用户名: 密码: 验证码:
胜利油田夏8断块稠油油藏化学驱提高采收率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胜利油田夏八断块东二段是比较完整的火山岩披覆顶陷背斜构造。油层埋深1460m-1520m,含油面积4.6Km2,石油地质储量540.6*104t。含气面积2.7Km2,天然气地质储量5.21亿立方米。储层孔隙度平均32%,空气渗透率平均950×10-3μm2,地面原油粘度1331~5606mPa.S,地下原油粘度118~384mPa.S,属中孔中渗透顶气底水稠油油藏。
     夏8断块稠油油藏存在水敏性严重的问题,夏8-P1井两次注蒸汽,都不成功,因此不适应注蒸汽热采;同时注水开发油水流度比大,采出程度低。为此进行稠油油藏化学驱研究是合理的选择。
     根据夏8断块原油的性质特点,通过表面活性剂室内评价试验,室内化学驱物理模拟实验,开发数值模拟研究,得出如下结论:
     1.筛选出以0.03%聚合性多子磺酸盐(DSPS)、0.2%多羟基胺构成的复配体系作为夏8稠油的化学驱油体系。
     2.室内物理模拟实验直接用优化配方驱替至含水98%时的最终采收率为71.7%,比水驱提高37%。化学驱进行时油井含水率越低,化学驱的最终采收率越高。
     3.微观驱油实验表明,由聚合磺酸盐与有机碱组成的驱油体系能渗入原油中形成油包水乳状液,增加了驱替阻力,从而降低了水油流度比,提高了波及系数,又具有较高的洗油效率。
     4.通过数值模拟研究,化学驱开发效果明显优于水驱和边水驱的开发效果,化学驱可较大幅度提高原油采收率,有效提高采油速度。因此,该区块实施化学驱技术上是可行的
     5.化学驱优化注入参数为:注入速度为100m3/d、驱油剂注入浓度为0.4%,采取方案9的调剖加驱油的段塞式注入。采出程度可达36.93%,相比水驱采收率提高了13.75%,开发效果较好。
     6.与水驱开发方式相比,化学驱方案累计增油8.3419×104t。累计注入化学剂体积29.2×104m3,注入调剖剂体积3.5×104m3。累计化学剂成本1448万元,增产吨油化学剂成本为173.58元,化学驱技术经济上是可行的。
     7.实施优化方案固定资产投资较少,现场操作简单,实施风险较小。
Fault Block Xia-8Dong-2section in Shengli Oil Field is a relatively complete volcano rock coated topnotch anticline structure. The reservoir depth is1460m-1520m and its oil-bearing area is4.6Km2. Itsgeological reserves of petroleum are5.406million tons. Gas-bearing area is2.7Km2, and geologicalreserves of natural gas is521million m3. The average porosity and air permeability are32%of the reservoirare950×10-3μm2respectively. The viscosity of crude oil on the ground is1331~5606mPa.S, and itsviscosity at reservoir conditions is118~384mPa.S.. The reservoir belongs to a heavy oil reservoir of middleporosity and middle permeability with a gas cap and bottom water.
     Fault Block Xia-8heavy oil reservoir-has serious water sensitive problems. The well Xia-8-P1wasimplemented by twice steam injection, and injection failure implies it do not adapt to the steam injection. At thesame time, in the water injection development, the large mobility ratio of oil and water leads to a low oilrecovery. Therefore, it is a reasonable choice to study on chemical flooding in the heavy oil reservoir.
     According to the characteristics of crude oil in Fault Block Xia-8, through the surfactant indoor evaluationtest, the indoor chemical flooding physical simulation experiment, and the development numerical simulationstudy, we draw the following conclusions:
     1. Screening of mixed system composed by0.03%polymerized multiple sulfonate (DSPS) and0.2%polyhydroxy amine as chemical flooding system of heavy oil in Fault Block Xia-8.
     2. When indoor physical simulation test directly displacement is up to98%of water-cut through theoptimization of formulation, ultimate recovery rate is71.7%, which is37%higher than normal waterflooding.When the chemical flooding is going, the lower water cut of oil well is, the higher ultimate recovery ofchemical flooding is.
     3. Microscopic oil flooding experiment shows that polymerization of sulfonate and organic base compositionof the chemical flooding system can penetrate the oil, forma water-in-oil emulsion, increase the floodingresistance. Thus it reduces the mobility ratio between oil and water, and leads to an improvement in sweepefficiency and a high oil displacement efficiency.
     4. The numerical simulation research shows the chemical flooding development efficiency is obviously betterthan that of water flooding and edge water flooding efficiency. Chemical flooding can not only greatly enhanceoil recovery, but also can effectively improve the rate of oil production. Therefore, it is technically feasible toimplement chemical flooding in Fault Block Xia-8.
     5. Optimization injection parameter of chemical flooding is that: injection speed is100m3/d, and injectionconcentration of oil displacement agent is0.4%. Slug injection of profile control and oil displacement in Plan9is recommended. The oil recovery is36.93%, compared with water flooding recovery increased by13.75%,and the development effect is comparatively good.
     6. Compared with water flooding development, cumulative incremental oil is8.3419×104t by chemical
     flooding. Cumulative chemical injection volume is29.2×104m3, and profile control agent injection volume is
     3.5×104m3. Cumulative chemical agent costs14.48million Yuan, and chemical agent costs173.58Yuan per
     ton of oil by chemical flooding production. Therefore, chemical flooding technology is economically feasible.
     7. The implementation of an optimization program is a less investment in fixed assets, field operation issimple, and the implementation of risk is relatively small.
引文
Agnew H. J. Heeres How56Polymer Oil Recovery Projects Shape Lip.Oil and Gas.(May.1972):1024-1028.
    Argiller J.F., Coustet C., Hénaul I.Heavy Oil Rheology as a Function of Asphaltene andResin Content and Temperature.SPE International Thermal Operation and Heavy Oil,2002,No79496:265-270.
    Atkinson H. Recovery of petroleum from oil bearing sans. No.1651311,U.S. Patent,1927
    Bazin B.,Yang Chang-Zhi,et al.Micellar Flooding in an Alkaline Environment Under LavJunmion Conditions.SPE22363,92SPE Mar:23-31.
    Becher P., Emulsion. Theory and Practice. Reinhold,1966,6(2):96-110
    Bourrel M., Schechter. R. S. Microemulsion and Related Systems: Formulation,Solvency,andPhysical Properties. Surfactant Science Series,1988,30(1):432-446.
    Bourrel M., Schechter. R. S. Microemulsion and Related Systems:Formulation, Solvency, andPhysical Properties. Surfactant Science Series,1988,30(1):63-69.
    Castor T. P. Recovery Mechanisms of Alkaline Flooding. Surface Phenomena in EnhancedOil Recovery,Plenum Press, NY,1981:129-131.
    Chang H. L. Polymer Flooding Technology-Yesterday, Today and Tomorrow. J. P.T.(Aug.1978):1113-1128.
    Cheng K. H. Chemical Consumption During Alkaline Flooding:A comparative.PaperSPE14944presented at the1986SPE/DOE,Tu1sa.Apri1:20-23.
    Chenglong Wang, Baoyu Wang, Xulong Cao, et al. Application and design ofalkaline-surfactant-polymer system to close well spacing pilot gudong oil field.SPE,1997(38321):605
    Clark S. R., Pitt M. j. and Smith S. M. Design and application ofanalkaline-surfactant-polymer recovery system to west kiehl field[J].SPE Advanced TechnologySeries,1993:172-179
    CLARKS R., PITTS M. J. Design and application of an alkaline-surfactant-polymerrecovery system to the West Kiehl Field.SPE17538,1998.
    Delamaide E.Daqing Oil Field:The Success of Two Pilot Initiates First Extention of PolymerInjection in a Jiant Field.SPE/DOE27819,1994:541-548.
    Demin Wang, Jiecheng Cheng, Junzheng Wu,et al.An alkaline/surfactant/polymer fieldtestina reservoir with a long-term100%water cut[J].SPE,1998(49018):305-318
    Dong M. Improved oil recovery by adsorption-desorption in chemical flooding. Journal ofPetroleum Science&Engineering.2004.Vol.43.NO.1.
    French T. R.,Burchfield T. E. Design and Optimization of Alkaline FloodingFormulations,SPE/DOE Seventh Symposium,1990:615.
    Gifford G., McClafin. The replacement of hydrocarbon Diluent with surfactant and water forthe production of heavy,viscous crude oil. Journal of Petroleum Technology,1982:2258-2264
    Guerra E., Valero E., Rodrriguez D., et al. Impraved ASP Design Using OrganicCompound-Surfactant-Polymer (OCSP) for La Salina Field, Maracaibo Lake. SPE107776,2007
    Islam M. R., Farour Alism. Numerical simulation of foam flow in porous media.The Journalof Canadian Petroleum Technology.1990,29(3):47-51.
    Lim Leonard. Increased Rate of EOR Brightens Outlook.0il and Gas J.(Apr.1986):71-101.
    Meyers J.,Pitts M. J., WyattK. Alkaline-surfactant-polymer of the west kiehlUnit.SPE/DOE,1992(24144):423-435
    Moritis G.New technology,improved economics boost EOR hopes [J].Oil and Gas J,1996(Apr15):39-61.
    Mungan N.Enhanced Oil Recovery Using Water as a Driving Fluid-Part4: Fundamentals ofAlkaline Flooding[J].World Oil (June1981):9-20.
    Nelson R. C. et al.Cosurfactant-enhanced Alkaline flooding [J].Paper SPE12672Presentedat the1984SPE/DOE Symposium on Enhanced Oil Recovery,TuIsa,April:15-16.
    Raimondi Pet al. Alkaline Water Flooding Design and Implementation of a FieldPilot.J.pet.Tech.(Oct.1977):59-68.
    Raimondi,P.Alkaline Water Flooding Design and Implementation of a Field Pilot.J.pet. Tech.(Oct.1977)1359-1368.
    Reed, Healy R. N. Improved Oil Recovery by Surfactant and Polymer Flooding. New YorkSanFrancisco,1997,23(4):96-102
    Sharma K. Pipeline Transportation of Heavy/Viscous Oil as Water Continuous Emulsion inNorth Cambay Basin (India). SPE India Oil and Gas Conference and Exhibition,NewDehli,India.1998:17-19
    Shinoda K., Kunieda. H. Encyclopedia of Emulsion Technology. Basic Theory,1983,1(5):87-90
    Shutang Gao, Huabin Li.The alkaline/Surfactant/Polymer Pilot Performance of Saertu,WestCentral,Daqing oil field.SPE35383,SPERE,Aug.1996.
    Shutang Gao, Zhenyu Yang.Alkaline/surfactant/polymer pilot performance of the westcentral saertu,daqing Oil field.SPE Reservoir Engineering,1996(8):181-188
    Somerton W. H. and Radke C. J. Role of Clays in the Enhanced Recovery of Petroleum FromSome California Sands.J.Pet.Tech.(March.1983):43-54.
    Squire F. Methold of Oil and Gas,No1238355,U.S.Patent,1917
    Stockwell A. Transoil Technology For Heavy Oil Transportation: Results of Field Trials atWulf Lake. SPE183262,SPE European Petroleum Conference,London.UK,1988:16-19
    Sydansk R. D. Vated-Temperature Caustic/Sandstone Interaction Implications for ImprovingOil Recovery.Soc.Pet.Eng J(Aug.1982):53-63.
    Taber J J,Martin F D,Seright R S. EOR screening criteria revisited-Part2:Applications andimpact of oil prices. SPE Reservoir Engineering,1997,12(3):
    Taylor K. C.Water-Soluble Hydrophobically Associating Polymers for Improved OilRecovery.SPE29008,1995:625-631.
    Tewett R. L. Polymer Flooding-A Carreent Appraisal. J. P. T.1970:675-684.
    Tong, Z.S.: A Study at mMicroscopic Flooding Mechanism at Surfactant/Alkali/Polymer,SPE39667,1998.
    Zhijian Qu, Yigen Zhang, Xiansong Zhang, et al.A Successful ASP pilot in gudong oilfield,SPE.1998(39613):107
    曹重远,佘跃惠.褐煤转化制取稠油降粘剂的研究.石油大学学报(自然科学版),1992,16(3):82-88
    陈淦.发展三次采油的战略意义及政策要求.油气采收率技术,1997,4(4):2-4
    陈凌云.聚合物粘弹性及体系的界面张力对驱油效率的影响的试验研究.大庆石油学院硕士学位论文,2002.10-12
    陈中华,李华斌,曹宝格.复合驱中界面张力数量级与提高采收率的关系研究.海洋石油,2005,25(3):53-57
    崔波,石文平,戴树高等.高粘度稠油开采方法的现状与研究进展.石油化工技术经济,2000,12(6):5-10
    崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社,1999:198-205
    丁涛,丁伟,罗洪军.油田化学剂.北京:石油工业出版社,2002.28-32
    丁颖.表面活性剂在三次采油中的应用与展望.内蒙古石油化工,2004,30(2):121-123
    杜巧云,葛虹.表面活性剂基础及应用.中国石化出版社.1996.23-29
    杜庆军.泡沫驱渗流特征的实验和模拟研究:[博士学位论文].中国石油大学,2008
    顿铁军.中国稠油能源的开发与展望.西北地质,1995,16(1):32-35
    范维玉,胡德燕. GL系列特稠油乳化降粘剂及其O/W型乳状液流变性研究.石油大学学报(自然科学版),1998,22(2):48-50
    冯雨新.乳化降粘技术解决超稠油管道输送问题.管道技术与设备,1999,1(5):9-11
    付亚荣,马永忠. HRV系列降粘剂在冀中南部稠油开采中的应用.油田化学,1999,16(3):206-208
    葛广章,王勇进,王彦玲,等.聚合物驱及相关化学驱进展.油田化学,2001,18(3):282-284.
    葛永涛.真武油田真35断块聚合物驱优化方案设计:[硕士学位论文].东营:中国石油大学,2008
    郭万奎,程杰成,廖广志等.大庆油田三次采油技术研究现状及发展方向.大庆石油地质与开发,2002,21(3):1-6.
    韩伯惠,廖广志.提高采收率方法的前景和问题.国外油田工程,1997,10(6):53-56
    韩杰.高温油藏聚合物驱及复合驱技术研究:[博士学位论文].北京:中国地质大学(北京),2010
    侯吉瑞,浏中春,夏惠芬等.三元复合体系的粘弹效应对驱油效率的影响.油气地质与采收率,2001,8(3):61-64
    侯吉瑞.化学驱原理与应用.北京:石油工业出版社,1998.64-71.
    胡娟.氟碳表面活性剂的合成与性能研究:
    胡明刚,邓启刚.表面活性剂在大庆油田复合驱中的应用研究.齐齐哈尔大学学报,2003,19(2):6-8
    华西苑,赵国玺.混合表面活性剂水溶液的表面吸附.化学通报,1994,30(5):8-10.
    黄敏.稠油降粘剂DJH-1.油田化学,2000,17(2):137-139
    姜继水,宋吉水.提高石油采收率技术.石油工业出版社,1999.46-48
    姜林.超稠油油藏复合吞吐开发方式研究:[硕士学位论文].东营:中国石油大学,2009
    康万利.大庆油田三元复合驱化学剂作用机理研究.北京:石油工业出版社,2001.45-53
    拉生L. W.化学和热力采油工艺与原理.济南:山东科学技术出版社,1992.57.
    莱克L. W.,李宗田.提高石油采收率的科学基础.北京:石油工业出版社,1992.142-144.
    赖南君,叶仲斌,周扬帆,等.新型疏水缔合聚合物溶液性质及提高采收率研究.油气地质与采收率,2005,12(2):63-65
    李翠香,王继忠,王风欣.大芦家馆三段储集层特征及储集性能.内蒙古石油化工,2006,32(7),127-128
    李富生,胡星琪.聚丙烯酞胺的合成技术及应用研究.应用化工2000(5):1-3.
    李干佐,房秀敏.表面活性剂在能源和选矿工业中的应用.第一版.北京:中国轻工业出版社,2002:87-100
    李干佐,田根林.适用于大庆油田的天然混合羧酸盐ASP驱油体系.油田化学,1999,16(4):341-344
    李干佐,翟利民,郑立强等.我国三次采油进展.日用化学品科学,1999(l):1-9.
    李宏勋,张义忠,赵玺玉.我国石油工业发展中存在的问题与对策.中国工业,2000,1(7):35-40
    李华斌,罗平亚,郑焰,等.大庆油田缔合聚合物/碱/表面活性剂三元复合驱油提高采收率研究.四川大学学报:工程科学版,2001,33(4):85-89
    李雷.胜利地区天然气地下储气库可行性研究:[硕士学位论文].东营:中国石油大学,2007
    廖广志,王启民,王德民.化学复合驱原理及应用.北京:石油工业出版社,1999:33-36.
    林博.胜坨油田河流相储层建筑结构分析与剩余油分布研究:[博士学位论文].北京:中国石油大学,2007
    林梅钦,高树棠.大庆原由中活性组分的分离与分析.油田化学.1998,15(1):29-31.
    林永达,李干佐.表面活性剂在水泥和沥青混凝土中的应用.中国轻工业出版社,2001:2-13.
    刘成川.新场气田沙溪庙组多层致密气藏开发调整方案研究:[博士学位论文].成都:成都理工大学,2007
    刘东升.聚合物驱注采井节点分析方法及其应用.北京:石油工业出版社,2001.1-10
    刘建军,宋义敏,潘一山. ASP三元复合体系驱油微观机理研究.辽宁工程技术大学学报,2003,22(3):226-228
    刘群星,向树安.油田高含水期提高采收率实验.石油天然气学报,2005,27(3):377-379
    刘文章.稠油注蒸汽热采工程.北京:石油工业出版社,1997:23-32
    刘雯.锅炉改烧奥里乳化油的技术问题.油气储运,1998,17(12):43-46
    刘奕,杨清彦等.三元复合驱机理研究.“九五”国家重点科技攻关项目专题技术总结报告,1999,8
    刘奕.三元复合驱乳化作用对原油采收率的影响.日用化学品科学.2000.23(7)45-46.
    刘中春,侯吉瑞,岳湘安,等.泡沫复合驱微观驱油特性分析.石油大学学报:自然科学版,2003,27(1):49-53
    卢祥国,末文玲.三元复合驱采出液及其复配体系驱油效果实验研究.大庆石油地质与开发.1999,18(3)44-47.
    雒贵明,林瑞森.耐温抗盐驱油共聚物的合成.精细石油化工,2004,5:6-8
    马立辉,梁梦兰.稠油低温乳化降粘剂BL-1的研制及应用.油田化学,2002,19(2):134-136
    毛源,张贵才,唐存知,等.飞雁滩油田表面活性剂驱油体系研究.重庆科技学院学报,2011,13(1):101-103
    孟强.超稠油水平井蒸汽吞吐注采参数优化研究:[硕士学位论文].东营:中国石油大学,2008
    帕拉茨M..热力采油.王弥康译.第一版.北京:石油工业出版社,1989:189-194
    庞丽丽,宁宇清.三次采油化学驱油技术发展现状.内蒙古石油化工,2010,36(8):142-145
    裴海华,葛际江,张贵才,等.桩106区块低气液比氮气泡沫驱可行性研究.西安石油大学学报,2011,26(6):61-65
    彭朴.采油有表面活性剂.北京:化学工业出版社,2003:10-11
    彭昱强,王晓春,罗富平,等. QHD32-6油田氮气泡沫调驱数值模拟研究.特种油气藏,2009,16(1):71-74
    任怀强.惠民凹陷曲堤油田馆三段砂质辫状河沉积特征.西部探矿工程,2008,20(12):98-99
    尚朝辉.稠油油藏混气表面活性剂驱技术研究:[博士士学位论文].东营:中国石油大学,2010
    沈平平.大幅度提高石油采油率的基础研究.中国基础科学,2003,5(2):9-14
    苏玉林.国外表面活性剂驱油配方及其应用专利文集.北京:石油工业出版社.1999:36-61
    隋军.三元复合体系油水界面张力数量级及动态特征对驱油效果的影响:[博士学位论文].南充:西南石油学院,2004
    孙德宽.临南油田夏32块和夏52块精细油藏描述研究:[硕士学位论文].长沙:中南大学,2007
    孙民笃.聚驱后多元注入体系提高采收率实验研究:[硕士学位论文].北京:中国石油大学,2009
    唐钢.三元复合驱驱油效率影响因素研究:[硕士学位论文].南充:西南石油学院,2005
    王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率.石油学报,2000,21(5):352-355
    王海峰,史洁,侯战胜,等.盘河断块区馆三段河流相储集层特征及储集性能.断块油气田,2005,12(1):32-36
    王红艳,叶仲斌,张继超,等.复合化学驱油体系吸附滞留与色谱分离研究.西南石油学院学报,2006,28(2):64-66
    王克亮.改善聚合物驱油技术研究.石油工业出版社,1997.1-3.
    王宪.提高水平井采收率的化学驱室内实验研究:[硕士学位论文].大庆:大庆石油学院,2009
    王云峰,张春光,候万国.表面活性剂及其在油气田中的应用.北京:石油工业出版社,1995:53-55
    王中华.国内油田用AMPS共聚物.油田化学.1999,16(1):72-73.
    魏小明,刘喜林.稠油乳化降粘开采用表面活性剂的筛选.日用化学工业,2002,32(4):40-42
    吴文祥,张洪亮. ASP三元复合体系大庆原油见的界面张力特性.大庆石油学院学报.1995,19(1):56-58.
    吴文祥,张洪亮.碱-表面活性剂-聚合物三元复合体系流变性研究.大庆石油学院学报.1994,18(4):82-85.
    吴旭光. W10块油藏剩余油分布与水力压裂技术研究与应用:[硕士学位论文].成都:西南石油大学,2006
    夏惠芬,张云祥,张玉亮等.三元复合体系在多孔介质中的流变性.大庆石油学院学报,1999,23(4):18-21
    夏惠芬.三元复合驱油体系粘弹性及界面活性对驱油效率的影响.油田化学,2003,20(1):61-64
    徐桂英,顾影慧.粘度法研究PAM与RSO3Na之间的相互作用.物理化学学报,1992.8(3):191-193.
    徐桂英,毛宏志.表面活性剂/大分子混合溶液的流变性.日用化学工业.1995,23(6):12-13.
    徐桂英,苏红梅.聚丙烯酞胺与混合表面活性剂的相互作用.物理化学学报.1994,10(10):72-73.
    徐桂英,曾利容.盐醇体系中RSONa对HPAM溶液粘度的影响.油田化学.1990,7(2):17-23.
    徐家年,张振军,李涧松,等.低渗透异常高压气藏数值模拟研究.油气地质与采收率,2011,18(1):80-84
    闫义田.高台子二类油层三元复合驱配方研究:[硕士学位论文].大庆:大庆石油学院,2006
    杨承志.化学驱提高石油采收率.北京:石油工业出版社,1999:87
    杨黎.聚/表二元复合驱在孤东采油厂应用研究:[硕士学位论文].东营:中国石油大学,2009
    杨普华,杨承志译.化学驱提高石油采收率[M].石油工业出版社,1988.56-65.
    杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理的研究.大庆石油地质与开发,1999,18(3):24-26
    杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向.大庆石油地质与开发,2004,23(5):94-96
    叶仲斌,魏发林,泡沫增效三元复合驱油体系渗流行为研究.西南石油学院学报,2002,24(4):49-52
    叶仲斌等编.提高采收率原理.北京:石油工业出版社,2000.35-38
    于连东.世界稠油资源的分布及其开采技术的现状与展望.特种油气藏,2001,8(2):98-103
    曾家新.三次采油用两性表面活性剂的研制与评价:[硕士学位论文].东营:中国石油大学,2006
    张丁涌.史深100区块地应力及整体压裂研究与应用:[硕士学位论文].成都:西南石油大学,2004
    张继芬.提高石油采收率基础.石油工业出版社.1997.43-51.
    张继风,叶仲斌,杨建军,等.聚合物驱提高高温高矿化度油藏采收率室内实验研究.特种油气藏,2004,11(6):76-78
    张继风,叶仲斌,杨建军,等.疏水缔合聚合物对高温稠油油藏的驱油效率室内研究.重庆石油高等专科学校学报,2004,62(2):27-28
    张景存.三次采油.北京:石油工业出版社,1995.112-116
    张景存.大庆油田三次采油技术蓬勃发展.资源产业,1999,10:93-97.
    张居增.气藏非线性渗流数值模拟技术研究:[硕士学位论文].南充:西南石油大学,2004
    张世东.三元复合驱油技术的研究与应用:[硕士学位论文].大庆:大庆石油学院,2009
    张运来.弱碱三元复合驱增油效果及影响因素研究:[硕士学位论文].大庆:大庆石油学院,2009
    赵福麟.采油化学.石油大学出版社,1989.1-33.
    赵福麟.化学原理(Ⅱ).东营:石油大学出版社,1999:93-97
    赵化廷.新型抗盐抗温泡沫复合体系的研究与性能评价:[博士学位论文].南充:西南石油学院,2005
    赵金省.聚驱后等流度泡沫驱油提高采收率技术研究:[博士学位论文].东营:中国石油大学,2008
    赵立合,郑锡同.关于稠油改性技术的试验研究.冶金能源,1999,18(4):35-39
    赵立合.关于稠油改性技术的试验研究.冶金能源,1999,18(4):35-39
    赵庆辉,刘其成,刘志惠等.超稠油耐高温乳化降粘剂优选实验研究.特种油气藏,2001,8(3):89-92
    赵世民.表面活性剂—原理、合成、测定及应用.第一版.北京:中国石化出版社,2005:55-56
    赵淑萍,宋培基,秦保杰,等.数值模拟技术在渤南油田义99井区综合调整方案中的应用.科技信息,2009,15:78-80
    周阳.水驱后多段塞等流度驱油方法研究:[硕士学位论文].东营:中国石油大学,2009
    朱步瑶,赵国玺.溶液表(界)面张力的测定.化学通报.1981(6):12一15
    朱步瑶.表面活性剂复配规律.日用化学工业.1988(4):131-135.
    朱怀江.碱-聚合物中部分水解聚丙烯酰胺溶液性质热稳定性研究.油田化学,1987,4(5):284-292.
    朱维耀,程杰成,吴军政.多元泡沫化学剂复合驱油数值模拟研究.石油学报.2006,27(3):65-69
    邹继所.北东块二类油层三元复合驱方案设计研究:[硕士学位论文].大庆:大庆石油学院,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700