的地质学、岩石学、矿物学、同位素年代学、元素和同位素地球化学研究,并和整个条带这类岩石地质地球化学进行充分对比,总结了白马寨镍矿区煌斑岩的成因信息及其与区域富钾火成岩的成因联系;初步查明白马寨镍矿区煌斑岩富集地幔交代流体的性质和交代富集事件发生的时代;定量反演了岩石的部分熔融程度、源区残留矿物相、源区REE含量、结晶分异过程;初步建立了本区煌斑岩的地球动力学成因模式。本研究主要取得以下几点认识:
     1、白马寨镍矿区煌斑岩的侵位时代为32.01±0.60~32.46±0.62Ma,为哀牢山断裂带新生代早期高钾岩浆活动的产物。
     2、白马寨镍矿区煌斑岩为碱性系列、钾玄质-超钾质的钙碱性煌斑岩。俯冲陆壳和洋壳析出的流体对交代富集地幔源区均有贡献,岩浆演化过程中地壳混染作用微弱,部分熔融和结晶分异对成岩过程均有影响。依REE含量可以将其分成两组,元素地球化学特征显示低REE组煌斑岩经历了单斜辉石+橄榄石+斜长石±Fe-Ti氧化物±磷灰石的结晶分异。高REE组煌斑岩经历了橄榄石+单斜辉石+斜长石的结晶分异。低REE组和高REE组煌斑岩分别是交代富集地幔约10%和4%部分熔融的产物。岩石学混合计算模拟出的低REE组煌斑岩原始岩浆熔融残留相的矿物比例分别为Ol_(67.21)Opx_(16.99)Cpx_(11.82)Gar_(4.00)。源区REE含量定量模拟计算表明白马寨镍矿区煌斑岩源于富LREE的交代富集地幔。低REE组煌斑岩结晶分异模拟计算表明,矿区低REE组煌斑岩为原始岩浆直接结晶、相对低结晶分异程度(23.74%)、相对高结晶分异程度(44.15%)的产物。造岩矿物和全岩地球化学特征与马厂箐金矿区、北衙金矿区、姚安金矿区、老王寨金矿区煌斑岩和钙碱性煌斑岩相似但又有区别,体现了哀牢山断裂带新生代富钾火成岩地幔源区和岩浆演化既相似又存在不均一性。
     3、依据区域地质、岩石学、矿物学、地球化学,初步建立了白马寨镍矿区煌斑岩的成因模式:约70~50Ma开始的印度板块向亚洲板块碰撞俯冲,俯冲析出的流体(包括小规模熔体)交代了扬子地块陆下岩石圈地幔,形成白马寨镍矿
Lamprophyres in the Baimazhai nickel deposit are located on the southern segment of Ailaoshan fault belt. These lamprophyres are important parts of Cenozoic potassic rocks on this belt. On the basis of detailed study on their geology, petrology, mineralogy, chronology, elemental and isotopic geochemistry, as well as comparison with other similar rocks on this belt, genetic information of the lamprophyres in Baimazhai nickel deposit has been summed up, genetic relation with regional potassic volcanic rocks has been built, character of the metasomatic fluids and time of the metasomatic enrichment have been preliminarily investigated, partial melting degree, residual mineral and trace elemental composition in the mantle source, fractional crystallization processes have been modeled, and the geodynamical model of the potassic igneous rocks on the whole belt have been preliminarily proposed. Several conclusions have been drawn from this study as followings:1 The age of lamprophyres in the Baimazhai nickel deposit is between 32.01 ±0.60Ma and 32.46 ±0.62Ma, so they are products of early pulse of Cenozoic potassic magmatism in Ailaoshan fault belt.2 All samples are alkaline series, potassic and ultrapotassic calc-alkaline lamprophyres. The fluids derived from dehydration of subducted slab, both continental crust and oceanic crust contributed to enrichment of metasomatic mantle. The lamprophyres was subtly contaminated by crustal substances. Both partial melting and crystallization fractionation play an important role in rock-forming processes. Elemental geochemistry show that low REE group lamprophyres experienced crystallization fractionation of a mineral assemblage of clinopyroxene+olivine+plagioclase±Fe-Ti oxide±apatite, high REE group lamprophyres experienced crystallization fractionation of a mineral assemblage of olivine+clinopyroxene+plagioclase. Low REE group and high REE group lamprophyres are 10% and 4% partial melting of the metasomatic enriched mantle. Petrological mixing calculation show that the ratios of melting
    residue of the primary magma of the low REE group lamprophyres is Ole7.21OpXi6.99Cpxn.s2Gar4.00. Modelling calculation of the REE of the mantle source show that the lamprophyres in Baimazhai nickel deposit are derived from LREE-enriched metasomatic enriched mantle. Modelling calculation of crystallization fractionation of the low REE group lamprophyres show that the low REE group lamprophyres in Baimazhai nickel deposit are products crystallized from primary magma, relatively low crystallization degree (23.74%) and relatively high crystallization degree (44.15%) magma. Geochemica! characteristics of the rock-forming minerals and whole rock show that there are both similarity and difference among lamprophyres in the Baimazhai nickel deposit and those in Machangqing gold deposit, Baiya gold deposit, Yaoan gold deposit and Laowangzhai gold doposit on Ailaoshan fault belt, indicating the regional mantle source being heterogeneous.3> According to regional geology, petrology, mineralogy and geochemistry, genetic model of the lamprophyres has been preliminaryly proposed: about 70~50Ma collision and subduction between India plate and Asia plate initiated, and the fluid (including small-scale melt) metasomatized the Yantze sub-continental lithospheric mantle, forming enriched mantle source of the lamprophyres in Baimazhai nickel deposit. With subduction continued, about 40Ma (the timing of initiation of Cenozoic potassic magmatism on the Ailaoshan fault belt), slab break-off took place between subducting ancient Tethyan slab and India slab, and cause asenospheric mantle upwelling. Under transtensive background, hot asenospheric mantle initiated partial melting of former enriched lithospheric mantle, which formed the lamprophyres in Baimazhai nickel deposit. Regional large-scale potassic magmatism initiated the large-scale strike-slip shear of the Ailaoshan fault belt (about 27-22Ma).
引文
从柏林,吴根耀,张旗,等.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B辑),1993,23(11):1201~1207.
    邓家藩.云南硫化物型铜镍和铂族矿床.云南地质,1999,18:22-35.
    邓晋福.原生玄武岩浆的起源及其识别标志.地质研究,1984,(2):18~27.
    邓万明,钟大赉.壳-幔过渡带及其在岩石圈构造演化中的地质意义.科学通报,1997,42:2474-2482.
    邓万明,黄萱,钟大赉.滇西金沙江北段的富碱斑岩及其与板内变形的关系.中国科学(D),1998,28:111~117.
    邓万明.孙宏娟.张玉泉.囊谦盆地新生代钾质火山岩成因岩石学研究.地质科学,2001.36:304~318.
    干国梁.矿物·熔体间元素分配系数资料及主要变化规律.岩石矿物学杂志.1993,12(2):144~181.
    胡云中,唐尚鹑.王海平.等.哀牢山金矿地质.北京:地质出版社.1995.
    黄智龙.王联魁.云南马厂箐金矿区煌斑岩地球化学及成因探讨.矿物岩石,1996,16(2):82~89.
    黄智龙,刘丛强,朱成明,等.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社.1999.
    金志升.黄智龙,朱成明.云南三江地区富碱侵入岩与煌斑岩的同源性.矿物岩石地球化学通报.1997,16(4):222~224.
    赖绍聪,伊海生,刘池阳,等.青藏高原北羌塘新生代火山岩黑云母地球化学及其岩石学意义.自然科学进展.2002.12:311~314.
    李继亮.滇西三江带的大地构造演化.地质科学.1988,(4):337~345.
    李天福.马鸿文.钾质火山岩的成因研究.地学前缘,1998,5:133~143.
    李献华,周汉文,韦刚健,等.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学,2002,31:26~34.
    梁华英.谢应雯,张玉泉.等.富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例.自然科学进展,2004.14:116~120.
    林文蔚,彭丽君.由电子探针分析数据估算角闪石、黑云母中的Fe~(3+)、Fe~(2+).长春地质学院学报,1994,24:155~162.
    刘福田,刘建华,何建坤.等.滇西特提斯遭山带下扬子地块的俯冲板片.科学通报,2000,45:79~84
    刘英俊,等.元素地球化学.北京科学出版社.1984.
    吕伯西,钱祥贵.滇西三江地区新生代碱性系列岩浆岩构造类型.云南地质,2000,19:232~243.
    路凤香,舒小辛.赵崇贺.有关煌斑岩分类的建议.地质科技情报,1991,10(增刊):55~62.
    莫宣学.中国东部新生代玄武岩岩浆的起源.见:池际尚主编.中国东部新生代玄武岩及上地幔研究(附金伯利岩.武汉:中国地质大学出版社.1988,108~127.
    莫宣学,等.三江特提斯火山作用与成矿.北京:地质出版社,1993.
    莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩构造组合及其意义.高校地质学报,2001,7:121~138.
    邱家骧.五大连池—科洛—二克山富钾火山岩.武汉:中国地质大学出版社,1991.
    邱家骧.秦巴碱性岩.北京:地质出版社.1993.140.
    邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系的地质、地球化学特征及岩石成因.地球科学,1996,21:546~552.
    邱检生.徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的~(40)Ar-~(39)Ar定年及源区示踪.科学通报,2001,46:1500~1508.
    邱检生.徐夕生.蒋少涌.地壳深俯冲与富钾火山岩成因.地学前缘,2003,10:191~200.
    王德滋,周金成,邱检生.橄榄安粗岩系的研究现状.南京大学学报(地球科学),1991,4:321~328.
    王德滋,任启江,邱检生.等.中国东部橄榄安粗岩省的火山岩特征及其成矿作用.地质学报.1996.70:23~34.
    王登红,李志伟,罗君烈,刘和林,蒋成兴.2003.云南铂族元素找矿基础问题.云南地质,3:250-259.
    王建,李建平,王江海.滇西大理-剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,19:61~70.
    王江海,漆亮,尹安,等.云南老王寨金矿区煌斑岩的侵位年龄和铂族元素地球化学.中国科学,2001,31:122~127.
    王江海,尹安,Harrison T M,等.青藏东缘新生代两类高钾岩浆活动的热年代学研究.中国科学(D辑),2002,32:529~537.
    王中刚.等.稀土元素地球化学.北京:科学出版社.1989.
    胥颐,刘建华,刘福天.等.哀牢山-红河断裂带及其邻区的地壳上地幔结构.中国科学(D辑),2003,33:1201~1209.
    谢应雯,张玉泉,钟孙霖,等.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石学报,15:75~82.
    谢应雯.梁华英.张玉泉.藏东及邻区钾玄岩系岩石云母特征及其岩石学意义.岩石学报.2002,18:205~211.
    应汉龙,蔡新平.云南北衙矿区富碱斑岩正长石和白云母的~(40)Ar-~(39)Ar年龄.地质科学,2004,39:107~110.
    英基丰,周新华,张宏福.碳酸岩岩浆演化的指示性矿物—环带金云母——以山东西部雪野碳酸岩为例.岩石学报,2003,19:113~119.
    张会化,贺怀宇,王江海.等.西藏芒康盆地内高钾火山岩的~(40)Ar/~(39)Ar年代学和地球化学研究,中国科学,2004,34:24~34.
    张连生.钟大赉.从红河剪切带走滑运动看东亚大陆新生代构造.地质科学,1996,31:327~341.
    张旗,张魁武.李达周.1992.横断山区镁铁超镁铁岩.北京:科学出版社.165-186.
    张玉泉,谢应雯.涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报,1987,(1):17~25.
    张玉泉,谢应雯,涂光炽.横断山区花岗岩类地球化学.北京:科学出版社.1995.
    赵海玲.中国东部新生代上地幔的矿物学特征.见:池际尚主编.中国东部新生代玄武岩及上地幔研究(附金伯利岩.武汉:中国地质大学出版社.1988.157~174.
    赵振华,熊小林,王强,等.我国富碱火成岩及有关的大型超大型金铜矿床成矿作用.中国科学,2002,32:1~10.
    郑巧荣.由电子探针分析值计算Fe~(3+)和Fe~(2+).矿物学报,1983,(1):55~62.
    钟大赉,Tapponnier,吴海威,等.大型走滑断层-碰撞后陆内变形的重要形式.科学通报.1989,34:526~529.
    钟大赉.滇川西部古特提斯造山带.北京:科学出版社,1998,1~232.
    朱炳泉,毛存孝.印度与欧亚板块东部碰撞边界腾冲火山岩的Nb-Sr同位素与微量元素研究.地球化学,1983,(1):1~14.
    朱炳泉,张玉泉,谢应雯.滇西洱海东第三纪超钾质火成岩系的Nb-Sr-Nb同位素特征与西南大陆地幔演化.地球化学.1992,(3):201~211
    Alibert C, Michard A and Albarede F. Isotope and trace element geochemistry of Colorado Plateau volcanics. Geochim Cosmochim Acta, 1986, 50: 2735~2750.
    Amaud N O, Vidal P, Tapponnler P, et al. The high K_2O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth Planet Sci lett, 1992, 111: 351~367.
    Bemard-Griffiths J, Fourcade S and Dupuy C. Isotopic study (Sr, Nd, O and C) of lamprophres and associated dykes from Tarnazert (Morroco): crustal contamination processes and source characteristics. Earth planet Sci Lett, 1991, 103: 190~199.
    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies[J]. Dev Geochem, 1984, 2: 63~114.
    Chung S L, Lee T Y, Lo C H et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 1997, 25: 311~314.
    Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan plateau starting 40Myr ago. Nature, 1998, 394: 769~773.
    Coltorti M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol, 1999, 40: 133~165.
    Curde K L and Williams P R. An Archean calc-alkaline lamprophyre suite, northeastern Yilgam Block, Westem Australia. Uthos, 1993, 31: 33~50.
    Davis J H, Von Blanckenburg F. Slab break-off: A model of lithosphere detachment and its test in the magmatism and deformation of collisonal orogens. Earth Planet Sci Lett, 1995, 129: 85~102.
    Deway J F and Lamb S H. Active tectonics of the andes. Tectonophysics, 1992, 205: 79~95.
    Defant M J and Kepezhinskas P. Evidence suggests slab melting in arc magmas. EOS, 2001, 82: 62~69.
    Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanism in Tibet: evidence for a transition form oceanic to continental subduction. J Petrol, 2003, 44: 1833~1865.
    Epaolo D J. Implications of correlated Nd and Sr isotopic variations for the chemical evolution of crust and mantle. Earth and Planet Sci Lett. 1979, 43: 201~211.
    Esperanza S, Holloway J R. On the origin of some mica-lamprophyres: Experimental evidence from a mafic minette. Contdb Min Petrol, 1987, 95: 207~216.
    Foley S F, Venturelli G, Green D H, Toscani L The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Science Review, 1987, 24: 81~134.
    Foley S F and Peccedllo A. Potassic and ultrapotassic magmas and their odgin. Uthos, 1992, 28: 181~196.
    Foster M D. Interpretation of the composition of trioctahedral micas. US Geol Sur Prof Paper, 1960, 354.
    Fraser K J, Hawkesworth J, Erlank A J, et al. Sr, Nd and Pb Isotope and minor element geochemistry of lamproites and kimbedites. Earth Planet Sci Lett, 1986, 76: 57-70.
    Frey F A. Rare earth abundances in upper mantle rocks, in: Rare Earth Element Geochemistry. Henderson P. (eds). Elsevier Science Publishers, B. V., Amsterdam. 1984, 153~203.
    Furman T and Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 48: 237~262.
    Green D H, Wallace M E. Mantle metasomatism by ephemeral carbonatite melts. Nature, 1988, 336: 459~462.
    Guo F, Fan W, Wang Y, et al. Odgin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastem China: implications for enrichment processes beneath continental collisional belt. Lithos, 2004, 78:291-305.
    Guo Z F, Hertogen J, Liu J Q, et al. Potassic magmatism in western Sichuan and Yunnan Provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. J Petro, 2005,46:33-78.
    Hall A. Crustal contamination of minette magmas: evidence from their ammonium contents. Neues Jb Mineral Mh, 1988, (3): 137-143.
    Hart S R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies, Earth Planet Sci Lett., 1988,90:273-296.
    Hart S R, Hauri E H and Oschmann L A. Mantle plume and entrainment isotopic evidence, science, 1992,256:517-520.
    Heizler M T, Lux D R and Decker E R. The age and cooling history of the Chain of Ponds and Big Island Pond plutons and the Sptder Lake Granite, west-central Marine and Quebec. Amer J Sci, 1988,288:925-952.
    Hoogewerff J A, Van Bergen M J, Vroon P Z, et al. U-series, Sr-Nd-Pb isotope and trace-element systematics across in active island arc-continent collision zone: implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta, 1997,61:1057-1072.
    Huang Y, Hawkesworth C, Smith I, Calsteren P, Black P. Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand: implications for mantle enrichment processes. Chemical Geology, 2000, 164: 219-238.
    Huang Z L, Liu C Q, Yang H L, Xu C, Han R S, Xiao H Y, Zhang B and Li W B. The geochemistry of lamprophyres in the Laowangzhai gold deposits, Yunnan province, China: implications for its characteristics of source region. Geochemical Journal. 2002,36:91-112.
    Jachson S B and Wasserburg J G. Sm-Nd isotopic evolution of chondrites. Earth and Planet Sci Lett, 1980,50:139-155.
    Jagoutz E, et al. The abundances of major, minor and trace elements in the Earth's as derived from primitive ultramafic nodules. Proc Lunar Sci Conf, 1979,10:2031-2050.
    Jochum K P and Hofmann A W. Nb/Ta in MORB and continental crust implications for a superchondritic Nb/Ta reservoir in the mantle. EOS, 1998, 79:354.
    Joplin G A. The shoshonite association: A review. J Geol Soc Austr, 1968,15: 275-294.
    Kameyama M, Yuen D A and Karato S I. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth and Planet Sci Lett, 1999,168:159-172.
    Kincaid C and Silver P. The role of viscous dissipation in the orogenic process. Earth and Planetary Sci Lett, 1996,142:271-288.
    Lee T Y, Lo C H, Chung S L, et al.~(40)Ar/~(39)Ar dating result of Neogene basalt in Vietnam and its tectonic implication. In: Flower M F J, Chung S L, Lo C H, eds. Mantle dynamics and plate interactions in east Asia. Geodynamics 27, AGU, Washington D C, 1998.317-330.
    Leloup P H, Lacassin R and Tapponnier P. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 1995,254:3-84.
    Leloup P H, Battaglia J, Ricard Y, et al. Shear heating in continental strike-slip shear zones: numerical modeling and case studies. Geophys J Int. 1999, 136:19-40.
    Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms. Cambridge: Cambridge University Press. 2002.
    Lenardic A, Kaula W M. More thoughts on convergent crustal plateau formation and mantle dynamics with regard to Tibet. Journal of Geophysics Review, 1995,100:15193-15203.
    Maalφe S and Pederson R B. Two methods for estimating the degree of melting and trace element concentrations in the sources of primary magmas. Chemical Geology, 2003,193:155-166.
    Maheo G, Guillot S, Blichert-Toft J, et al. A slab breakoff model for the Neogene thermal evolution of south Karakorum and south Tibet. Earth and Planetary Science Letters, 2002,195:45-58.
    Maury R C, Defant M J and Joron J L. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 1992, 360:661-663.
    Mckenzie D P and Bickle M J. The volume and composition of melt generated by extension of the lithosphere. Journal of petrology, 1988, 29:625-679.
    Meen J K, Eggler D and Ayers J C. Experimantal evidence for very low solubility of rare-earth elements in CO_2-rich fluids at mantle condition. Nature, 1989,340:301-303.
    Menzies M A. Archaean, Proterozoic and Phanerozoic lithospheres. In: Menzies M A(ed.) Continental Mantle. Oxford: Oxford university press, 1990, 67-86.
    Miller C, Schuster R, Klotzli, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-0 isotopic constraints for mantle source characteristics and petrogenesis. J Petro, 1999,40:1399-1424.
    Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980,13:97-108.
    Munker C. Nb/Ta fractionation in a Cambrian arc/back system, New Zealand, source constraints and application of refined ICPMS techniques. Chem Geol, 1998,144: 23-45.
    Muller D and Groves D I. Potassic igneous and associated gold-copper mineralization. Springer-Verlag, 1995.
    Neal C R.The origin and composition of metasomatic fluids and amphiboles beneath Malaita, Solomon Islands. J Petrol, 1988,29:149-179.
    Nelson D R, McCulloch M T and Sun S S. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Acta, 1986, 50:231-245.
    Peccerillo A, Taylor D R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern turkey. Contribution to Mineralogy and petrology 58,63-91.
    Qi L, Hu J and Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000, 51: 507-513.
    Ringwood A E. Composition and petrology of the Earth's mantle[M]. McGraw-Hill, New York. 1975.
    Rock N MS. The nature and origin of lamprophyres: an overview. Geol Soc Spec Publ, 1987,30:191-226.
    Rock N M S. LAMPROPHYRES. Glasgow, Blackie. 1990.
    Rogers N W, Hawkesworth C J, Parker K J , et al. The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petro, 1985,90:244-257.
    Rudnick R L, McDonough W F and Chapell B W. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett, 1993,114:463-475.
    Sata H. Nickel content of basaltic magmas: identification of primary magmas and a meature of the degree of the olivine fractionation. Lithos, 1977,10:113-120.
    Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao Philippines. Journal of Petrology, 1996,37:693-726.
    Sajona F G, Maury R C, Pubellier M, et al. Magmatic source enrichment by slab-derived melts in a yong post-collision setting, central Mindanao (Philippines). Uthos, 2000,54:173-206.
    Schiano P, Clocchiatfi R and Joron J L Melt and fluid inclusions in basalts and xenoliths from Tahaa Island, Society Archipelago:evidence for a metasomatized upper mantle. Earth Planet Sci Lett, 1992,111:69-82.
    Shaw D M. Trace elements fractionation during anatexis. Geochim Cosmochim Acta, 1970,34: 237-243.
    Song Y and Frey F A. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern china: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta, 1989,53:97-113.
    Sun S S. Chemical composition and origin of the earth's primitive mantle. Geochim Cosmochim Acta, 1982,46:179-192.
    Sun S S and Hanson G N. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contrib Mineral Petrol, 1975, 52: 77-106.
    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: implocation for mantle composition and processes. Geol Soc Spec Pub, 1989, 42: 313-345.
    Tapponnier P, Lacassin R, Leloup P H, et al. The Ailaoshan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 1990.343:431-437.
    Taylor S R and Mclennan S M. The continental crust: its composition and evolution. Oxford: Blackwell, 1985.
    Thompson R N, Leat P T, Dickia A P, et al. Strongly potassic mafic magmas from lithospheric mantle sources during continental extension and heating: evidence from Miocene minettes of northwest Colorado, USA. Earth and Planet Sci Lett, 1989,98:139-153.
    Turner S, Amoud N, Liu J, et al. Post-collision, shoshonitic valcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petro, 1996,37:45-71.
    Turner S P, Platt R M M, Gorge S P, et al. Magmatism associated with orogenic collapse of the Betic-Alboran domain, SE Spain. Journal of Petrology, 1999,40:1011-1036.
    Ujike O. Probable mineralogic control on the mantle metasomatic fluid composition beneath the northeast Japan arc. Geochim Cosmochim Acta, 1988,52:2037-2046.
    Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q and Xie G H. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet Sci Lett, 2001,188:123-133.
    Wendlandt R F and Eggler D H. The origin of potassic magmas, I .Melting relations in the systems KAlSiO_4-SiO_2 and KAISiO_4-MgO-SiO_2-CO_2 to 30kbr. Am J Sci, 1980, 280:385-420.
    Wendlandt R F and Eggler D H. The origin of potassic magmas, II .Stability of phlogopite in natural spinel Iherzolite and in the system KAISiO_4-MgO-SiO_2-H_2O-CO_2 at high preeures and high temperatures. Am J Sci, 1980,280:421-458.
    White W M and Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 1982,296:821-825.
    White R S, Spence G D, Fowler S R, et al. Magmatism at rifted continental margins. Nature, 1987,229:328-333.
    Wijbrans J R, McDougall I. ~(40)Ar-~(39)Ar dating of white micas from an Apline high pressure metamorphic belt on Naxos (Greece): The resetting of the argon isotope system. Contrib Min Petro, 1986,93:187-194.
    Williams H M, Turner S P, Pearce J A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. J Petro, 2004,45:555-607.
    Zhang L S and Scharer U. Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contrib Mineral Petrol, 1999,134:67-85.
    Zhang M, Paul S, Ribert N, Thompson et al. Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J Petro, 1995,36:1275-1303.
    Zhang Y Q and Xie Y W. Geochronology of Ailaoshan-Jingshajiang alkali-rich intrusive rocks and their Sr and Nd isotopic characteristics. Science China (D), 1998,40:524-529.
    Zhang Y Q, Xie Y W, Li X H, et al. Isotopic characteristics of shoshonrtic rock in eastean Qinghai-Tibet plateau: petrogenesis and its tectonic implication. Science in China (series D), 2001,44:1-6.
    Zou H B and Zindler A. Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta, 1996, 60: 711-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700