用户名: 密码: 验证码:
涠西南地区现今构造应力场数值模拟与井壁稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决中海油湛江分公司涠西南油田群钻井情况复杂及钻井事故多发的难题,采用弹-塑性增量法对涠西南地区现今构造应力进行了数值模拟,在明确该地区现今构造应力场空间分布状态的情况下,研究断裂或裂隙带在现今构造应力场作用下的活动性及其活动对井壁稳定性的影响,进而预测井壁稳定性区带,提出关于钻井工程的建议意见。
     涠西南凹陷油气田的构造裂缝主要形成于古近纪。通过区域构造演化研究、正断层位移-长度法对控陷断层发育过程研究、裂缝形成机制和发育阶段的研究等,将涠西南地区白垩纪以来的构造发育及应力场演化划分为四个期次:早白垩世中期—古新世(135-52Ma,最大主压应力方向为NE-SW向),始新世—渐新世(52-23.5Ma,最大主压应力方向为WNW-ESE向),新近纪—早更新世(23.5-0.78Ma,最大主压应力方向为近SN向),新构造期(0.78Ma-,最大主压应力方向为NW向)。通过对控陷断层发育和凹陷沉降中心迁移过程的研究发现,涠西南地区在古新世以前主要为NE向的涠西南凹陷的边界断层发生正断层活动,NW-SE向张裂;始新世-渐新世NE向断层以右行走滑为主,同时派生出一系列ENE向和近东西向羽状正断层(1号、2号、3号、4号断层),从而形成了一个右行走滑断层系统,该断裂系统一直控制了该区的断层和裂隙带的发育。在新近纪到现今构造应力场的作用下,该断裂系统总体上呈压剪性,相对闭合。
     涠西南地区地层的主要特点是断层多,微裂缝发育,水敏性极强,存在强各向异性,尤其是涠洲组二段和流沙港流二段泥页岩地层。论文重点研究了该地区地层的非均质性,通过单井沉积微相,两个平面(涠二段和流二段)以及11条剖面的精细沉积相划分,将研究区划分出13种变形强度不同的介质,大大提高了数值模拟模型的准确性。通过调研和创新,建立了三维的、考虑井斜的测井计算地应力模型。计算了17口井,18418.05米井段的地应力数值,以及表征岩石强度大小的参数(杨氏模量和泊松比)。结合震源机制和井径测井数据等资料,确定涠西南地区现今构造应力场的最大主压应力产状为320°∠5°。
     利用尽可能符合地质实际的模型参数,模拟了涠西南地区11-1N、11-4N和12-1工区两个目的层平面(涠二段和流二段)和11条剖面的现今构造应力空间分布特征,模拟结果和计算统计的数据吻合得较好,同时得到了井史资料验证的支持。明确了研究区现今构造应力场的空间分布特征,划分了井壁稳定性区带,对涠西南油田群进行了比较详细的井壁稳定性预测,提出了相应的工程措施建议。
In order to solve the problem of complex and accident prone drilling condition in Weixinan oil fields of Zanjiang Division, CNOOC, the author modeled current tectonic stress field in Weixinan area by elastic-plastic incremental limited unit modeling method. The fracturing or fissure belts, controlled by recent tectonic stress field, and their influences to stability of borehole wall were studied, after 3D distribution of current tectonic stress was determined. Then, the borehole wall stability belts were forecasted and some drilling advices were provided.Most of the fractures formed in Paleogene in Weixinan depression. The tectonic evolution since Cretaceous was divided into four tectonic epochs, according to regional tectonic evolution research, study in development of dominating depression faults with displacement-length method, and in mechanism and evolution stages for fractures. They are as follows: middle epoch of Early Cretaceous - Paleocene (135-52 Ma, maximum principal compression stress orientation was NE-SW trending), Eocene - Oligocene (52-23.5 Ma, maximum principal compression stress orientation was WNW-ESE trending), Neogene - Early Pleistocene (23.5-0.78 Ma, maximum principal compression stress orientation was nearly S-N trending), and Neotectonic period (Middle Pleistocene - Holocene, 0.78 Ma-, maximum principal compression stress orientation was NW trending). By study in growth of dominating depression faults and moving of subsidence center of depression, it was found that the boundary fault of Weixinan depression was oriented in NE trending and as normal faulting extended in NW-SE orientation before Paleocene, and then which moved mainly as strike-slip fault in Eocene and Oligocene. No. 1, No. 2, No.3 and No.4 faults, oriented in ENE or nearly E-W directions with en echelon type, were derived from Weixinan boundary fault, and moved as normal faulting in Eocene and Oligocene, thus a dextral strike-slip fault system formed and controlled the development of fault and fissure belt in Weixinan area. In the influence of tectonic stress fields since Neogene, that fault system is generally trans-compression and relatively close.A lot of faults and fissures developed in the strata of Weixinan area, with strong
    hydration and anisotropic, the mudstone layers in Second member of Weizhou formation and Second member of Liushagang formation are researched especially. The inhomogeneity of strata was studied in detail, particularly to research sedimentary lithofacies in each borehole, two plan views and 11 profiles based on seismic data. It was divided into 13 mediums with different strength in that area, and which is favorable to improve the precision of numerical modeling.Depending on comprehensive research, making the 3D estimated modeling for tectonic stress and considering the condition of inclined borehole used logging data, the stress value was estimated in 17 boreholes and 18418.05 meters in length. Some rock mechanics parameters were also estimated, i.e. Young's modulus (E) and Poisson ratio (v). The author combined the data of fault plane solution and diameter change of borehole wall and got the recent attitude of maximum principal compression stress was 320° Z5° in Weixinan region.Used the modeling parameters as similar as to real geological status, the modeling in two plan layers for project areas of 11-1N,11-4N and 12-1 and in 11 profiles were performed, and in which the estimated and modeling parameters of current tectonic stress field were well coincided, and also supported by the borehole history data. Then, the borehole wall stability was forecasted rather detail and some corresponding advices in drilling engineering were proposed, according to the modeling data of recent stress field and division of borehole wall stability belts.
引文
[1] Andcrson C A, Bridwell R J. A finite clement method for studying the transient non-linear thermal creep of gcological structures. Methods Geomechanics, 1980, 4(3): 255-276
    [2] Ben-Avraham E, Uyeda. S. The evolution of the China Basin and the Mesozoic palcogeography of Bernco, Earth Plant. Sci. Lett, 1973, 18, 365-375
    [3] Brady B H G, Wassyng A. A coupled finite element-boundary elcment method of stress analysis. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(6): 475-485
    [4] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea, implications for the Tertiary tectonics of SE Asia. Jour. Geophysics Research, 1993, 98:6299-6328
    [5] Hall R, Blundell D et al. Reconstructing Cenozoic SE Asia, tectonic evolntion of southeast Asia. Geological Society Special Publication, London, 1996, No. 106: 153-184
    [6] Hayes D. E. Marginal seas of southeast Asia-their geophysical characteristics and structnre, origin and history of marginal and inland seas, proceedings of the 27th International Geological Congress, 1984, Vol. 23, 123-154
    [7] Hutchson C. S. Formation of marginal seas in southeast Asia by rifting of the Chinese and Australian continental margins and implications for the Berneo Region. GEOSEAV Preceeding. 1986, Vol. 2, Geol. Soc. Malaysia, Bulletin 20: 201-220
    [8] Kasapoglu K E, Toksoez M N. Tectonic consequences of collision of Arabian and Eurasian plates: finite element models. Tectonophysics, 1983, 100(1-3): 71-95
    [9] Lee T, Lawver LA. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 1995, 251:85-138
    [10] Maruyama S & Seno T. Orogeny and relative plate motion: Example of Japanese Islands. Tectonophysics, 1986, 127:305-329
    [11] Müller W H, Hsü K J. Stess distribution in overthrusting slabs and mechanics of Jura deformation. Rock Mechanics, 1980, (9): 219-232
    [12] Neugebauer H J. On the nature of the Alpine stress field. Rock Mechanics, 1980, (9): 213-217
    [13] Noorishad J, Ayatollahi M S et al. A finite element method for coupled stress and fluid flow analysis in fractured rock masses. International Journal of Rock Mechanics and Mining Sciences, 1982, 19(4): 185-193
    [14] Paterson M. S.. Experimental rock deformation-The brittle field. Springer-Verlag, 中译本.北京:地质出版社,1982
    [15] Peng&Johnson. Crack growth and faulting in Cylindrical specimens of Chelmsford Cranite. Journal of Rock Mech. Min. Sei., 1972, 9:37-86
    [16] Quiblier J A, Tremolieres P, Zinszner B. A tentative fault propagation description by three dimensional finite-element analysis. Tcctonophysics, 1980, 68(3/4): 199-212
    [17] Richardson M J et al.. Tectonic stress field in the platcs. Gcophysics Space. 1979. 17(5): 981-1019. 中译本,地震地质译丛,1981,3(1)
    [18] Serra S. A computer program for calculation and plotting of stress distribution and faulting. Mathematical Geology, 1973, 5(4): 397-407
    [19] Shulman M, Skala W. Reconstruction of stress fields for the Aegean by a finite element model. Rock Mechanics, Supplement, 1980, 9:245-255
    [20] Stephansson O, Berner H. Finite element method in tectonic processes. Physics of the Earth & Planetary Interiors, 1971, 4(4): 301-321
    [21] Tapponnier P, Lacassiu R, Leloup P H, et al. The Ailao Shah-Red River metamorphic belt: Tertiary left lateral shearbetween Indochina and South China. Nature, 1990, 243:431-437
    [22] Taylor B, Hayes D E. Origin and history of the South China Sea. In: Hay D E, Eds. The tectonics and geological evolution of Southeast Asia Seas and islands, Part 2: America Geophysical Union Monograph, 1983, 27:23-56
    [23] Uyeda S, Miyashiro A. Plate tectonics and the Japanese Islands: A synthesis. Geol. Soc Amer. Bull. 1974, 85:1159-1170
    [24] Woodward O J. Visco-Elastic finite element analysis of tectonic systems. Geophysics J. R. Astonom. Soc., 1980, 63(1): 285-288
    [25] 鲍才旺.南海地貌图.南海地质地球物理图集,广州地图出版社,1987
    [26] 陈益明.华南大陆及南海北缘地区震源机制与发震构造分析研究,广东省地震局.1994,3
    [27] 陈益明.华南沿海震源机制与构造应力场分析.南海研究与开发,1994(2):25-36
    [28] 陈(禺页),李丽,王宝善.人类活动、自然灾害和活动构造研究.第四纪研究,2001,21(4):313-320
    [29] 陈志德,蒙启安,万天丰等.松辽盆地古龙凹陷构造应力场弹-塑性增量法数值模拟.地学前缘,2002,9(2):483-492
    [30] 陈忠,张吉昌,罗玉庆等.有限元数值模拟在构造裂缝定量预测中的应用.特种油气藏,2001,8(1):64-67
    [31] 池际尚主编.中国东部新生代玄武岩及上地幔研究(附金伯利岩).武汉:中国地质大学出版社,1988:277
    [32] 楚全芝.中国大陆活动构造研究与21世纪.山西大学师范学院学报,1999,(4):2
    [33] 邓起东,冯先岳.张培震等.天山活动构造.北京:地震出版社,2000.1-399
    [34] 邓起东,张培震,冉勇康等.中国活动构造基本特征.中国科学(D辑),2002,32(12):1020-1030
    [35] 邓起东,张培震,冉勇康等.中国活动构造与地震活动.地学前缘,2003,(特刊):66-73
    [36] 邓起东.中国活动构造研究.地质论评.1996,42(4):295-299
    [37] 邓起东.中国活动构造研究的进展与展望.地质论评.2002.48(2):168-177
    [38] 冯向阳,沈淑敏.刘文英.应力驱动与油气运移势场的剖面研究.地质力学学报,1996,2(2):26-30
    [39] 龚再升,李思田等.南海北部大陆边缘盆地分析与油气聚集.科学出版社,1997,86-92
    [40] 广东省地质矿产局.广东省区域地质志.北京:地质出版社,1988
    [41] 郭令智等.莺歌海盆地周边区域构造演化.高校地质学报,2001,7(1):1-12
    [42] 国家地震局震源机制研究小组.中国地震震源机制的研究(第一集).北京:地震出版社,1973
    [43] 侯贵廷,钱祥麟,李江海.华北克拉通中元古代岩墙群形成的构造应力场数值模拟.北京大学学报(自然科学版),2002,38(4):492-496
    [44] 黄立人,符养,段五杏等.由GPS观测结果推断中国大陆活动构造边界.地球物理学报,2003,46(5):609-615
    [45] 黄雨蕊,许忠淮,高阿甲等.利用钻孔崩落研究中原油田的构造应力场.地震学报,1994,16(2):195-203
    [46] 贾大成等.北部湾玄武岩地幔源区性质的地球化学示踪及其构造环境.热带海洋学报,2003,22(2):30-39
    [47] 江为为、宋海斌、郝天姚.南海北部陆架西区盆地地质、地球物理场特征及其深部结构.地球物理学进展,2001,16(3):2-11
    [48] 江文荣.北部湾盆地幕式裂陷作用及油气.张功成等主编.中国含油气盆地构造.北京:石油工业出版社,第一版,1999,42-51
    [49] 金钟,徐世浙,李全兴.南海海盆海山古地磁及海盆的形成演化.海洋学报,2004,26(5):83-93
    [50] 康西栋等.北部湾盆地层序地层格架及其内部构成.地球科学-中国地质大学学报,1994,19(4):493-502.
    [51] 李国玉,吕鸣岗等,中国含油气盆地地图集.石油工业出版社,1988
    [52] 李理,戴俊生.埋岛地区中生界和古生界构造应力场数值模拟及裂缝分析.石油大学学报(自然科学版),2000,24(1):6-9
    [53] 李平鲁等,1988,珠江口盆地基底结构及演化.珠江口盆地(东部)石油地质科研报告集(第一集):291-316
    [54] 李齐等.哀牢山-红河剪切带构造拾升和运动形式转换时间的新证据.中国科学(D集),2000,30(6):576-583
    [55] 李淑恩,张绍辉,岳奎等.构造应力场数值模拟分析技术及其应用.油气地质与采收率,2001,8(6):38-40
    [56] 李思田,林畅松,张启明等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件.科学通报,1998,43(8):797-810;
    [57] 李四光.地质力学方法.北京:科学出版社,1976,125-130
    [58] 梁海华,侯建军,刘树文等.中国构造应力场与大震复发周期关系的数值模拟.地震地质,1999,21(1):51-57
    [59] 林梁.电缆地层测试器资料解释理论与地质应用.北京:石油工业出版社,1995
    [60] 凌贤长等.岩体力学.哈尔滨:哈尔滨工业大学出版社,2003
    [61] 刘翠荣.东海西湖凹陷中新世构造应力场数值模拟及油气有利聚集区预测.石油实验地质,2002,24(1):73-76
    [62] 刘光鼎主编.中国海区及邻域地质地球物理特征.北京:科学出版社.1992
    [63] 刘海龄、杨恬、朱淑芬等.南海话北部新生代沉积基底构造演化.海洋学报,2004,26(3):54-67
    [64] 刘立林,杨宝忠.川西凹陷中段构造应力场三维数值模拟及与油气聚集关系.地学前缘,2002,9(3):172
    [65] 刘向君,叶仲斌,陈一健.岩石弱面结构对井壁稳定性的影响.天然气工业钻井工程,2002,22(2):41-42
    [66] 刘亚静,叶国扬,毛兴华等.俯冲带深部应力场的二维粘弹性有限元数值模拟.地震学报,2002,24(3):285-292
    [67] 刘以宣,钟建强,詹文欢.南海及邻域新构造运动基本特征.海洋地质与第四纪地质,1994,14(4):1-14
    [68] 刘以宣.南海新构造与地壳稳定性.北京:科学出版社,1994,83-85
    [69] 刘昭蜀,杨树康,黄慈流等.南海地质构造与陆缘扩张.北京:科学出版社,1988,120-122
    [70] 刘昭蜀等.南海地质.北京:科学出版社,2002,第一版
    [71] 吕文正.南海中央海盆条带磁异常特征及构造演化.海洋学报,1987,9(1):69-78
    [72] 罗焕炎,宋惠珍,潘善德等.渤海及其邻区现代地壳构造应力场与地震关系的数学模拟.华北断块区的形成与发展,1980,科学出版社:252-260
    [73] 罗振暖、胡瑞贺、李纯清.北部湾地震的动力学参数与应力场.华南地震,1996,16(3):72-76
    [74] 马德云,高振敏,杨世瑜等.北衙金矿区构造应力场数值模拟.大地构造与成矿学,2003,27(2):160-166
    [75] 马瑾,张渤涛,袁淑荣.唐山地震与地震危险区.地震地质,1980,2(2):43-54
    [76] 马宗晋,张培震,任金卫等.从GPS水平矢量场对中国及全球地壳运动的新认识.地球科学进展,2003,18(1):4-11
    [77] 毛桐恩,王玮,黎在良等.连云港—银川岩石圈壳一慢组合结构剖面构造应力场的有限元数值模拟.华北地震科学,1997,15(3):1-8
    [78] 貌顺民,计凤桔,向宏发等.红河活动断裂带.北京:海洋出版社,2001,1-172
    [79] 丘元禧.广东省区域构造演化及其基本特征.广东地质,1992,7(1):1-23
    [80] 丘元禧.云开大山及其邻区构造演化.丘元禧,陈焕疆主编.云开大山及其邻区地质构造论文集.北京:地质出版社,1993,1-11
    [81] 任镇寰、任奔滔、罗振暖等.南海北缘北东东向构造活动性研究.地壳形变与地震,1996,16(2):27-35.
    [82] 茹克.南海北部边缘叠合式盆地的发育及其大地构造意义.石油与天然气地质,1988,9(1):22-31
    [83] 茹克.裂陷盆地的半地堑分析.中国海上油气(地质),1990,4(6)
    [84] 沈淑敏.南岭正弧状山字形构造应力场的初步分析及模拟实验.地质学报,1980,(3):186-194
    [85] 石耀霖.山字形构造应力场初步分析.地质力学通讯,1976,(1):39-54
    [86] 〈数学手册〉编写组.数学手册.北京:高等教育出版社,1979
    [87] 宋海斌,郝天珧,江为为.南海北部张裂边缘的类型及其形成机制.陈禺等主编.论文集(庆贺刘光鼎院士工作50周年学术论文集).北京:科学出版社,1998,74-81
    [88] 孙家振,李兰斌,杨士恭等.转换-伸展盆地-莺歌海的演化.地球科学-中国地质大学学报,1995,20(3):243-249
    [89] 谭成轩,王连捷,孙宝珊等.含油气盆地三维构造应力场数值模拟方法.地质力学学报,1997,3(1):71-80
    [90] 万天丰.古构造应力场.北京:地质出版社,1988.156
    [91] 万天丰.中国大地构造学纲要.北京:地质出版社,2004,第一版,173-203
    [92] 汪素云等.中国及邻区现代构造应力场的数字模拟.地球物理学报,1980,23(1):35-45
    [93] 王红才,王薇,王连捷等.油田三维构造应力场数值模拟与油气运移.地球学报,2002,23(2):175-178
    [94] 王连捷.地应力与油气运移.地质力学学报,1996,2(2):3-10
    [95] 王仁,何国琦,殷有泉等.华北地区地震迁移规律的数学模拟.地震学报,1980,2(2):32-42
    [96] 王仁等.轴对称情形下地球速率变化及引潮力引起的全球应力场.天文地球动力学文集,1979,上海天文台,科学出版社,8-21
    [97] 王喜双,宋惠珍,刘洁.塔里木盆地构造应力场的数值模拟及其对油气聚集的意义.地震地质,1999,21(3):268-273
    [98] 魏春光,周建勋,何雨丹.岩石强度对冲断层形成特征影响的砂箱实验研究.地学前缘,2004,11(4):559-565
    [99] 吴浩若,邝国敦,王忠诚.志留纪以来的云开地块.古地理学报,2001,3(3):32-40
    [100] 吴家龙.弹性力学.北京:高等教育出版社,2004
    [101] 吴利仁主编.华东及邻区中、新生代火山岩.北京:科学出版社,1984
    [102] 吴世敏,周蒂,丘学林.南海北部陆缘的构造属性问题.高校地质学报,2001,7(4):419-426
    [103] 向宏发.隐伏活动构造探测研究的若干问题讨论.地震地质,2003,25(3):460-466
    [104] 徐志斌,王继尧,云武,秦勇.晋中南现代构造应力场的数值模拟研究.中国矿业大学学报,1998,27(1):13-18
    [105] 许靖华.中国南方板块.广西地质,1987,(2):1-9
    [106] 许靖华.中国南方大地构造几个问题.地质科技情报,1987,6(2):52-59
    [107] 许忠淮,吴宣,齐胜福等.北大港油田及邻区现代构造应力场特征.石油勘探与开发,1996,23(6):78-84
    [108] 薛万俊.南海地形图.南海地质地球物理图集,广州地图出版社,1987
    [109] 鄢家全,时振梁,汪素云等.中国及邻区现代构造应力场的区域特征.地震学报,1979,1(1):9-24.
    [110] 阎全人.北部湾大陆边缘地壳结构特征.广西地质,2000,13(3):13-17
    [111] 姚伯初,南海海盆新生代的构造演化史.海洋地质与第四纪地质,1996,16(2):1-13
    [112] 姚伯初,邱燕.南海西部海域地质构造特征和新生代沉积.北京:地质出版社,1999,第一版
    [113] 姚伯初,杨树康.南海地质构造与陆缘扩张.北京:科学出版社,1988
    [114] 姚伯初,曾维军,陈艺中等.南海北部陆缘东部的地壳结构,地球物理学报,1994,37(1):27-35
    [115] 姚伯初.南海北部陆缘新生代构造运动初探.南海地质研究(五).武汉:中国地质大学出版社,1993.112
    [116] 雍世和等.测井资料地质解释与数字处理.北京:石油工业出版社,1992
    [117] 俞言祥,许忠淮.利用斜井钻孔崩落资料反演冀中坳陷上地壳应力状态.地震学报,1996,18(2):246-253
    [118] 曾佐勋,刘立林,胡建等.信阳地区现今构造应力场数值模拟.地质科技情报,2002,21(4):45-47
    [119] 詹文欢,丘学林,孙宗勋等.红河活动断裂带在南海西北部的反映.热带海洋学报,2003,22(2):10-16
    [120] 张诚,曹新玲,曲克信等.中国地震震源机制.北京:学术书刊出版社,1990
    [121] 张帆,贺振华,黄德济等.预测裂隙发育带的构造应力场数值模拟技术.石油地球物理勘探,2000,35(2):154-163
    [122] 张连生,钟大赉.从红河断裂带走滑运动看东亚大陆新生代构造.地质科学,1996,31(4):327-340
    [123] 张明利,万天丰.含油气盆地构造应力场研究新进展.地球科学进展,1998,13(1):38-43
    [124] 张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块.地学前缘,2002,9(2):430-441.
    [125] 张守仁,万天丰,陈建平.川西坳陷孝泉-新场地区须家河组二-四段构造应力场模拟及裂缝发育区带预测.石油与天然气地质,2004,25(1):70-80
    [126] 张训华.单向拉张与南海海盆的形成.海洋地质动态,1997(5)
    [127] 张训华等.南海海盆形成演化模式初探,海洋地质与第四纪地质,1997,17(2):1-7
    [128] 中国地震烈度区划图编委会.中国地震烈度区划图((1990)及其说明.中国地震,1992,(8):1-11
    [129] 中国科学院南海海洋研究所海洋地质构造研究室.南海地质构造与陆缘扩张.北京:科学出版社,1988,第一版
    [130] 中科院沈阳计算技术研究所等.电子计算机常用算法.北京:科学出版社,1983
    [131] 钟大赉等.滇川西部古特提斯造山带.北京:科学出版社,1998,231
    [132] 钟建强、黄慈流、詹文欢.南海新生代沉积建造的基本特征(in English).海洋地质与第四纪地质,1996,16(4):25-34
    [133] 钟建强.珠江口盆地的构造特征与盆地演化.海洋湖沼通报,1994,(1):1-8
    [134] 周建勋,魏春光,朱战军.基底收缩对挤压构造变形特征影响—来自砂箱实验的启示.地学前缘,2002,9(4):377-382
    [135] 周建勋,徐凤银,朱战军.柴达木盆地北缘新生代构造变形的物理模拟.地球学报,2003,24(4):299-304
    [136] 朱春启译.力学稳定性测井.译自IADC/SPE,1994:24-32
    [137] 朱伟林,江文荣.北部湾盆地涠西南凹陷断裂与油气藏.石油学报,1998,19(3):6-11
    [138] 朱伟林等.南海北部陆架北部湾盆地古湖泊与烃源条件.海洋与湖沼,2004,35(1):8-14
    [139] 朱夏.关于中国大陆边缘构造演化.海洋与第四纪地质,1987,8(2):73-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700