用户名: 密码: 验证码:
静电纺丝制备轻质碳纤维吸收剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用静电纺丝法并通过热处理制备了超细实心碳纤维、中空碳纤维和C/SiO_2同轴复合纤维,研究了纺丝工艺条件和纺丝溶液性质对纤维形貌的影响,并首次研究了静电纺丝纤维的吸波性能。
     研究发现,超细实心碳纤维的直径减小主要发生在不稳定拉伸阶段,随着纺丝电压的升高、溶液流速的减小以及溶液浓度的减小,纤维的直径减小。溶液电导率对纤维的直径影响最大,向溶液中加入重量百分比5%的NaCl,得到的纤维直径由1.7μm减小到0.4μm。纺丝环境温度的升高能提高溶剂的挥发速度,加速纤维的固化,防止纤维的粘结。溶液浓度和溶液注入速度的稳定性对纤维中珠节物的数量有较大影响,随着溶液浓度的升高,纤维中珠节物明显减少,溶液注入速率稳定性的提高有利于减少纤维中的珠节物。
     采用同轴静电纺丝法制备了PAN/SiO_2同轴复合纤维,经过热处理得到C/SiO_2同轴复合纤维。采用SEM,FTIR,XRD表征了纤维的截面形貌和涂层结构,表明在碳纤维表面成功制备厚度约20nm的SiO_2涂层,热重分析表明纤维的抗氧化性能有所提高。
     以PAN为壳层,甲基硅油为芯层,采用同轴静电纺丝技术制备了PAN/硅油同轴复合纤维,经过热处理得到中空碳纤维。研究了同轴喷丝头对同轴射流形成的影响,当内针头伸出距离Zp与外针头半径的一半相当时,得到同轴射流。壳芯溶液流速比Vin/Vout对中空结构的形成有较大影响,当内外溶液流速相当时,得到的纤维呈中空结构。中空纤维壁厚不均匀,壳层溶液电导率增大,中空纤维壁厚的最小值减小。中空纤维密度较实心碳纤维有较大的降低,实心碳纤维密度约1.6g/cm~3,而中空碳纤维密度为0.64g/cm~3。
     采用网络矢量分析仪研究了三种纤维的介电常数,结果表明,随着静电纺丝实心碳纤维直径的减小,纤维/石蜡复合材料的介电常数增大;同轴复合纤维堆积电导率较小,与未涂层实心碳纤维相比,同轴复合纤维介电常数大大降低。中空碳纤维的介电常数实部比实心碳纤维高。
Ultrafine PAN fibers, PAN/silicon oil coaxial fibers and PAN/SiO_2 coaxial fiber were successfully prepared by electrospinning, after oxidation and pyrolysis of the eletrospun fibers, Ultrafine carbon fibers, hollow carbon fibers and C/SiO_2 coaxial fibers were obtained respectively. The influence of electrospinning process parameters and solution properties on the formation of the fibers were investigated,.the wave absorbing properties of the three kind of fibers were studied for the first time.
     It was found that the decrease of the solid carbon fibers diameter happened at the unstable jetting stage mainly, the fiber diameter decreased as the increase of the voltage, the decrease of the flow velocity and the solution concentration. The conductivity of the soution had the most effects on the fiber diameter, the fiber diameter decreased from 1.7μm to 0.4μm when the electrospinning was carried out by adding 5%(w.t) NaCl into the PAN solution. The increase of the environment temperature can enhance the evaporation of the solvent and it can prevent the fibers from matting together. The influence of the solution concentration and the flow velocity on the amount of the beads in the fiber was investigated, the decrease of the beads occurred as the concentration and the stability of the flow velocity increased.
     PAN/SiO_2 coaxial fibers were prepared firstly by coaxial electrospinning using PAN as the core and SiO_2 sol as the shell, then C/SiO_2 coaxial fibers were obtained after oxidation and pyrolysis of the eletrospun fibers. The structure and cross-section morphologies of the C/SiO_2 coaxial fibers were investigated by FTIR, XRD and SEM,The results showed that SiO_2 coating with a thickness of about 20nm was successfully prepared on the carbon fibers. DTA-TG analysis also indicated an increase in oxidation resistance of the coaxial fibers.
     PAN/silicon oil coaxial fibers were prepared firstly by coaxial electrospinning using PAN as the shell and silicon oil as the core, and then hollow carbon fibers were obtained after oxidation and pyrolysis of the eletrospun fibers. Effects of coaxial spinneret were studied on the formation of the core-shell jets. Results showed that a coaxial jet could be obtained on the tip of the coaxial spinneret when the net length of the core nozzle than the shell nozzle, Zp was about half of the shell nozzle radius (rout). feeding rate ratio also had a great influence to the hollow structure, hollow fibers could be obtained when Vin/Vout =1. the thickness of the shell of the hollow fibers were asymmetrical, as the increase of the conductivity of the shell solution, the minimum of the shell thickness decreased. The density of the hollow carbon fibers was 0.64g/cm~3, which was far less than 1.6g/cm~3, the density of the solid carbon fibers.
     Radar absorbing properties of the three kinds of fibers were studied by voter network analyzer, the results showed that both the real part and the imaginary part of the permittivity decreased as the diameter increase of the solid carbon fibers. The conductivity value of the C/SiO_2 coaxial fibers were small, compared with uncoated carbon fibers, both the real part and the imaginary part of the C/SiO_2 coaxial fibers permittivity decreased. The permittivity value of hollow carbon fibers was over the solid carbon fibers.
引文
[1]胡文祥,彭清涛.隐身功能材料研究进展[J].全国隐身功能材料学术研讨会论文集. 2002:13~16
    [2]王军,郑小惠,王瑶等.结构吸波材料的发展与应用[J].全国隐身功能材料学术研讨会论文集. 2002:87~89
    [3]胡海峰,程海峰,陈朝辉.多波段兼容的隐身涂料的研究现状和发展趋势[J].全国隐身功能材料学术研讨会论文集. 2002:97~101
    [4]邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展[J].航空材料学报, 2000, 20(3): 187~191
    [5]管登高,黄婉霞,肖素芬等.新型防护电磁波信息泄漏材料的研究进展[J].材料导报, 2004,18(2):1~4
    [6]刘献明,付绍云,张以河等.雷达隐身复合材料的研究进展[J].材料导报, 2004, 18(5):8~11
    [7]于仁光,乔小晶,张同来等.新型雷达波吸收材料研究进展[J].兵器材料科学与工程, 2004, 27(2): 63~66
    [8]何华辉,龚荣洲.吸波材料的研究和发展[J].全国隐身功能材料学术研讨会论文集. 2002: 74~78
    [9] VladimirB.Bregar. Advantages of Ferromagnetic Nanoparticle Composites in Micro-wave Absorbers[J]. IEEE TRANSACTIONS ON MAGNETICS, 2004,40(3): 1679~1684
    [10] Petrov.V.M, Gagulin.V.V, Microwave Absorbing Materials[J]. InorganicMaterials. 2001, 37(2): 93~98
    [11]谢炜,程海峰,唐耿平等.稀土吸波材料的吸波机理与研究现状[J].材料导报(纳米与新材料专辑Ⅳ),2005, (5):291~293
    [12]李凤生,杨毅,马振叶等.纳米功能复合材料及应用[M].北京:国防工业出版社, 2003
    [13]曹渊,陶长元,杜军等.纳米吸收剂/聚合物复合吸波功能材料研究进展[J].材料导报(纳米与新材料专辑Ⅳ),2005, (5): 173~176
    [14]薛书凯,张炜,郭亚林.纳米雷达吸波材料的研究进展[J].材料导报(纳米与新材料专辑Ⅳ) , 2005, (5): 182~185
    [15]李金儡,陈康华,范令强等.雷达吸波材料的研究进展[J].功能材料, 2005, 36(8): 1151~1155
    [16]杨长胜,程海峰,李效东等.智能隐身材料的研究现状[J].功能材料, 2005,36(5): 643~648
    [17]陈朝辉,程海峰,王军等.加强隐身技术研究,提高我军装备的战斗力[J].全国隐身功能材料学术研讨会论文集. 2002: 1~5
    [18]杨志民.低频微波吸收剂的制备及其微波性能的研究[D].北京有色金属研究总院博士学位论文, 2001
    [19]哈恩华,黄大庆,丁鹤雁.新型轻质雷达吸波材料的应用研究及进展[J].材料工程. 2006,(3): 55~59
    [20]曾爱香.空心微珠复合吸波材料的研究[D].华中科技大学博士学位论文. 2004.11
    [21]唐耿平,程海峰,赵建峰等.空心微珠表面改性及其吸波特性[J].材料工程, 2005, (6): 11~12
    [22]黄云霞,曹全喜,李智敏等.空心微球表面化学镀Co/Co-Fe薄膜制备及其微波吸收性能[J].稀有金属材料与工程, 2007, 36(6): 1095~1098.
    [23]黄云霞,曹全喜,李智敏等.空心微球表面化学镀Ni薄膜的工艺研究[J].稀有金属材料与工程. 2007, 36(S1): 950~953.
    [24]周永江.基于FDTD方法的等效电磁参数研究及吸波涂层优化设计[D].国防科技大学博士学位论文.2006,06
    [25] Fan Y Z, Yang H B, Liu X Z, et al. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite[J]. Journal of Alloys and Compounds, 2008,461(1) :490~494
    [26] Phang S W, Daik Rusli, Abdullah M H.Poly(4,4′-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer[J]. Thin Solid Films, 2005,477: 125~130.
    [27] Olmedo L, Hourquebie P, Jousse F. Microwave Properties of Conductive Polymers[J]. Synthetic Metals, 1995,69(1-3):205~208.
    [28] Hourouebie P, Blondel B, Dhume S. Microwave and optical properties of soluble conducting polymers[J]. Synthetic Metals, 1997,85(1-3):1437~1438
    [29] Phang S W, Hino T, Abdullah M H, et al. Applications of polyaniline doubly doped with ptoluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials[J]. Materials Chemistry and Physics, 2007, 104:327~335.
    [30] Wu K H, Ting T H, Wang G P, et al.Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites[J]. Polymer Degradation and Stability, 2008, 93: 483~488.
    [31]赵东林,沈曾民.含碳纳米管微波吸收材料的制备及其微波吸收性能研究[J].无机材料学报, 2005,20(3):72~77
    [32]高文,冯志海,黎义等.涂层改性碳纤维复合材料的微波性能研究[J].宇航材料工艺, 2000, (5): 53~57
    [33] Zabetakis D, Dinderman M, Schoen P. Metal-coated cellulose fibers for use in composites application to microwave technology[J]. Adv Mater. 2005, 17(6):734~738
    [34] Zhang S Q, Huang C G, Zhou Z Y, et al. Investigation of the microwave absorbing properties of carbon aerogels[J]. Materials Science and Engineering B. 2002,90(): 38~41
    [35] Edie D D. the effect of processing on the structure and properties of carbon fibers[J]. Carbon, 1998,36(4): 345~362.
    [36] Wang C Y, Li M W, Wu Y L, et al, preparation and microstructure of hollow mesophase pitch-based carbon fibers[J], carbon, 1998, 36(2), 1749~1754
    [37]赵东林等.炭纤维及其复合材料的吸波性能和吸波机理[J].新型炭材料, 2001,16(2): 66~72.
    [38]衣卫京,肖红.中空纤维的技术现状何发展展望[J].合成纤维,2004增刊
    [39]孙俊芬.聚丙烯腈基活性中空炭纤维结构和性能研究[D].东华大学博士学位论文. 2004, 10
    [40]谢炜,程海峰,楚增勇等,短切中空多孔碳纤维复合材料的吸波性能[J].无机材料学报, 2008, 23(3): 481~485
    [41]纪明辉,魏平原,孟庆飞.纳米纤维的制备及性能[J].高科技纤维与应用,2002, 27(3): 13~14
    [42]刘鑫,陈志静,王锐.高中空度PP中空纤维制造技术[J].北京服装学院学报, 2004, 24(4):18~21
    [43]薛元,孙世元,孙明宝.海岛纤维加工技术及其应用[J].技术创新, 2003, (10), 15~21
    [44]袁晓燕,董存海,赵瑾等.静电纺丝制备生物降解性聚合物超细纤维[J].天津大学学报,2003,36(6): 707~709
    [45]王兆礼,张明艳,张玉军.静电纺丝法制备聚酰亚胺纳米纤维[J]绝缘材料, 2006, 39(6):7~12
    [46]黄绘敏,李振宇,杨帆等.静电纺丝法制备超细聚苯乙烯纳米纤维[J].高等学校化学学报, 2007, 28(6): 1200~1202
    [47]张淑敏,刘太奇.纳米尼龙丝的制备及性能[J].高分子材料科学与工程, 2005, 21(5): 289~292
    [48]何创龙,黄争鸣,韩晓建等.同轴射流技术制备纳米复合材料研究进展[J]. 2005,22(6):1~8
    [49]朱英,张敬畅,郑永梅等.浸润性可调的导电聚苯胺/聚丙稀腈同轴纳米纤维[J]. 2006, 27(1): 196~198
    [50]师奇松,于建香,顾克壮等.静电纺丝技术及其应用[J].化学世界, 2004(5):313~316
    [51]王贵恒.高分子材料成形加工原理[M].化学工业出版社, 1983
    [52] Darrell H, Reneker, Alexander L Yarin, Hao Fong. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal Of Applied Physics, 2000, 87(9): 4531
    [53] S N Reznik, A L Yarin, Evolution of a compound droplet attached to a core–shell nozzle under the action of a strong electric field[J]. Physics of Fluids, 2006,18(6): 1~13
    [54]迟蕾,姚永毅,李瑞霞等.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展, 2004(5):1~6
    [55] zheng-ming Huang, Y Z Zhang, M Kotati,et al. A review on polymer nanofibers by electrospinning and their application in nanocomposites[J]. composites science and technology,2003, 63(3): 2223~2253
    [56] Baumgarten P K. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid and Interface Science, 1971,36: 71~79.
    [57] Larrondo L, John Manley R S. Electrostatic fiber spinning from polymer melts[J]. Journal of Polymer Science: Polymer Physics, 1981, 19(6): 90
    [58] Spivak A F, Dzenis Y A, Reneker D H. A model of steady state jet in the electrospinning process[J]. Mechanics Research Communications, 2000, 27(1): 37
    [59] Deitzel J M, Kleinmeyer J, Harris D, et a1. The efect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(19): 261
    [60] Megelski S, Stephens J S, Chase D B, et a1. Micro and nanostructured surface morphology on electrospun polymer fiber[J]. Macro-molecules, 2002, 35(22): 8456
    [61]吴大诚,杜仲良,高绪珊.纳米纤维[M].化学工业出版社, 2003,44~56
    [62]关宏宇,劭长路刘益春等.静电纺丝法制备ZrO2纳米纤维[J].高等学校化学学报, 2004, 25(8): 1413~1415
    [63]覃小红. PAN、PVA静电纺纳米纤维的机理及喷头装置的研究[D].东华大学博士学位论文
    [64]崔启征,董相廷,于伟利等.静电纺丝技术制备无机物纳米纤维的最新研究进展[J].稀有金属材料与工程, 2006, 35(7):1167~1171
    [65] S N Reznik, A L Yarin. Evolution of a compound droplet attached to a core–shell nozzle under the action of a strong electric field[J]. Physics of Fluids,2006,18(6):1~13
    [66] Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Cal vo.Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets[J]A M,Science,2002,295:1695
    [67]张旺玺.碳纤维前躯体高分子量聚丙烯腈的合成工艺研究与结构性能表征[D].山东大学博士学位论文, 2003, 4
    [68] Wee-Eong Teo, Renuga Gopal, Ramakrishnan Ramaseshan,et al, A dynamic liquid support system for continuous electrospun yarn fabrication[J]. polymer, 2007, (12): 1-6
    [69]姚永毅.静电纺丝法制备聚合物纳米纤维及其应用[D].四川大学博士学位论文, 2004,10
    [70]杨恩龙,覃小红,李妮等.静电纺聚丙烯腈纳米纤维毡的炭化[J].纺织学报. 2007,28(4):1~4
    [71]张锐,秦丹丹,王海龙等.溶胶凝胶法制备SiO2工艺[J].郑州大学学报(工学版), 2006, 27(3): 119~122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700