用户名: 密码: 验证码:
涂层刀具切削温度及其测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涂层刀具是切削加工中应用最广泛的刀具种类之一,统计表明,80%的切削加工应用了涂层刀具。涂层刀具的涂层材料和刀具基体对切削热的产生和温度场分布具有重要影响,切削温度是选择刀具基体和涂层的重要依据。切削热对刀具磨损、刀具寿命、刀具涂层与基体之间的结合强度、刀具与切屑之间的摩擦系数以及刀具与工件已加工表面之间的摩擦系数等均有较大影响。对于刀具切削温度的研究方法有:数学解析法、试验法、数值法、混合法(试验和仿真、解析方法等综合运用)、热源法等。由于涂层刀具切削温度热传导偏微分方程的解析解比较复杂,甚至很难求出。对涂层刀具切削温度的研究主要采用试验和仿真的方法。
     本文主要研究涂层刀具热传导性能,揭示涂层材料物理参数、涂层厚度和涂层结构对切削温度的影响规律,找出具有热障作用的刀具涂层材料所具有的特性,研制基于涂层刀具切削温度测试系统。
     首先,研究导热系数随温度变化和导热系数为恒定值时涂层刀具稳态热传导刀具的切削温度,分析导热系数对切削温度的影响。建立热传导偏微分方程,采用数值分析方法,计算涂层材料的导热系数取不同恒定值时的切削温度和变导热系数的切削温度。结果表明:在精确计算稳态切削温度时,应采用变热物参数;当用常值来代替变热物性参数时,选择刀具基体材料平均温度时的导热系数,选择涂层材料平均温度或最高温度时的导热系数时,计算误差比较小。研究涂层刀具的热流量。提出将切屑带走的热量和传入刀具的热量都传入刀具,再将切屑带走的热量看作对流换热形式把热量从刀具上散发出去的方法,来分析传入刀具的热流密度和刀-屑接触面温度。结果表明:运用这种方法不仅可以分析传入刀具的热流密度和刀-屑接触面温度,并且还可以优化切削参数。
     其次,开发基于涂层刀具切削温度测试系统。研制利用涂层刀具本身作为切削温度传感器的涂层刀具切削温度测试方法,设计制作专用标定装置并对涂层刀具切削温度自测传感器进行标定,分析涂层刀具切削温度自测传感器测温原理。试验结果表明:研制出的涂层刀具温度自测传感器可以对切削温度进行实时测量。
     然后,研究涂层刀具切削温度的影响因素及其变化规律,揭示涂层和基体材料以及涂层厚度对涂层刀具切削温度分布的影响规律,为涂层材料和刀具基体材料的合理选择提供理论依据。建立单涂层刀具热传导物理模型和其偏微分方程,用数学解析的方法得到单涂层刀具体内部瞬态切削温度分布和稳态切削温度分布公式,分析影响涂层刀具内部温度分布因素。利用试验得到涂层分别为TiAlN、TiCN/Al_2O_3、TiCN/Al_2O_3/TiN的涂层刀具(分别用K1、K2、K3表示)切削45钢时的刀具前刀面的温度,验证解析推导的单涂层刀具切削温度计算公式。结果表明:涂层材料的热物理性能以及涂层的厚度对刀具的温升有重要影响;涂层材料的导热系数越小、涂层厚度越大则涂层刀具基体内部的稳态切削温度越低;发现涂层的导温系数越小、涂层厚度越大,则刀具瞬态温度越低;导温系数小且导热系数小的刀具涂层具有热障作用;刀具温度试验数值与理论计算值一致。
     最后,研究刀具涂层和刀具基体之间的元素扩散,在涂层刀具的热传导分析中提出涂层刀具扩散层理论。采用能谱分析的方法观测涂层刀具涂层、基体之间元素的扩散情况,确定扩散层的厚度,建立涂层刀具扩散层模型,并对其导热系数进行推导。对涂层刀具的切削温度用DEFORM 3D有限元软件进行仿真。结果表明:考虑刀具扩散层仿真得到的涂层刀具的切削温度更接近于试验测量温度。
     通过对涂层刀具热传导性能进行研究、分析在不同边界条件下影响涂层刀具切削温度的因素。建立涂层刀具热传导模型和理论,解决目前采用试切法确定涂层材料和厚度的非理论指导做法选用涂层刀具的问题;揭示涂层对涂层刀具热传导的影响规律;从热传导角度提出有效降低涂层刀具切削温度,提高刀具寿命的涂层材料的特性,为发现和应用新的涂层提供理论指导。在应用上,从热传导的角度,对评价不同涂层刀具的性能提供理论依据,为切削加工涂层刀具的选择和涂层刀具的制作奠定基础。开发基于涂层刀具切削温度测试系统,为能够实时、准确地测量涂层刀具切削温度提供仪器和方法。研究导热系数随温度变化和导热系数为恒定值时的涂层刀具稳态热传导时刀具的切削温度,确定用恒定刀具热物性参数来代替变物性参数的选择原则。提出涂层刀具扩散层理论,研究表明考虑扩散层的有限元分析方法,可实现涂层刀具切削温度的高精度仿真。
Coated cutting tools play an important role in manufacturing industries. It is reported that more than 80% cutting tools currently used are coated cutting tools. The coatings of the cutting tool have great influence on cutting heat generation and heat conduction in the tool during machining. The coatings of coated cutting tools affect accuracy of the machined surface and strongly influence tool wear, tool life and frictional behavior in cutting process. The methods to determine temperature in cutting process include analytical method, experimental measurement, numerical analysis, hybrid technique and heat source method. Because the partial different equations of heat conduction are hard to resolve, the method mainly used to obtain the coated tools temperature is numerical analysis method and experimental measurement at present. Past studies have investigated temperatures of coated cutting tools, however, the influence of coating material and coating thickness on temperature distribution in coated tools has not been gotten agreement by now. It has not been built a temperature measurement system to monitor coated tools cutting temperature in real time during machining.
     An aim of this research is to find the appropriate proprieties of coating material and coating thickness in heat conduction respect and build a measuring system for cutting coated tools temperature.
     To discover how to choose thermal properties of coated cutting tools when calculating cutting temperature, the temperature distributions were obtained with temperature-dependent properties and temperature-independent properties of coated tools using numerical method. The results indicated that temperature-dependent properties should be considered when calculating cutting temperature. To simplify calculation, selecting the thermal conductivities at average temperature to substitute for temperature-dependent properties can reduce calculating error. The method to determine the heat flux into coated tools was proposed based on heat transfer principle. The heat brought away by chip was taken as being transferred to the coated tool firstly, then, carried away by chip from the coated tool with a particular transfer coefficient. The results of the calculated examples indicated that the heat flux and the tool-chip contact temperature can be developed and the optimal cutting parameters can be obtained using this new method.
     The present investigation has been conducted in order to develop a new sensor to measure temperatures, especially for cutting presses with coated cutting tools. For this purpose, a novel thermocouple sensor using a tool coating and its substrate has been first fabricated. In order to calibrate the novel sensor accurately, a special instrument was been designed. The working principle of the developed sensor was analyzed. The experimental results showed that this novel technology for measuring cutting temperature is valid in manufacturing processes with coated cutting tools.
     In order to find the principle of the influence which coating impact on cutting temperature, several mathematical models of heat conduction in monolayer coated tools has been proposed. The temperature distribution formulations in monolayer coated tools were obtained using analytical method. The influence of different parameters including thermophysical properties of tool coating and tool substrate and thickness of the coating layer on temperature distribution in monolayer coated tools were discussed and illustrated. The experiments were conducted using three different cutting tools with coating layers: TiAlN, TiCN/Al_2O_3, TiCN/Al_2O_3/TiN coated flat-faced inserts of cemented carbide substrate. The work materials used in this study were AISI 1045 carbon steel. The tool-chip contract temperature ware measured. Using the above studied method about thermal properties of coated tools and heat flux into coated tools, the temperature distribution formulations in monolayer coated tools which were deduced analytically previous in this section were validated. Results indicated that low thermal diffusivity coefficient and high thickness of the coating make low transient temperature, and low thermal conductivity coefficient, and high thickness make low steady state temperature in the coated cutting tool, and the calculated temperatures are identical with the measured ones.
     A novel approach to prediction of cutting temperatures within coated tools is presented lastly in this paper. The diffusion layer which results thermal resistance between coating and its substrate is considered. A diffusion layer model was firstly developed. Equations for effective thermal conductivity of diffusion layer were then derived. The influences of diffusion layer on cutting temperatures of coated tools were analyzed using finite element method. Results indicated that the simulated temperature with the new model is more accurate than that of the conventional one compared with measured temperature.
     In this study the influence of the coatings on coated tools were analyzed. Several models of heat condition in coated tools have been constructed. It is discovered the principle of the coating material and coating thickness affects heat conduction in coated cutting tools. The conclusions of this research developed in this work provide a methodology for design and choice of coated tools in manufacturing industries. A novel sensor using tool-coating and its substrate as thermocouple was firstly fabricated. The coating-substrate thermocouple provides a method to measure cutting temperature of coated tools in real time during machining. The cutting temperatures of coated tools with temperature-dependent and constant thermal properties were investigated. This work provides a methodology of how to choose the thermal parameter of coatings when calculating cutting coated tool temperature. The diffusion layer theory about coated tools was firstly developed. The model considering diffusion layer of coated tools in more reasonable than the conventional one.
     This dissertation is supported by National Great Project of Scientific and Technical Supporting Programs of China During the 11th Five-year Plan (NO. 2008BAF32B01) and National Basic Research Program of China (No.2009CB724401).
引文
[1]刘战强,黄传真,万熠,等.切削温度测量方法综述[J].工具技术.2002,36(No.3):3-6.
    [2]曾其勇.化爆材料动态切削温度的薄膜热电偶测量原理及传感器研制[D].大连理工大学博士学位论文,2005.
    [3]艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社,1988:3.
    [4]刘战强,万熠,周军.高速切削刀具材料及其应用[J].机械工程材料.2006,30(5):1-8.
    [5]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005.
    [6]刘建华,邓建新,张庆余.TiAlN涂层刀具的发展及应用[J].工具技术.2006,40(4):9-13.
    [7]Rech J.Influence of cutting tool coatings on the tribological phenomena at the tool-chip interface in orthogonal dry tuming[J].Surface and Coatings Technology.2006,200:5132-5139.
    [8]Grzesik W,Bartoszuk M,Nieslony P.Finite element modelling of temperature distribution in the cutting zone in turning processes with differently coated tools[J].Journal of Materials Processing Technology.2005,164-165:1204-1211.
    [9]Fleischer J,Pabst R,Kelemen S.Heat Flow Simulation for Dry Maching of Power Train Castings[J].Annals of CIRP.2007,56(1):117-122.
    [10]Komanduri R,Hou Z B.A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology[J].Tribology International.2001,34:653-682.
    [11]Grzesik W.The influence of thin hard coatings on frictional behaviour in the orthogonal cutting process[J].Tribology International.2000,33:131-140.
    [12]董丽华.三维槽型刀片面铣刀切削机理及其CAD/CAM的研究[D].哈尔滨工业大学博士学位论文.1999.
    [13]Grzesik W,Nieslony P.A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools[J].International Journal of Machine Tools and Manufacture.2003(43):1311-1317.
    [14]Grzesik W,Nieslony P.Physics based modelling of interface temperatures in machining with multilayer coated tools at moderate cutting speeds[J].International Journal of Machine Tools and Manufacture.2004,44:889-901.
    [15]王润富,陈国荣.温度场和温度应力[M].北京:科学技术出版社,2005.
    [16]杨世铭.传热学基础[M].北京:高等教育出版社,2003.
    [17]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2003.
    [18]张幼桢主编.金属切削理论[M].北京:航空工业出版社,1988.
    [19]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学技术出版社,1997.
    [20]Akinyemi P O.A study of thermal field in high speed machining using a three-dimensional finite element model[D].University of Detroit Mercy,1994.
    [21]Shaw M C.Metal Cutting Principles[M].Oxford:Clarendon Press,1989.
    [22]T.Kato H F.Energy partition in conventional surface grinding[J].ASME Trans.J.Manuf.Sci.Eng.1999,121:393-398.
    [23]Reznikov A N.Thermophysical Aspects of Metal Cutting Processes[M].Moscow:Mashinostroenie,1981.
    [24]Grzesik W.Experimental investigation of the cutting temperature when turning with coated indexable inserts[J].International Journal of Machine Tools and Manufacture.1999,39:355-369.
    [25]Komanduri R,Hou Z B.Thermal modeling of the metal cutting process.Part Ⅰ:temperature rise distribution due to shear plane heat source[J].International Journal of Mechanical Sciences.2000,42:1715-1752.
    [26]Komanduri R,Hou Z B.Thermal modeling of the metal cutting process.Part Ⅱ:temperature rise distribution due to frictional heat source at the tool-chip interface[J].International Journal of Mechanical Sciences.2001,43:57-88.
    [27]Komanduri R,Hou Z B.Thermal modeling of the metal cutting process.Part Ⅲ:temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source[J].International Journal of Mechanical Sciences.2001,43:89-107.
    [28]Kj T,Bt C.An analytical evaluation of metal cutting temperature[J].Transactions of the ASME.1951,73:57:68.
    [29]Eg L,S M.On the analysis of cutting tool temperatures[J].Transactions of the ASME.1954,71:217-231.
    [30]Bt C,T K.Temperature distribution at the tool}chip interface in metal cutting[J].Transactions of the ASME.1955,72:1107-1121.
    [31]Klocke F,Krieg T.Coated tools for metal cutting-features and applications[J].Annals of CIRP.1999,48(2):515-525.
    [32]赵海波,周彤,梁红樱,等.刀具涂层的分类与应用[J].工具技术.2005,年第39卷12:14-17.
    [33]刘建华.ZrN涂层刀具的设计开发及其切削性能研究[D].山东大学博士学位 论文,2007.
    [34]邱英浩,曹晓明.真空镀膜技术的现状及进展[J].天津冶金.2004,第5期,总第123期:45-48.
    [35]肖诗纲.现代刀具材料[M].重庆:重庆大学出版社,1992.
    [36]肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1990.
    [37]扬烈宁,关文锋,顾卓明编著.材料表面薄膜技术[M].人民交通出版社出版,1991.
    [38]杨武保.磁控溅射镀膜技术最新进展及发展趋势预测[J].石油机械.2005,第33卷 第6期:73-76.
    [39]凌明芳.S枪磁控溅射Ni薄膜晶粒结构与导电特性的研究[J].浙江大学学报.1999,33(5):461-464.
    [40]宋昌才.多元多层复合涂层刀具切削温度的测量[J].江苏理工大学学报(自然科学版).2001,第22卷第1期:54-58.
    [41]张以忱,巴德纯,刘希东,等.温度传感功能薄膜技术[J].真空科学与技术.2003,第23卷第5期:334-346.
    [42]Cselle T,Barimani A.Today's applications and future developments of coatings for drills and rotating cutting tools[J].Surface and Coatings Technology.1995,76-77:712-718.
    [43]胡兴军.刀具表面涂层技术进展综述[J].精密制造与自动化.2005,第1期:14-17.
    [44]-ch Y,Yen,Jain A,et al.Computer simulation of orthogonal cutting using a tool with multiple coatings[J].Proceedings of the Sixth CIRP International Workshop on Modeling of Machining Operation,McMaster University,ON,Canada.2003:119-130.
    [45]Majurndar P,Jayaramachandran R,Ganesan S.Finite element analysis of temperature rise in metal cutting processes[J].Applied Thermal Engineering.2005,25:2152-2168.
    [46]侯镇冰,何绍杰,李恕先.固体热传导[M].上海:上海科技出版社,1984.
    [47]吕志杰.高性能Si3N4/TiC纳米复合陶瓷[D].山东大学博士学位论文,2005.
    [48]万熠.高速铣削航空铝合金刀具[D].山东大学博士学位论文,2006.
    [49]Dessoly V,Melkote S N,Lescalier C.Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel[J].International Journal of Machine Tools and Manufacture.2004,44:1463-1470.
    [50]Cotterell D O M.Temperature measurement in single point turning[J].Journal of Materials Processing Technology.2001,118:301-308.
    [51]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [52]Tieu A K,Fang X D,Zhang D.FE analysis of cutting tool temperature field with adhering layer formation[J].1998,214:252-258.
    [53]Tay A O,Stevenson M G,de Davis G V.Using the finite element method to determine temperature distributions in orthogonal machining[J].Proc.Inst.Mech.Eng.1974,188(55):627-638.
    [54]Du F,Lovell M R,Wu T W.Boundary element method analysis of temperature fields in coated cutting tools[J].International Journal of Solid and Structures.2001,38:4557-4570.
    [55]Abukhshim N A,Mativenga P T,Sheikh M A.Investigation of heat partition in high speed turning of high strength alloy steel[J].International Journal of Machine Tools and Manufacture.2005,45:1687-1695.
    [56]Grzesik W,Bartoszuk M,Nieslony P.Finite difference analysis of the thermal behaviour of coated tools in orthogonal cutting of steels[J].International Journal of Machine Tools and Manufacture.2004,44:1451-1462.
    [57]Dogu Y,Asian E,Camuscu N.A numerical model to determine temperature distribution in orthogonal metal cutting[J].Journal of Materials Processing Technology.2006,171:1-9.
    [58]Zel,O T.The influence of friction models on finite element simulations of machining[J].International Journal of Machine Tools and Manufacture.2006,46:518-53.
    [59]Zhang S,Liu Z.Analytical and numerical solutions of transient heat conduction in monolayer coated tools[J].Journal of material processing technology.2009,209:2369-2376.
    [60]顾立志.金属切削过程仿真及基在切削参数优化中的应用研究[D].哈尔滨工业大学博士学位论文,2000.
    [61]T O M S.Investigation of high speed flat end milling process-prediction of chip formation,cutting forces,tool stresses and temperatures[D].The Ohio State University,1998.
    [62]Ozcelik B,Bagci E.Experimental and numerical studies on the determination of twist drill temperature in dry drilling:A new approach[J].Materials and Design.2006,27:920-927.
    [63]Ren X J,Yang Q X,James R D,et al.Cutting temperatures in hard turning chromium hard facings with PCBN tooling[J].Journal of Materials Processing Technology.2004,147:38-44.
    [64]Kwon P,Schiemann T,Kountanya R.An inverse estimation scheme to measure steady-state tool-chip interface temperatures using an infrared camera[J]. International Journal of Machine Tools and Manufacture.2001,41:1015-1030.
    [65]Abukhshim N A,Mativenga P T,Sheikh M A.Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J].International Journal of Machine Tools and Manufacture.2006,46:782-800.
    [66]Carslaw H S,Jaeger J C.Conduction of Heat in Solids[M].2nd ed.Oxford University Press,1959.
    [67]Hou Z B,Komanduri R.General solutions for stationary/moving plane heat source problems in manufacturing and tribology[J].International Journal of Heat and Mass Transfer.2000,43:1679-1698.
    [68]Grzesik W.Composite layer-based analytical models for tool-chip interface temperatures in machining medium carbon steels with multi-layer coated cutting tools[J].Journal of Materials Processing Technology.2006,176:102-110.
    [69]Grzesik W.Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique[J].International Journal of Machine Tools and Manufacture.2006,46:651-658.
    [70]刘鑫堃,刘旺玉,全燕鸣.高速切削温度场的三维有限元模拟[J].现代制造工程.2007(3):9-10.
    [71]Grzesik W.An integrated approach to evaluating the tribo-contact for coated cutting inserts[J].Wear.2000,240:9-18.
    [72]Grzesik W.The role of coatings in controlling the cutting process when turning with coated indexable inserts[J].Journal of Materials Processing Technology.1998,79:133-143.
    [73]Ming Q Y,Ping L J,Yong W C.Cutting temperature measurement in high-speed end milling[J].Transactions of Nanjing University of Aeronautics and A stronautics.2005,No.1(22):47-51.
    [74]刘志新,张大卫.基于央丝热电偶法的高速切削温度测量[J].控制与检测.2006,第4期:59-61.
    [75]Rech J,Battaglia J L,Moisan A.Thermal influence of cutting tool coatings[J].Journal of Materials Processing Technology.2005,159:119-124.
    [76]Kusiak A,Battaglia J,Rech J.Tool coatings influence on the heat transfer in the tool during machining[J].Surface and Coatings Technology.2005,195:29-40.
    [77]徐进,李文方,叶邦彦.高速切削温度的热氧化法估计[J].五邑大学学报(自然科学版).2004,第18卷第3期:21-25.
    [78]Chandrasekaran R M H.Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel[J].International Journal of Machine Tools and Manufacture.2004,44:213-224.
    [79]BernhardMuller,Renz U.Time resolved temperature measurements in manufacturing[J].Measurement.2003,34:363-370.
    [80]Wan Y,Tang Z T,Liu Z Q,et al.The assessment of cutting temperature measurements in high-speed machining.[C].Materials Science Forum.2004(471-472):162-166.
    [81]Sutter G,Faure L,Molinari A,et al.An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining[J].International Journal of Machine Tools and Manufacture.2003,43:671-678.
    [82]孙宝元,曾其勇,钱敏,等.化爆材料瞬态切削温度的与切削力在线实时检测[J].含能材料.2006,第12卷:240-243.
    [83]Ng E-,Aspinwall D K,Brazil D,et al.Modelling of temperature and forces when orthogonally machining hardened steel[J].International Journal of Machine Tools and Manufacture.1999,39:885-903.
    [84]Obikawa T,Matsumura T,Shirakashi T,et al.Wear Characeristic of Alumina Coated and Alumina Ceramic Tools[J].Journal of Materials Processing Technology.1997,63:211-216.
    [85]卢俊,孙宝元,曾其勇.新型半人工热电偶动态测温方法[J].传感器技术.2003,第22卷第11期:42-44.
    [86]刘献礼,袁哲俊,陈波,等.切削温度测量的等效热电偶法[J].计量学报.1999:187-191.
    [87]王魁汉.温度测量实用技术[M].北京:机械工业出版社,2007.
    [88]Kato T,Fujii H.The temperatue distribution in cutting tools[J].Transactions of the ASME,Journal of Enginering for Industry.1996,188:117-122.
    [89]Ay H.Heat transfer and life of metal cutting tools in turning[J].International Journal of Hear Mass Transfer.1998,41(3):613-618.
    [90]曾其勇,孙宝元,徐静,等.化爆材料瞬态切削温度的NiCr/NiSi薄膜热电偶温度传感器的研制[J].机械工程学报.2006,第42卷第3期:206-211.
    [91]Jih-fenlei,will H A.Thin-film thermocouples and strain gauge technologies for engine appplications[J].Sensors and Actuators,1998,65:187-193.
    [92]Kennedy F E,Frusescu D,Li J.Thin film thermocouple arrays for sliding surface temperature[J].Wear.1997,207:46-54.
    [93]Basti A,Obikawa T,Shinozuka J.Tools with built-in thin film thermocouple sensors for monitoring cutting temperature[J].International Journal of Machine Tools and Manufacture.2007,47:793-798.
    [94]Weinert A K,Tillmann W,Hammer N,et al.Tool Coatings as Thermocouple for the Monitoring of Temperatures in Turning Processes[J].Advanced Engineering Materials.2006,8(10):1007-1010.
    [95]徐静,孙宝元,曾其勇,等.新型薄膜式热电偶切削温度测量传感器[J].仪表技术与传感器.2005,第6期:1-5.
    [96]贾颖,孙宝元,曾其勇,等.磁控溅射法制备NiCr/NiSi薄膜热电偶温度传感器[J].仪表技术与传感器.2006,第2期:1-3.
    [97]Kharkevich A G,Venuvinod P K.Extension of basic geometric analysis of 3-D chip forms in metal cutting to chips with obstacle-induced deformation[J].International Journal of Machine Tools and Manufacture.2002,42:202-213.
    [98]Van Luttervelt C A,Childs T H C,Jawahi I S,et al.Present Situation and Future Trends in Modelling of Machining Operations[J].Annals of the CIRP.1998,47(2):587-626.
    [99]Marksberrya P W,Jawahir I S.A comprehensive tool-wear/tool-life performance model in the evaluation of NDM(near dry machining) for sustainable manufacturing[J].International Journal of Machine Tools and Manufacture.2008,48:878-886.
    [100]Teti R,Jawahir I S,Jemielniak K,et al.Chip Form Monitoring through Advanced Processing of Cutting Force Sensor Signals[J].Annals of the CIRP.2006,55(1):1-6.
    [101]Rech J.A multiview approach to the tribological characterisation of cutting tool coatings for steels in high-speed dry turning[J].International Journal of Machining and Machinability of Materials,2006,1(1):27-44.
    [102]Ducros C,Sanchette F.Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation.Part 2:Mechanical properties and cutting performances[J].Surface and Coatings Technology.2006,201:1045-1052.
    [103]Lazoglu I,Altintas Y.Prediction of tool and chip temperature in continuous and interrupted machining[J].International Journal of Machine Tools and Manufacture.2002,42:1011-1022.
    [104]李传民.Deform 5.03金属成形有限元分析事例指导[M].北京:机械工业出版社,2007.
    [105]Toropov A,Ko S.Prediction of tool-chip contact length using a new slip-line solution for orthogonal cutting[J].International Journal of Machine Tools and Manufacture.2003,43:1209-1215.
    [106] Silva M B D, Wallbank J. Cutting temperature: prediction and measurement methods—a review[J]. Journal of Materials Processing Technology. 1999, 88:195-202.
    [107] Grzesik W, Nieslony P. Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating - chip interface[J]. Wear.2004,256:108-117.
    [108] Gerschwiler K, fritsch R, Zinkann V, et al. Improved Cutting Processed with Adaped Coated systems[J]. Annals of CIRP. 1998,47(1): 65-68.
    [109] Grzesik W, Zalisz Z, Krol S, et al. Investigations on friction and wear mechanisms of the PVD-TiAIN coated carbide in dry sliding against steels and cast iron[J]. Wear. 2006,261: 1191 - 1200.
    [110] Ozcelik B, Bagci E. Experimental and numerical studies on the determination of twist drill temperature in dry drilling: A new approach[J]. Materials and Design.2006,27: 920 - 927.
    [111] Gillibrand D, Bradbury S R, Yazdanpanah A, et al. A simplified approach to evaluating the thermal behaviour of surface engineered cutting tools[J]. Surface and Coatings Technology. 1996, 82: 344-351.
    [112] Bouzakis K -, Hadjiyiannis S, Skordaris G, et al. Wear development on cemented carbide inserts, coated with variable film thickness in the cutting wedge region[J].Surface and Coatings Technology. 2004,188 - 189: 636-643.
    [113] Rech J. A multiview approach to the tribological characterisation of cutting tool coatings for steels in high-speed dry turning[J]. Int. J. Machining and Machinability of Materials. 2006,1(1): 27-44..
    [114] Rech J, Kusiak A, Battaglia J L. Tribological and thermal functions of cutting tool coatings[J]. Surface and Coatings Technology. 2004,186: 364-371.
    [115] 王厚华.传热学[M].第1版.重庆:重庆大学出版社,2006.
    [116] Li D, Wang Q, Li G, et al. Diffusion layer growth at Zn/Cu interface under uniform and gradient high magnetic fields[J]. Materials Science and Engineering.2008,495:244-248.
    [117] Kessler O H, Hoffmann F T, Mayr P. Microstructure and property changes caused by diffusion during CVD coating of steels[J]. Surface and Coatings Technology.1999,120-121:366-372.
    [118] Dahan I, Admon U, Frage N, et al. Diffusion in Ti/TiC multilayer coatings[J].Thin Solid Films. 2000, 377-378: 687-693.
    [119] Martinsons C, Heuret M. Recent progress in the measurement of the thermal properties of hard coatings[J]. Thin Solid Films. 1998, 317: 455-457.
    [120]熊兆贤.材料物理导论[M].第2版.北京:科学出版社,2007.
    [121]张奕.传热学[M].南京:东南大学出版社,2004.
    [122]吴清仁,刘振群.无机功能材料热物性[M].第1版.广州:华南理工大学出版社,2003.
    [123]Mark Ray Miller M S.An experimental study of cutting tool temperature distributions generated during orthogonal machining[D].Las Cruces,New Mexico:New Mexico State University,1999.
    [124]K M V P.Thermal measurements during high-speed machining[D].Notre Dame,Indiana:2002.
    [125]Show M C.Metal cutting principles[M],the U.K.:Oxford University Press,1984.
    [126]Ceretti E,Filice L,Umbrello D,et al.ALE Simulation of Orthogonal Cutting:a New Approach to Model Heat Transfer Phenomena at the Tool-Chip Interface[J].Annals of the CIRP.2007,56(1):69-72.
    [127]艾兴编著.高速切削加工技术[M].北京:国防工业出版社,2003.
    [128]Serio B,Nika P,Prenel J P.Static and dynamic calibration of thin-film thermocouples by means of a laser modulation technique[J].Review of Scientific Instruments.2000,71(11):4306-4313.
    [129]张锦霞.热电偶使用维修与检定技术问答[M].北京:中国计量出版社,2000.
    [130]唐锐.钨铼热电偶高温分度及其不确定度[J].功能材料.2004,35:1707-1710.
    [131]曾其勇,孙宝元,卢俊.一种新型快速响应半人工热电偶[J].仪器仪表学报.2003,第24卷第4期增:126-131.
    [132]李科杰编著.现代传感技术[M].北京:电子工业出版社,2005.
    [133]宋贵宏,杜吴,贺春林.硬质与超硬涂层—结构、性能、制备与表征[M].第1版.北京:化学工业出版社,2007.
    [134]Monaghan J,Macginley T.Modelling the orthogonal machining process using coated carbide cutting tools[J].Computational Materials Science.1999,16:275-284.
    [135]Grzesik W,Nieslony P.Thermophysical-Property-Based Selection of Tool Protective Coatings for Dry Machining of Steels[J].Journal of Manufacturing Science and Engineering.2003,124:689-695.
    [136]Leyendecker T,Rass I,Erkens G,et al.TiAIN-Al_2O_3 PVD-multilayer for metal cutting operation[J].Surface and Coatings Technology.1997,97:790-793.
    [137]樊新民,张骋,蒋丹宇.工程陶瓷及其应用[M].第1版.北京:机械工业出版社,2006.
    [138]Filice L,Umbrello D,Beccari S,et al.On the FE codes capability for tool temperature calculation in machining processes[J].Journal of materials processing technology.2006(174):286-292.
    [139]Drozda T J,Wick C.Machining[M].SME,Dearborn,Michigan,1983.
    [140]Filice L,Micari F,Rizzuti S,et al.A critical analysis on the friction modelling in orthogonal machining[J].International Journal of Machine Tools and Manufacture.2007,47:709-714.
    [141]谢峰,刘正士,杨海东.金属切削刀具前后刀面摩擦情况的数值模拟[J].应用科学学报.2004,22(2):223-227.
    [142]董丽华,袁哲俊,李振家.铣刀片的应力场分析[J].工具技术.1999,13(3):8-11.
    [143]Usui E,Shirakashi T.Mechanics of machining-from descriptive to predictive theory[J].ASME Publications,PED Sciences.1997,39:369-389.
    [144]Childs T H,Maekawa K,Obikawa T,et al.Metal Machining:Theory and Applications[M].Amsterdam:Elsevier,2000.
    [145]Kalss W,Reiter A,Derringer V,et al.Modem coatings in high performance cutting applications[J].International Journal of Refractory Metals and Hard Materials.2006,24:399-404.
    [146]Wang J,Carson J K,North M F,et al.A new approach to modelling the effective thermal conductivity[J].International Journal of Heat and Mass Transfer.2006,49:3075-3083.
    [147]Tug,OZel,Taylan.Process simulation using finite element method—prediction of cutting forces,tool stresses and temperatures in high speed fiat end milling[J].International Journal of Machine Tools and Manufacture.2000,40:713-738.
    [148]唐志涛.航空铝合金残余应力及切削加工变形研究[D].山东大学博士学位论文,2008.
    [149]程林,张崇高,谢峰.金属切削温度场数值模拟的若干问题研究[J].合肥工业大学学报(自然科学版).2004,第27卷第9期:1047-1050.
    [150]刘战强.金属切削变形本构方程的研究[J].工具技术.2008,42(3):3-9.
    [151]DEFORM 3D Version 6.1(sp1) User's Manual,Oct.18th 2007[J]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700