用户名: 密码: 验证码:
钙钛矿锰氧化物磁制冷材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁制冷材料是通过磁性材料磁矩的有序度在外磁场中发生变化而引起熵变来达到制冷的目的。磁制冷与传统的气体压缩制冷技术相比,具有效率高、耗能小、无污染等特点。钙钛矿锰氧化物室温磁制冷材料由于具有优良的物理特性、制备简单、结构稳定、价格便宜等优势而成为研究关注的重点。
     采用溶胶-凝胶法制备了钙钛矿锰氧化物La_(0.65)Sr_(0.35)MnO_3,通过XRD和SEM研究了不同PH值及乙二胺对合成粉体相组成和微观形貌的影响,结果发现:在PH值为0.5的酸性环境和PH为8.0的弱碱性环境中,获得单纯的钙钛矿结构,粉体颗粒分散良好尺寸均匀。在PH值为2-7之间的弱酸性环境时,有沉淀出现,不能形成均匀的溶胶和凝胶,难以获得单相钙钛矿结构,且粉体中有严重的团聚现象。PH值继续增大,粉体形貌基本没有变化,但颗粒尺寸会有所长大。PH值对合成粉体形貌的影响主要来自于对凝胶化过程的影响。在PH值为0.5的酸性环境中,形成二维的层状凝胶结构,而在PH=8.0的弱碱性环境中,则形成三维的空间网状凝胶结构。这两种结构均有利于获得尺寸细小均匀,团聚较少的钙钛矿锰氧化物粉体。
     研究了乙二胺对溶胶-凝胶法制备钙钛矿锰氧化物La_(0.65)Sr_(0.35)MnO_3显微结构与性能的影响,结果发现:采用乙二胺将溶液pH值调整到8.0附近时,有利于溶胶-凝胶的形成,而采用氨水进行调整,在同样pH值的情况下,有部分沉淀产生,不能很好的凝胶化。添加乙二胺情况下,最终形成的合成产物颗粒细小均匀,而采用氨水调整pH值时,产物团聚现象严重。乙二胺在溶胶-凝胶形成过程中起着桥接、交联和鳌合的作用,桥接和交联有利于凝胶化过程的发生和稳定,鳌合作用有利于金属离子均匀分散在凝胶的三维网络结构中,从而减少后期热处理过程中的团聚。
     研究了后期热处理工艺以及最终合成纳米颗粒形貌对样品居里温度的影响。得出了最佳热处理温度是800℃,最适合热处理时间是4h。在一定的温度内晶粒长大过程是协调各个晶粒间的位相,当温度高于1200℃时晶粒异常长大。通过改变所合成钙钛矿锰氧化物的晶粒大小,可以改变样品的居里温度以及磁熵变峰宽。
     研究了La_(0.725-x)Sr_(0.275+x)MnO_3和La_(0.925-x)MnO_3的A位浓度掺杂以及空位掺杂对于居里温度的影响,结果发现合成的La_(0.725-x)Sr_(0.275+x)MnO_3居里温度随着x值的增加而降低。当x值0-0.075之间时,受到减小引起的居里温度下降与Mn~(4+)浓度升高引起居里温度上升这两个相悖作用,居里温度降低的幅度不大。当x值0.075-0.100之间时,减小引起的居里温度下降与Mn~(4+)浓度升高引起居里温度下降是两个相同过程。x值在0-0.100之间时,A位浓度掺杂和B位Mn~(3+)/Mn~(4+)离子比共同控制居里温度变化。合成的La_(0.925-x)MnO_3居里温度随着x值的增加而降低。虽受到减小引起的居里温度下降与Mn~(4+)浓度升高引起居里温度上升这两个相悖作用,但空位浓度较大引起晶格畸变严重,故减小引起的居里温度下降是其主要控制过程。
     自主设计和制造了磁热效应直接测试装置,研究和分析了磁热效应直接测量方法的系统误差以及主要影响,为以后进行该方面的研究进行了探索和尝试。
Magnetic refrigeration is achieved through the magnetic entropy change, which is caused by the magnetic moment order changing due to the applied magnetic field change. Compared to conventional gas compression technology, magnetic refrigeration technology is characterized by high efficiency, saving energy and environmental friendship. Perovskite manganese oxides, as one of the room temperature magnetic refrigeration materials, have many advantages such as good physical properties, steady structure, cheap and simple preparation, etc, which attracts the attention of many researchers.
     La_(0.65)Sr_(0.35)MnO_3 was prepared under different PH conditions by sol-gel method. The phase composition of the as-received powders was indicated using X-ray diffraction. The particle size and morphology were observed by SEM. The results show that the samples called manganites have single perovskite structure and homogeneous particle size distribution when PH is controlled near 0.5 and 8.0 during the sol-gel process. When the PH is between 2 and 7, the sol appears sedimentation and the unhomogeneous sol and gel are achieved which results in the agglomeration of particles without single perovskite structure. As PH increases, the particles grow up with the same appearance. The effect of PH comes from the gel process. The layer-shape gel forms in the system with PH=0.5. However, the three-dimensional reticulate gel occurs when PH=8. These two conditions make perovskite manganese oxides with small size and at the same time avoiding the agglomeration.
     The effects of 1,2-ethylenediamine (C_2H_8N_2) on the synthesis of manganite La_(0.65)Sr_(0.35)MnO_3 using sol-gel method was studied compared with ammonia. The results show the addition of C_2H_8N_3 benefits forming sol and gel when PH is near 8.0. However, the precipitation happens in the system containing ammonia even though at the same PH value. The heated sample with C_2H_8N_2 displays the fine and homogeneous particles, which is different from the aggregation in the sample with ammonia addition. A possible mechanism is proposed that C_2H_8N_2 plays the bridge-linked, cross-linked and chelated roles during gel formation. The bridge-linked and cross-linked benefit the gel stabilization. The chelation makes for the homogeneous distribution of La, Sr and Mn ions in the gel. Therefore, the proper C_2H_8N_2 addition effectively reduces the agglomeration of the powders during the heat treatment due to the bridge-linked, cross-linked and chelated mechanism in the sol-gel process.
     The influence of particle size and morphology in Tc temperature and the heat treatment process was studied. The result shows that the best heat treatment temperature is at 800°C and best time is 4h. The grains grow coordinately between in a certain temperature range, Abnormal grains grow up when it is higher than 1200°C. Tc and magnetic entropy change are influenced by the grain sizes of Perovskite manganese oxides.
     Effects of Sr ions and vacancy doped on Tc were studied by preparing of La_(0.75-x)Sr_(0.275+x)MnO_3 and La(0.925-x)MnO_3. The results show that Tc goes down when the x value rises up. When the x value is between 0 and 0.075, Tc of La_(0.725-x)Sr_(0.275+x)MnO_3 is affected by the two opposite ways: i) Tc rises up with decreasing and ii) Tc rises up with Mn~(4+) contents increasing. This produces the unobvious change of Tc. When the x value is between 0.075 and 0.100, Tc is affected by two same ways, in which and Mn~(4+) contents have the same effects. It can be inferred that Tc is influenced by and Mn~(4+) contents. Tc of the La_(0.925-x)MnO_3 sample goes down when the x value rises up. Although Tc is affected by two opposite ways, the density of vacancy makes the serious lattice distortion. The main control factor is determined by in this situation.
     To measure the magnetocaloric effect directly, a system was designed and the deviation was also studied. The results profit the further study.
引文
[1] Giauque W. F. A thermodynamic treatment of certain magnetic effects. A porposed Method of Producing Temperature below 1° Absolute [J]. Amer. Chem. Soc. 1927,49: 1864-1869
    [2] 陈国邦,最新低温制冷技术,北京:机械工业出版社[M].1994,P24-28
    [3] K. A., Pecharshy Jr., Pecharshy V. K., Magnetic refrigeration materials[J]. J. Appl.Phys, 1999, 85: 5365-5368
    [4] Brow G. V., Magnetic heat pumping near room temperature[J]. J. Appl. Phys., 1976,47: 3673-3680
    [5] Steyert W. A., Stirling cycle rotating magnetic refrigerators and heat engines for use near room temperature[J]. J. Appl. Phys, 1978, 49(3): 1216-1226
    [6] 桥本巍洲,磁气冷冻[M].日本:加工技术协会,1984,P38-40
    [7] 龙毅,张正义,李守卫,新功能磁性材料及其应用[M].北京:机械工业出版社,1997,P167-168
    [8] 金新,欧阳容百,陈武鸣,磁斯特林制冷循环的研究[J].低温与超导,1987,15(4):78-82
    [9] 滕云,李陪,磁制冷材料的发展与研究概况[J].功能材料,1994,25(2):111-116
    [10] 宛德福,马兴隆,磁性物理学[M].四川:电子科技大学出版社,1994,P167-178
    [11] 北大物理教研室,铁磁学[M].北京:北京大学出版社,1981,P128
    [12] 桥本巍洲,低温制冷最新进展[J].低温工学,1985,20(5):262-270
    [13] 龙毅,周寿增,赵洁,室温范围内大磁热效应的Gd-Tb材料的研究[J].科学通报,1993,38:1944-1946
    [14] 陈鹏,王敦辉,都有为,磁制冷工质材料的研究进展[J].物理学进展,1999,19(4):371-385
    [15] 邵元智,黄增卫,张进修,高温磁制冷冻工作介质及其选择[J].中山大学学报,1992,31(3):124-127
    [16] 龙毅,周寿增,唐伟中,磁制冷材料现状与发展[J].仪表材料,1990,22(2):65-69
    [17] 桥本巍洲,磁制冷中磁性材料的应用[M].东京:工业调查会,1990,P56-62
    [18] 曾汉民,高技术新材料要览[M].北京:中国科学技术出版社,1993,P169-173
    [19] Barclay J. A.; Moze O., Paterson L. A reciprocating magnetic refrigerator for 2-4K operation: initial results[J]. J. Appl. Phys. 1979, 50(8): 5870-5877
    [20] Mcmichael R. D., Ritter J. J., Shull R. D., Enhanced magnetocaloric effect in Gd_3Ga_(5-x)FexO_(12)[J]. J. Appl. Phys, 1993, 73(10): 6946-6948
    [21] Benfard S. M., The magnetocaloric effect in dysprosium[J]. J. Appl. Phys, 1979,50(3): 1868-1870
    [22] 李卓棠,吴佩芳,稀土材料的磁热效应及其应用[J].化学进展,1995,7(2):140-150
    [23] Korte B. J., Pecharsky V. K., The influence of multiple magnetic ordering on the magnetical effect in RNiAl alloys[J]. Adv. Cryog. Eng. 1998, 43: 1737-1741
    [24] Jin S. G, Liu, L. M., Wang Y. L, Research for room-temperature magnetic refrigerants in R_xCe_(2-x)Fe_(17) series[J]. J. Appl. Phys., 1991, 70(10): 6275-6276
    [25] Foldeaki M., Chahine R, Bose T. K., Magnetic measurements: A powerful tool in magnetic refrigerator design[J]. J. Appl. Phys, 1995, 77(7): 3528-3537
    [26] Smail A., chahine R., Composite materials for Ericsson-like magnetic refrigeration cycle[J]. J. Appl. phys, 1997, 81(2): 824-829
    [27] Dai W., Shen B. G., Li D. X., Gao Z. X., New magnetic refrigeration materials for temperature range from 165 K to 235K[J]. Journal of Alloys and Compounds, 2000,311:22-25
    [28] 曹晓明,王宝珠,温鸣,Gd-Tb-Nd系列磁制冷材料的研究[J].金属热处理文摘,2000,21(2):78-82
    [29] Benford S. M., T-S diagram for gadolinium near the Curie temperature [J]. J. Appl.Phys, 1981, 52(3): 2110-2115
    [30] Nikitin S. A., Tishin, A. M., Redko S. V., The magnetocaloric effect in single crystals of terbium and its alloys with gadolinium[J]. Phys. Met. Metalogy, 1988,66(1): 77-85
    [31] 王宝珠,温鸣,曹晓明,稀土过渡族磁制冷功能材料的研究[J].金属功能材料,2000,7(4):24-29
    [32] Annaorazov M. P., Nikitin S. A., Tyurin A. L., Asatryan KA, et. al, Anomalously high entropy change in FeRh alloy[J]. J. Appl. Phys, 1996, 79: 1689-1692
    [33] Herbst J. F., Fuerst C. D., McMichael R. D., Structural magnetic and magnetocaloric properties of (Hf_(0.83)Tafa_(0.17))Fe_(2+x) materials[J], J. Appl. phys, 1996, 79:5998-6002
    [34]韩鸿兴,寿卫东,高温区磁制冷循环与工质特性研究[J].低温工程,1991,2:13-20
    [35]张晓玲,李锋,磁制冷材料La(Fe_(0.73-x)Co_(x+y)Al_(0.27-y))_(13)系合金[J].金属材料研究,1992,18(3):135-139
    [36]前田弘,接近室温的磁制冷冻机中所用几种磁制冷材料[J].日本金属学会志,1983,47(8):683-688
    [37]佐桥,稀土与过渡族金属磁制冷材料[J].日本特许公报,1987,JP62:80247-80253
    [38]邵元智,张介立,周若珍等,Gd二元系金属间化合物的磁热熵效应[J].中山大学学报,1994,33(3):103-105
    [39]龙毅,周寿增,唐伟中,室温磁制冷稀土类化合物磁热效应研究[J].低温工程,1991,63(5):5-11
    [40] Pecharsky V. K., Korte B. J., Effect of alloying on the giant magnetocaloric effect of Gd_5Si_2Ge_2[J]. J. Magn. Magn. Mater., 1997, 169: L179-184
    [41] Gschneider K. A., Pecharsky, V. K., magnetic refrigeration materials[J]. J. Appl.Phys. 1999, 85 (8): 5365-5368
    [42] Pecharsky V. K., Gschneider, K. A., Phase relationships and crystallography in the pseudobnary System Gd_5Si_4Gd_5Ge_4[J]. Jounral of alloys and compounds, 1997,260:98-106
    [43] Rao G. H. Correlation between crystal structure and magnetic properties of Gd_5SixGe1-x compound [J]. J. Phys-Condensd Matter., 2000, 12: L93-99
    [44] Levin, E. M., Pecharsky, V. K., Gschneidner K.A., Magnetic-field and temperature dependencies of the electrical resistance near the magnetic and crystallographic first-order phase transition of Gd_5Si_xGe_(1-x)[J]. Phys. Rev. B, 1999, 60(11):7993-7997
    [45]沈亚涛,郭载兵,都有为,钙钛矿La_(0.75)Ca_(0.25-x)Sr_xMnO_3的磁卡效应与复合材料[J].物理学报,1999,48:2137-2141
    [46]陈伟,钟伟,La-Na-Mn-O纳米颗粒的磁卡效应[J].材料研究学报,1999,13:552-554
    [47]陈伟,钟伟,都有为,室温磁致冷材料缓新进展[J].功能材料,1998,29:236-239
    [48] Zhang X. X., Tejada J., Xin Y.,Sun G. F., et. al., Magnetocaloric effect in La_(0.67)Ca_(0.33)MnO_3 and La_(0.60)Ca_(0.33)Y_(0.07)MnO_3 bulk materials[J]. Appl. Phys. Lett, 1996,69:3596-3598
    [49] Zhong W., Chen W., Au C. T., Du Y W. Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La_(2/3)Ba_(1/3)MnO_3[J]. J. Magn. Magn. Mater.,2003,26 1:238-243
    [50] Phan M. H., Yu S. C, Hur N. H., Magnetic and magnetocaloric properties of (La_(1-x))_(0.8)Ca_(0.2)MnO_3(x=0.05,0. 20) [J]. J. Magn. Magn. Mater., 2003, 262: 407-413
    [51] Zhu H.,Song H., Zhang Y. H., Magnetocaloric effect in layered perovskite manganese oxide La_(1.4)Ca_(1.6)Mn_2O_7[J]. Appl. Phys. Lett., 2002, 28: 3416-3418
    [52] Bobigas X., Tejada J., Marinez-Sarrion M. L.,et. al., Magnetic and calorimetric measurements on the magnetocaloric effect in La_(0.6)Ca_(0.4)MnO_3[J].J. Magn. Magn. Mater., 2001, 208: 85-92
    [53] Guo Z. B., Zhang J. R., Huang H., et. al., Large magnetic entropy change in La_(0.75)Ca_(0.25)MnO_3[J]. Appl. Phys. Lett, 1997, 70: 904-905
    [54] Tian S. B., Phan M. H., Yu S. C, Magnetocaloric effect in a La_(0.7)Ca_(0.3)MnO_3 single crystal[J]. Physical B, 2003, 327: 221-224
    [55] Dai P., Zhang J. D., Mook H. A., et. al., Experimental evidence for the dynamic Jahn-teller effect in La_(0.65)Ca_(0.35)MnO_3[J]. Phys. Rev. B, 1996, 54: R3694-3697
    [56] Martin M. C, Shirane G., Endoh Y., et. al., Magnetism and structural distortion in the La_(0.7)Sr_(0.3)MnO_3 metallic ferromagnet[J]. Phys. Rev. B, 1996, 53: 14285-14291
    [57] Guo Z. B., Du Y. W., Zhu J. S., et. al., Large magnetic entropy change in perovskite-type manganese oxides[J]. Phys. Rev. Lett., 1997, 78: 1142-1145
    [58] Dagoto E., Hotta T.,Moreo A., Colossal magnetoresistant materials .The key role of phase separation[J]. Physics Reports, 2001, 34: 153-160
    [59] Tokura Y., Tomioka Y., Colossal magnetoresistive manganites[J]. J. Magn. Magn. Mater., 1999,200: 1-23
    [60] Selliffer P., Ramirez A. P., Bao W., Low-temperature magnetoresistance and the magnetic phase-diagram of La_(1-x)Ca_xMnO_3[J]. Phys. Rev. Lett., 1995, 75: 3336-3342
    [61] Hundley M. F., Hawley M., Heffner R. H., et. al., Transport-magnetism correlations in the ferromagnetic oxide La_(0.7)Ca_(0.3)MnO_3[J]. Appl. Phys. Lett., 1995, 67(6): 860-867
    [62] Ju H. L., Kwon C., Li Q., R. L., Giant magnetoresistance in La_(1-x)Sr_xMnO_z films near room-temperature[J]. Appl. Phya. Lett, 1994, 65(16): 2108-2114
    [63] Teresa J. M., Ibarra De., Garcia M. R., J., et. al.,Spin-glass insulator state in(Tb-La)_(2/3)Ca_(1/3)MnO_3 perovskite[J]. Phys. Rev. Lett., 1996, 76(18): 3392-3441
    [64] Sundaresan A., Maignan A., Spin-glass state and magnetic-field-induced phenomena in distorted Eu_(0.58)Sr_(0.42)MnO_3 perovskite[J]. Phys. Rev. B, 1997, 55(9):5596-5603
    [65] Okimoto Y., Katsufuji T., Ishikawa T.,T., et. al., Variation of electronic structure in La_(1-x)Sr_xMnO_3 (0    [66] Fonteuberta J., Martinez B., Seffar A., et. al., Colossal magnetoresistance of ferromagnetic manganites: Structural tuning and mechanisms[J]. Phys. Rev. Lett.,1996,76: 1122-1132
    [67] Moritomo Y., Kuwahara H., Tokura Y., Pressure effects on charge-ordering transitions in Perovskite manganites [J]. Phys. Rev. B 1997, 55(12):7549-7545
    [68] Liu K., Wu X. W., Ahn K. H., et. al., Charge ordering and magnetoresistance in Nd_(1-x)Ca_xMnO_3 due to reduced double exchange[J]. Phys. Rev. B, 1996, 54(5):3007-3015
    [69] Schiffer P., Ramirez A. P., Bao W., Low-temperature magnetoresistance and the magnetic phase-diagram of La_(1-x)Ca_xMnO_3[J]. Phys. Rev. Lett., 1995, 75(18):3336-3341
    [70] Ghosh K., Ogale S. B., Ramesh R.,et. al., Transition-element doping effects in L_(a0.7)Ca_(0.3)MnO_3[J]. Phys. Rev. B, 1999, 59(2): 533-539
    [71] 刘俊明,王克锋,稀土掺杂锰氧化物庞磁电阻效应[J].物理学进展,2005,25:82-130
    [72] Garcfaetal D. J., New type of chargeand magnetic order in the ferromagnetic kondo lattice, Phys. Rev. Lett., 2000, 85(17): 3720-3741
    [73] 洪新华,李保国.溶胶-凝胶(Sol-Gel)方法的原理与应用[J].天津师范大学学报,2001,21(1):8-11
    [74] 杨志民,低频微波吸收剂的制备及其吸波性能的研究田[J].北京有色金属研究总院博士学位论文,201:8-14
    [75] 丁兆星,何怡贞,董远达,溶胶凝胶工艺在材料科学中应用[J].材料科学与工程,1994,12(2):1-4
    [76] 赵文俞,张清杰,李鹏,柠檬酸法合成SrFe_(12)Zo_(19)磁铅石型铁氧体的晶化过程 研究[J].硅酸盐学报,2003,31(1):20-24
    [77] Zhong W., Chen W., Ding W. P., et al. Synthesis, structure and magnetic entropy change of polycrystalline La_(1-x)K_xMnO_3~+delta[J]. J. Magn. Magn. Mater. 1999, 195:112-120
    [78] Har I. O., Har I. A., Ivanova T., Formation and characterization of sol- gel barium titanate[J]. Materail Science and Engineering. 2004, 106(23): 191-195.
    [79] 刘宜华,张汝贞,王成建,La_(0.5)Ba_(0.5)CoO_3中Y的替代效应[J].中国稀土学报,2002,20(3):244-251
    [80] Dixit A., Majumder S. B., Dobal P. S., et al. Phase transition studies of sol-gel deposited barium zirconate titanate thin flims[J]. Thin Solid Films, 2004, (56):284-288
    [81] 赵九蓬,李珪,强亮生,有机凝胶法低温合成纳米Sr_xBa_(1-x)Nb_2O_6粉体[J].无机化学学报,2004,19(1):75-80
    [82] 李凤华,王珏,刘常升,柠檬酸溶胶凝胶法合成YBa_2Cu_3O_(7-δ)[J].东北大学学报,2003,24(11):1061-1063
    [83] 沈彩,刘庆峰,刘茜,柠檬酸-硝酸盐燃烧法制备Ba_(0.5)Sr_(0.5T)iO_3介电材料[J].无机材料学报,2004,19(3):681-685
    [84] 魏楸桐,郭瑞松,李海龙,溶胶凝胶-燃烧法合成La_(0.7)Sr_(0.3)MnO_3阴极材料及其性能[J].电源技术,2005,29(5):286-288
    [85] 丁子上,翁文剑,杨娟,化学络合法在溶胶-凝胶过程中的应用研究[J].硅酸盐学报,1995,23(5):571-579
    [86] 薛军民,李承恩,倪焕尧,柠檬酸盐法低温合成BaTiO3微粉的研究[J].功能材料,1995,26(5):425-430
    [87] Guo Z. B., Du Y. W., Zhu J. S., et. al., Large magnetic entropy change in perovskite-type manganese oxides[J]. Phys. Rev. Lett., 1997, 78(6): 1142-1151
    [88] Phan M. H., Phan V. T., Yu S. C, et. al., Large magnetic entropy change in a La_(0.8)Ca_(0.2)MnO_3 single crystal[J]. J. Magn. Magn. Mater ., 2004, 272: 2337-2245
    [89] Szewczyk A., Gutowska M., iotrowski K. P., Dabrowsk B., Direct and specific heat study of magnetocaloric effect in La_(0.84)5Sr_(0.155)MnO_3[J]. J. Appl. Phys. 2003,94(3): 1873-1880
    [90] Szewczyk A., Gutowska M., Dabrowski B., T. et. al., Specific heat anomalies in La_(1-x)Sr_xMnO_x(0.12     [91] Szewczyk A., Szymczak H., Wisniewski A., et. al., Magnetocaloric effect in La_(1-x)Sr_xMnO_3 for x=0.13 and 0.16 [J]. J. Appl. Phys. Lett. 2000, 77(7): 1026-1032
    [92] M. H. Phan, T. L. Phan, S. C. Yu, N. D. Tho, N. Chau, Large magnetocaloric effect in La_(0.845)Sr_(0.155)Mn_(1-x)M_xO_3 (M=Mn, Cu, Co) perovskites[J]. Phys. Stat. Sol. 2004, 241(7): 1744-1751
    [93] Chau N., Nhat H. N., Luong N. H., et. al., Structure,magnetic,magnetocaloric and magnetoresistance properties of La_(1-x)Pb_xMnO_3 perovskite[J]. Physica-Condensed Matter., 2003, 327(2-4): 270-277
    [94] Min S. G., Kim K. S., Yu S. C, et. al., Magnetocaloric properties of La_(1-x)Pb_xMnO_3(x=0.1, 0.2, 0.3) compounds[J]. IEEE. Trans. Magn., 2005, 41: 2760-2766
    [95] Chainani A., Kumigashira H., Takahashi T. et. al.,Temperature dependence of the electronic structure of the charge-ordering manganite Pr_(0.5)Sr_(0.5)MnO_3[J]. J. Phys. Rev. B, 1997,56(24):15513-15519
    [96] Ghosh K., Ogale S. B., Ramesh R., et. al., Transition-element doping effects in La_(0.7)Ca_(0.3)MnO_3[J]. Phys. Rev. B, 1999, 59(1): 533-540
    [97] Hebert S., Maignan A., Martin C, Raveau B, Important role of impurity e_g levels on the ground state of Mn-site doped manganites[J]. Solid State Commun. 2002, 121(5): 229-235
    [98] Raveau B., Maignan A., Mahendiran R., et. al., Instability of magnetism and conductivity in CMR manganites: role of Mn-site doping and thermal cycling[J]. J. Phys. Chem. Solids., 2002, 63(6-8): 901-910
    [100] Sharma R. P., Xiong G. C, Kwon C, et. al., Dierct evidence for the effect of lattice distortions in the transport properties of perovskite-type manganite films[J]. Phys. Rev. B. 1996, 54 (14): 10014-10019
    [101] Guo Z. B., Yang W., Shen Y. T., Du YW, Magnetic entropy change in La_(0.75)Ca_(0.25-x)Sr_xMno_3 perovskites[J]. Solid State Commun., 1998, 105: 89-96
    [102] Phan M. H., Tian S. B., Hoang D. Q., Large magnetic-entropy change above 300 K in CMR materials[J]. J. Magn. Magn. Mater., 2003, 258: 309-315
    [103] Morelli D. T., Mance A. M., Mantese J. V., Magnetocaloric properties of doped lanthanum manganite films[J]. J. Appl. Phys. 1996, 79: 373-380
    [104] Mira J., Rivas J., Hueso L. E., et. al., Drop of magnetocaloric effect related to the change from first to second-order magnetic phase transition in La_(2/3)(Ca_(1-x)Sr_x)_(1/3)Mno_3[J]. J. Appl. Phys., 2002, 91(10): 8903-8905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700