用户名: 密码: 验证码:
空气驱氧化机理及防气窜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于油气资源在国民经济发展中的重要地位,多年来国内外有关油气开发中提高采收率的研究探求和技术创新持续不断。结合我国国情,传统的注气开发方式在我国短期内不可能出现像欧洲、北美大面积应用的局面,相比之下空气资源丰富且可就地取材,空气驱已成为一种提高原油采收率的有效手段。此外对于高温高盐油藏,许多化学驱技术并不能顺利实施,这给空气驱更是提供了良好契机。轻质油藏空气驱在世界范围内受到了广泛关注,但基础理论和应用研究上依然存在着诸多空白与不足,其中原油氧化机理、热效应和防气窜是本文的研究关键。我国陆上油田空气驱实施相比于国外起步较晚,缺乏相关理论与配套技术研究工作积累,因此有必要开展相关研究。
     本文首先对国内外轻质油藏空气驱的研究历程、研究方法及主要结果进行了综述,建立了空气驱油藏筛选标准,分析了空气驱中基础理论及应用上的薄弱环节及其对空气驱实施效果的影响,明确了本文的研究思路与尚需开展的工作。
     采用TG/DTG/DTA热分析手段,结合经典的原油氧化热动力学理论,从全岩矿物组分对原油氧化热动力学及放热行为的影响研究为切入口,首先研究了原油氧化行为产生差异的原因、弄清了全岩矿物中具备催化能力的组分和惰性组分;然后,针对性地研究了粘土矿物类型对原油氧化催化能力的影响,为空气驱方案设计提供了参考。研究结果表明粘土矿物对原油氧化催化能力为:蒙脱石>伊利石>绿泥石>高岭石,原油氧化方面,高岭石并非最优的催化剂,本文通过研究得到了新的见解。
     综合运用原油氧化热动力学参数、原油组成、油藏条件等信息进行类比分析,来研究空气驱中原油自燃可行性。在此基础上,研制了一套热效应监测设备,监测到了塔里木K油藏轻质原油在油藏条件下等温氧化过程中明显的放热现象,并引入了氢碳比(H/C)理论,依据产出气体组成来分析放热程度。通过实验研究,证明了该分析手段的合理性,同时也提供了一种较为方便、经济、快捷的热效应实验研究方法。基于多孔介质中热传导理论,建立了描述热效应对原油渗流规律影响的数学模型,能够较好地模拟分析热效应对原油渗流规律的影响,据此总结分析了提高热效应对原油采收率贡献的途径。根据实验研究和理论计算分析,使得人们对热效应这一现象有了更为深刻的认识。
     考察了压力、时间、粘土矿物及含水饱和度对多孔介质中轻质原油氧化行为的影响,通过氧化过程中系统压力、产出气体组成和氧化前后原油组分的变化特征,深入分析了原油低温氧化反应机制,建立了轻质原油中的中质组分裂解反应新模式。依据原油低温氧化过程中加氧反应和碳键剥离反应两步模式,分析了耗氧速率和耗氧量的影响因素。最后,通过实验探讨了空气驱中各种气驱方式的驱油效率。
     应用CMG软件的STARS模块,以塔里木K油藏为研究背景进行了空气驱油藏模拟研究,分析了储层温度分布模式、气体超覆现象、气体突破时间以及空气驱采收率特征,弄清了影响空气驱实施效果的关键因素。结合第2章阐述的聚合物凝胶广泛应用于气驱流度控制、堵气的现状认识上,油藏模拟结果进一步提升了空气驱中聚合物凝胶技术的重要性,为后续的聚合物凝胶体系研究以及防气窜机理探讨提供了依据。
     针对裂缝性或强非均质性油藏,探索了提高空气驱应用效果的聚合物凝胶防气窜技术,在新型二次交联凝胶体系研制和深化当前国际上的热点堵剂—聚乙烯亚胺(PEI)交联凝胶体系成胶动力学认识两个层面进行了努力,重点分析了两类本体凝胶体系受多孔介质剪切作用下的成胶机理以及矿化度对成胶动力学的影响。以这两种聚合物凝胶体系作为研究对象,探讨了气体压迫多孔介质中聚合物凝胶行为的防气窜机理。根据实验结果,一方面可引导基于该类凝胶体系的新产品研发,同时也可有效指导现场应用,所研究的聚合物凝胶体系可为空气驱的顺利实施提供有力的技术支撑。
     本论文在空气驱氧化机理及防气窜方面取得了一定的研究进展,将对今后空气驱的相关研究工作和现场应用具有参考价值和指导意义。
World petroleum resource will continue to face a shortage stage in the next decade for the high demand of fossil fuel. Various enhanced oil recovery (EOR) methods will play a key role for the contribution of world oil production. Currently, the conventional gas injection EOR method cannot be widely implemented in China compared to Europe and North American. While, the low-cost air can be easily obtained and High-Pressure Air Injection (HPAI) has been accepted as an effective EOR method. Besides, for high-temperature and high salinity reservoirs, many chemical EOR methods cannot be directly implemented; hence it can also provide a good opportunity for using HPAI. HPAI has received considerable attention as an effective improved oil recovery (IOR) process in light oil reservoirs. However, there are still a lot of misunderstandings and blanks in the aspect of fundamental theory and application research, among which crude oil oxidation mechanism, thermal effect and gas channeling prevention are the highlights in this study. HAPI application in onshore fields in China initiated later compared to abroad, it is urgent to promote research because the lack of accumulative research work in the aspect of relevant theory and assistant techniques.
     In the first chapter, it provides a comprehensive literature review on the research progress, research methodology and the main results of HPAI. We established a reservoir screen criterion for HPAI application and made an in-depth analysis on the weak links of basic theories and application aspects of HPAI, and also discussed how these weak links will affect HPAI performance, which gives clear research ideas for the subsequent chapters.
     TG/DTG/DTA thermal analysis tools as well as the classical theory of the oxidation thermokinetics of crude oil were conducted to study the influence of rock composition on the oxidation and thermal behavior of crude oil. How and why the discrepancy of oil oxidation behavior working and which rock minerals having catalyzing ability/and or inert were primarily figured out, and then different clay mineral types on oxidation kinetics of crude oil were investigated. It can give a reference for HPAI project design. On the basis of experimental results, it revealed the catalyzing contribution of different types of clays. Results showed that smectite is ranked first, illite is ranked second followed by chlorite and kaolinite in the aspect of catalytic ability for crude oil oxidation. Kaolinite is not the best catalytic agent for crude oil oxidation, which provides new insights through this research.
     The kinetics parameters of crude oil, oil composition and reservoir characteristics etc. are used as analogy analysis approach to preliminary estimate the feasibility of light-oil autoignition during the HPAI process at reservoir conditions. On that basis, we developed a thermal effect monitoring device, which is similar to the isothermal oxidation tube, and we have detected the obvious exothermic phenomenon of K reservoir crude oil (Tarim basin, China) in porous media in the isothermal aging test at reservoir conditions. The apparent hydrogen/carbon (H/C) ratio calculated from the effluent gas composition is used to analyze the exothermic degree of crude oil during the oxidation process in porous media. It demonstrates that the analysis approach is reasonable and also provide a convenient, economical and speedily laboratory analysis method to understand the thermal effect phenomenon. To clarify the influences of thermal effect on oil production, we derived a mathematical model for calculating oil flow rate, which is based on the heat conduction property in porous media from the combustion tube experiment. This model can perfectly simulate the influence of thermal effect on oil flow characteristic, accordingly, it proposes some methods to achieve high cumulative oil production contributed by thermal effect. On the basis of experimental results and theory calculation, it will give people a profound awareness in the aspect of thermal effect phenomenon.
     Sensitivity studies on the LTO behavior of crude oil in porous media have been addressed and the influences of factors such as pressure, oxidation time, water saturation (Sw), and clays on the oxidation behavior of crude oil in porous media are investigated by oxidation tube experiments. We made an in-depth analysis on the LTO reaction mechanism of light crude oil through the varied characteristics of system pressure, effluent gas and crude oil composition and established a new cracking reaction model of middle components in light crude oil. Some key factors affecting the oxygen uptake rate and oxygen consumption are discussed according to the two-step process LTO model (oxygen addition reaction and carbon-carbon bond stripping reaction). In the last part of this chapter, the influence of different gases in HPAI process on oil recovery efficiency is studied by experimental investigation.
     The software used for the HPAI simulations is STARS model embedded in reservoir simulation software CMG. K reservoir characteristic and geological conditions are used as research references. Simulation targets include reservoir temperature distribution, gas override, gas breakthrough time, and oil recovery efficiency. Some key factors to affect HPAI performance are discussed. Based on the understanding of the current situation of polymer gel widely used in the aspect of mobility control in gas flooding, water/and or gas shutoff, simulation results strengthen the importance for studying various polymer gel techniques during HPAI implementation. Hence, it provides an avenue in the next chapter for the study of polymer gel and gas channeling prevention mechanism when application of polymer gel assisted HPAI technique.
     For the fracture/and or strong heterogeneity reservoirs, it gives a study on the polymer gel techniques to enhance HPAI performance when facing such issues as gas channeling and high GOR. Developing a novel secondary cross-linking gel system and investigating into the gelation kinetics of polyethyleneimine (PEI) cross-linking gel system are addressed as the representative researches in the aspect of polymer gel assisted HPAI. It put emphasis up on the gelation performance of both two gel systems affected by porous media shearing and water salinity, and also discusses the gas channeling prevention mechanism through the experiments of gas compressing polymer gel in porous media. According to the experimental results, it not only can play a guidance to develop series of new generation of polymer gel systems based on the two gel systems, but also can guide field application. The two gel systems can act as efficient tools for assisting HPAI application.
     This dissertation has achieved a lot of research progresses in the aspect of crude oil oxidation mechanism and gas channeling prevention technologies in HPAI process, which present favourable reference for related work and field application.
引文
[1]Alvarado V. Manrique E., Enhanced Oil Recovery:An Update Review[J]. Energies,2010, 3(9):1529-1575.
    [2]Moritis G., Worldwide EOR Survey[J]. Oil & Gas Journal.2008,106(5):44-59.
    [3]Gutierrez D., Miller R. J., Taylor A. R., et al., Buffalo Field High-Pressure Air Injection Projects: Technical Performance and Operational Challenges[J]. SPE Reservoir Evaluation & Engineering, 2009,12(4):542-550.
    [4]Rodriguez F., Christopher C. A., Overview of Air Injection Potential for PEMEX[J]. AAPG 89612, 2004.
    [5]Fraim M. L., Moffitt P. D., Yannimaras D. V., Laboratory Testing and Simulation Results for High-Pressure Air Injection in a Waterflooded North Sea Oil Reservoir[C]. SPE 38905,1997.
    [6]Clara C., Durandeau M., Quenault G., et al., Laboratory Studies for Light-Oil Air Injection Projects: Potential Application in Handil Field[C]. SPE 54377,1999.
    [7]Adetunji L. A., Teigland R., Kleppe J., Light-Oil Air-Injection Performance:Sensitivity to Critical Parameters [C]. SPE 96844,2005.
    [8]Sarma H. K, Das S., Air Injection Potential in Kenmore Oilfield in Eromanga Basin, Australia:A Screening Study Through Thermogravimetric and Calorimetric Analyses[C]. SPE 120595,2009.
    [9]Mitra S., Bhushan B. V., Raju P. V., et al., Feasibility of Air Injection in a Light Oil Field of Western India[C]. SPE 126234,2010.
    [10]Niu B. L., Ren S. R., Liu Y. H., et al., Low-Temperature Oxidation of Oil Components in an Air Injection Process for Improved Oil Recovery[J]. Energy Fuels,2011,25(10):4299-4304.
    [11]Yu H. M., Yang B. Q., Xu G. R., et al., Air Foam Injection for IOR:from Laboratory to Field Implementation in ZhongYuan Oilfield China[C]. SPE 113913,2008.
    [12]任韶然,于洪敏,左景栾,等.中原油田空气泡沫调驱提高采收率技术[J].石油学报,2009,30(3):413-416.
    [13]Senol Topgiider N. N., Laboratory Studies on Polymer Gels for CO2 Mobility Control at Bat Raman Heavy Oilfield, Turkey[C]. SPE 50798,1999.
    [14]魏浩光,岳湘安,赵永攀,等.特地渗透油藏天然气非混相驱实验[J].石油学报,2011,32(2):307-310.
    [15]Jain P., Sharma V., Raju A.V., et al., Polymer Gel Squeeze for Gas Shutoff, Water Shutoff and Injection Profile Improvement in Bombay High Pilot Wells[C]. SPE 64437,2000.
    [16]Perdomo L., Rodriguez H., Llamedo M., et al., Successful Experiences for Water and Gas Shutoff Treatments in North Monagas, Venezuela[C]. SPE 106564,2007.
    [17]Jia H.. Yuan C. D., Zhang Y. C., et al., Recent Progress of High Pressure Air Injection (HPAI) Process in Light Oil Reservoir:Laboratory Investigation and Field Application[C]. SPE 156974,2012.
    [18]贾虎,倪小龙.周先云,等.聚合物驱油藏适应性研究进展[J].油气田地面工程.2010,29(9):45-48.
    [19]Ren S. R., Greaves M., Rathbone R. R., Air Injection LTO Process:An IOR Technique for Light Oil Reservoirs[J], SPE Journal,2002,7(1):90-99.
    [20]Ito Y., Chow A. K., A Field Scale In-Situ Combustion Simulator with Channeling Considerations[C]. SPE 13220,1988.
    [21]Glandt C. A., Pieterson R., Dombrowski, A., et al., Coral Creek Field Study:A Comprehensive Assessment of the Potential of High-Pressure Air Injection in a Mature Waterflood Project[C]. SPE 52198,1999.
    [22]Lerner S. L., Fleming G. C., Lara P. F., Dominant Processes in In-situ Combustion of Light-Oil Reservoirs[C]. SPE 12003,1983.
    [23]Turta A. T., Singhal A. K., Reservoir Engineering Aspects of Light-Oil Recovery by Air Injection[J], SPE Reservoir Evaluation & Engineering,2001,4(4):336-344.
    [24]Greaves M., Wilson A., Al-Honi M., et al., Improved Recovery of Light/Medium Heavy Oils in Heterogeneous Reservoirs Using Air Injection/In situ Combustion (ISC) [C]. SPE 35693,1996.
    [25]Greaves R. R., Ren S. R., Xia T. X., New Air Injection Technology for IOR Operations in Light and Heavy Oil Reservoirs[C]. SPE 57295,1999.
    [26]Akkutla I. Y., Yortsos Y. C., The Dynamics of Combustion Fronts in Porous Media[C]. SPE 63225, 2000.
    [27]Akkutla I. Y., Yortsos Y. C., The Effect of Heterogeneity on In-Situ Combustion:The Propagation of Combustion Fronts in Layered Porous Media[C]. SPE 75128,2002.
    [28]Hughes B. L, Sarma H. K., Burning Reserves for Greater Recovery? Air Injection Potential in Australian Light Oil Reservoirs[C]. SPE 101099,2006.
    [29]高海涛,李雪峰,赵斌,等.中渗特高含水油藏空气泡沫调驱先导试验[J].油田化学,2010,27(4):377-380
    [30]蒋有伟,张义堂,刘尚奇,等.低渗透油藏注空气开发驱油机理[J].石油勘探与开发,2010,37(4):471-476
    [31]Greaves M., Ren S. R., Rathbone R. R., Air Injection Technique (LTO Process) for IOR from Light Oil Reserviors:Oxidation Rate and Displacement Studies[C]. SPE 40062,1998.
    [32]Juan E. S., Sanchez A., Del Monte A., et al., Laboratory Screening for Air Injection-Based IOR in Two Water Flooded Light Oil Reservoirs[J]. Journal of Canadian Petroleum Technology,2005,44(1):31-41.
    [33]Shokoya O. S., Enhanced Recovery of Conventional Crude Oils With Flue Gas[D]. Doctoral Dissertation, University of Calgary,2005.
    [34]Li J., Mehta S. A.. Moore R. G., et al., Investigation of the Oxidation Behaviour of Pure Hydrocarbon Components and Crude Oils Utilizing PDSC Thermal Technique[J]. Journal of Canadian Petroleum Technology,2006.45(1):48-53.
    [35]Das S.. A Study of Oxiation Reaction Kinetics During an Air Injection Process[D]. Master Thesis, The University of Adelaide.2009.
    [36]Gutierrez D., Moore R. G., Mehta, S. A., et al., The Challenge of Predicting Field Performance of Air Injection Projects Based on Laboratory and Numerical Modelling[J]. Journal of Canadian Petroleum Technology,2009,48(4):23-34.
    [37]Niz-Velasquez E., Moore R. G., van Fraassen K. C., et al., Experimental and Numerical Modeling of Three-Phase Flow under High-Pressure Air Injection[J]. SPE Reservoir Evaluation & Engineering, 2010,13(5):782-790.
    [38]Sarma H. K., Yazawa N., Moore R. G., et al., Screening of Three Light-Oil Reservoirs for Application of Air Injection Process by Accelerating Rate Calorimetric and TG/PDSC Tests[J]. Journal of Canadian Petroleum Technology,2002,41(3):50-60.
    [39]Montes A. R., Moore R. G., Mehta S. A., et al., Is High-Pressure Air Injection (HPAI) Simply a Flue-Gas Flood? [J]. Journal of Canadian Petroleum Technology,2010,49(2):56-62.
    [40]Ellis G. K., Barrow Island Oil Field[J]. APPEA Journal,1999, p 158.
    [41]Moore R. G., Mehta S. A., Ursenbach M. G., A Guide to High Pressure Air Injection (HPAI) Based Oil Recovery[C]. SPE 75207,2002.
    [42]Yannimaras D. V., Spencer M. F., Accelerating Rate Calorimetry Testing of the Goldrus Prod. Co. Oil and Core System in Contact With Air[C]. Report,1999.
    [43]Dembla Dhiraj B. E. Simulating Enhanced Oil Recovery (EOR) by High Pressure Air Injection (HPAI) in West Texas Light Oil Reservoir[D]. Master Thesis, The University of Texas at Austin,2004.
    [44]Gutierrez D., Taylor A. R., Kumar V. K., et al., Recovery Factors in High-Pressure Air Injection Projects Revisited[J]. SPE Reservoir Evaluation & Engineering,2008,11(6):1097-1106.
    [45]张力,董立全,张凯,等.空气-泡沫驱技术在马岭油田试验研究[J].新疆地质,2009,27(1):85-88.
    [46]Fassihi M. R., Yannimaras D. V., Westfall E. E., et al., Economics of Light Oil Air Injection Projects[C]. SPE 35393,1996.
    [47]Greaves M., Ren S. R., Rathbone R. R., et al., Improved Residual Light Oil Recovery by Air Injection (LTO Process)[J]. Journal of Canadian Petroleum Technology,2000,39(1):57-61.
    [48]张旭,刘建仪,孙良田,等.注空气低温氧化提高轻质油气藏采收率研究[J].天然气工业,2004,24(4):78-80.
    [49]于洪敏,任韶然,牛保伦,等.轻质油藏注空气提高采收率氧化反应速率实验研究[J].石油化工高等学校学报,2010,23(3):55-57.
    [50]Ursenbach M. G., Moore R. G., Mehta S. A., Air Injection in Heavy Oil Reservoirs-A Process Whose Time Has Come (Again)[J]. Journal of Canadian Petroleum Technology,2010,49(1):48-54.
    [51]Vossoughi S.. Willhite G. P., Kritikos W. P., et al., Automation of an In-Situ Combustion Tibe and Study of the Effect of Clay on the In-Situ Combustion Process[J]. SPE Journal,1982,22(4):493-502.
    [52]Drici O., Vossoughi S. Study of the Surface Area Effect on Crude Oil Combustion by Thermal Analysis Techniques[J]. Journal of Petroleum Technology,1985,37(4):731-735.
    [53]Rashidi F., Bagci S., Proceedings of the 5th UnitarInternational Conference on Heavy Crude and Tar Sands[C],1992,3:p 323.
    [54]Castanier L. M., Baena C. J., Holt R. J., et al., In Situ Combustion with Metallic Additives[C]. SPE 23708,1992.
    [55]Ranjbar M., Influence of Reservoir Rock Composition on Crude Oil Pyrolysis and Combustion[J]. Journal of Analytical and Applied Pyrolysis,1993,27(1):87-95.
    [56]Kok M. V. Influence of Reservoir Rock Composition on the Combustion Kinetics of Crude Oil[J]. Journal of Thermal Analysis and Calorimetry,2009,97(2):397-401.
    [57]Sakthikumar S., Madaoui K., Chastang J., An Investigation of the Feasibility of Air Injection into a Waterflooded Light Oil Reservoir[C]. SPE 29806,1995.
    [58]Fraim M. L., Moffitt P. D., Yannimaras D. V., Laboratory Testing and Simulation Results for High-Pressure Air Injection in a Waterflooded North Sea Oil Reservoir[C]. SPE 38905,1997.
    [59]Glandt C. A., Pieterson R., Dombrowski A., et al., Coral Creek Field Study:A Comprehensive Assessment of the Potential of High-Pressure Air Injection in a Mature Waterflood Project[C]. SPE 52198,1999.
    [60]Kuhlman M. I., Simulation of Light-Oil Air Injection Into Viscous-Dominated and Gravity-Stable Reservoirs[C]. SPE 59331,2000.
    [61]de Zwart A. H, van Batenburg D. W., Blom C. P. A., et al., The Modeling Challenge of High-Pressure Air Injection[C]. SPE 113917,2008.
    [62]Sammon P. H., Dynimaic Grid Refinement and Amalgmation for Compositional Simulation[C]. SPE 79683,2003.
    [63]Lacroix, S., Renard, G., Lemonnier, P. C, Enhanced Numerical Simulations of IOR Processes Through Dynamic Sub-Gridding[C]. Paper 2003-087 Presented at the Petroleum Society's Canadian International Petroleum Conference, Calgary, Alberta, Canada,10-12 June,2003.
    [64]van Batenburg D. W., de Zwart A. H., Doush M., Water Alternating High-Pressure Air Injection[C]. SPE 129882,2011.
    [65]Afsharpoor A., Mechanistic Foam Modelling and Simulations:Gas Injection druing Surfactant-Alternating-Gas Processes Using Foam-Catastrophe Theory[D]. Master Thesis, Louisiana State University,2009.
    [66]程林松,肖双爱.稠油油藏蒸汽-泡沫驱油数值模拟方法[J].计算物理,2003,20(5):463-466.
    [67]吕广忠,刘显太,尤启东,等.氮气泡沫热水驱油室内实验研究[J].石油大学学报(自然科学版), 2003,27(5):50-53.
    [68]袁士义,刘尚奇.张义堂.等.热水添加氮气泡沫驱提高稠油采收率研究[J].石油学报,2004,25(1):57-65.
    [69]Aarra M. G., Skauge A.. Martinsen H. A., FA WAG:A Breakthrough for EOR in the North Sea[C]. SPE 77695,2002.
    [70]He L.. Peng Y.. Wei L., et al.. Application of Nitrogen Foam for Profile Modification in a Heterogeneous Multi-layer Sandstone Oilfield[C]. SPE 130767,2010.
    [71]Bertin H. J., Quintard M. Y., Castanier L. M., Development of a Bubble Population Correlation for Foam-Flow Modeling in Porous Media[J]. SPE Journal,1998,3(4):356-362.
    [72]Alvarez J. M., Foam-Flow Behavior in Porous Media:Effects of Flow Regime and Porous-Medium Heterogenetiy[D]. Doctoral Dissertation, The University of Texas at Austin,1998.
    [73]Zhu T., Ogbe D. O., Khataniar S., Improving the Foam Performance for Mobility Control and Improved Sweep Efficiency in Gas Flooding[J]. Industrial & Engineering Chemistry Research,2004, 43:4413-4421.
    [74]Li Q., Foam Generation and Propagation in Homogeneous and Heterogeneous Porous Media[D]. Doctoral Dissertation, The University of Texas at Austin,2006.
    [75]Vikingstad A. K., Aarra M. G., Comparing the Static and Dynamic Foam Properties of a Fluorinated and an Alpha Olefin Sulfonate Surfactant[J]. Journal of Petroleum Science and Engineering,2009, 65(1-2):105-111.
    [76]Seright R. S., Liang J., A Comparison of Different Types of Blocking Agents[C]. SPE 30120,1995.
    [77]Wassmuth F. R., Green K., Hodgins L., Conformance Control for Miscible CO2 Floods in Fractured Carbonates[C]. Paper 2005-243 presented at the Petroleum Society's 6th Canadian International Petroleum Conference, Calgary, Alberta, Canada, June 7-9,2005.
    [78]Chakravarthy D., Muralidaharan V., Putra E., et al., Mitigating Oil Bypassed in Fractured Cores During CO2 Flooding Using WAG and Polymer Gel Injections[C]. SPE 97228,2006.
    [79]Buller C. S., Voepel K. C., Production and Purification of an Extracellular Polyglucan Produced by Cellulomonas Flavigena Strain KU[J]. Journal of Industrial Microbiology & Biotechnology,1990, 5(2-3):139-146.
    [80]Vossoughi S., Putz A., Reversible In-Situ Gelation by the Change of pH within the Rock[C]. SPE 20997,1991.
    [81]Sandiford B. B., Zillmer R. C., Gel and Process for Preventing Carbon Dioxide Break Through[P]. US Patent:4,673,038,1987.
    [82]Shu P., Sampath K. Selective Gelation Polymer for Profile Control in CO2 Flooding[P]. US Patent: 4,903,767,1990.
    [83]Altunina L. K., Kuvshinov V. A., Improved Oil Recovery of High-Viscosity Oil Pools with Physicochemical Methods and Thermal-Steam Treatments[J]. Oil & Gas Science and Technology, 2008,63(1):37-38.
    [84]赵贲.热致可逆水基凝胶调剖封窜剂及其先导性现场试验[J].油田化学,2008,25(3):214-217.
    [85]Wassmuth F. R., Hodgins L. H., Schramm L. L., et al., Screening and Coreflood Testing of Gel Foams To Control Excessive Gas Production In Oil Wells[C]. SPE 59283,2000.
    [86]Lakatos I., Lakatos-Szabo J., Kosztin B., et al., Restriction of Gas Coning by a Novel Gel/Foam Technique[C]. SPE 39654,1998.
    [87]Romero-Zeron L., Kantzas A., Evolution of Foamed Gel Confined in Pore Network Models[J]. Journal of Canadian Petroleum Technology,2006,45(11):51-62.
    [88]Vossoughi S., Profile Modification Using In Situ Gelation Technology-A Review[J]. Journal of Petroleum Science and Engineering,2000,26(1-4):199-209.
    [89]Woods P., Schramko K., Turner D., et al., In-Situ Polymerization Controls CO2/Water Channeling at Lick Creek[C]. SPE 14958,1986.
    [90]唐孝芬,李宇乡.TP系列聚丙烯酰胺凝胶堵底水技术[J].油田化学,1996,13(3):219-223.
    [91]蒲万芬,胡书宝,陈刚,等.XN-PP调剖堵水体系的研究及性能评价[J].西南石油学院学报,1997,14(5):3-7.
    [92]蒲万芬,贾虎,孙琳,一种用于高温油藏延缓成胶的就地聚合堵水凝胶[P].CN 102382244,2012.
    [93]Hou Y. L., Yue X. A., Research on a Novel Composite Gel System for CO2 Breakthrough [J]. Petrolem Science,2010,7(2):245-250.
    [94]Sanders G. S., Chambers M. J., Lane R. H., Successful Gas Shutoff with Polymer Gel Using Temperature Modeling and Selevtive Placement in the Prudhoe Bay Field[C]. SPE 28502,1994.
    [95]Chan K. S., Bond A. J., Keese R. F., et al., Diagnostic Plots Evaluate Gas Shut-off Gel Treatments at Prudhoe Bay, Alaska[C]. SPE 36614,1996.
    [96]Lai Q. J., Bond A. J., Cahalane T. W., et al., Gel-Cement Combination Squeezes for Gas Shutoff[C]. SPE 54596,1999.
    [97]Llamedo M. A., Mejias F. V., Gonzalez E. R., et al., Successful Gas Shutoff with Gel, Evaluation and Implementation, Northe East, Venezuela[C]. SPE 96696,2005.
    [98]Hurtado J. F., Milne A., Olivares E., Shallow Gas Shut-off Using Rigid Polymer Gel in Lake Maracaibo, Venezuela[C]. SPE 94532,2005.
    [99]Ali E., Bergren F. E., DeMestre P., et al., Effective Gas-Shutoff Treatments in a Fractured Carbonate Field in Oman[J]. SPE Production & Operations,2008,23(1):14-23.
    [100]Vasquez J., Dalrymple, E. D., Eoff L., et al., Delelopment and Evaluation of High-Temperature Conformance Polymer Systems[C]. SPE 93156,2005.
    [101]Darlos C. Vasquez J., Soriano E., et al., Successful Combination of an Organically Crosslinked Polymer System and a Rigid-Setting Material for Conformance Control in Mexico[J]. SPE Production & Operations.2009,24(4):522-529.
    [102]Mercado M., Acuna J. C. Najera D., et al., High-Temperature Water Control With an Organically Crosslinked Polymer-Case Histories From Mexico[C]. SPE 121809,2009
    [103]Hernandez R., Jasquez V., Cancino V., et al., Successful Water-Shutoff Case Histories in a Naturally Fractured Carbonate Reservoir in Offshore Mexico using an Organically Crosslinked Polymer System with a Modified Tail-In[C]. SPE 127981,2010.
    [104]Reddy B. R.. Eoff L., Dalrymple E. D., et al., A Natural Polymer-Based Cross-Linker System for Conformance Gel Systems[J]. SPE Journal,2003,8(2):99-106.
    [105]Al-Muntasheri G. A., Hussein I. A., Nasr-El-Din H. A., et al., Viscoelastic Properties of a High Temperature Cross-Linked Water Shut-off Polymeric Gel[J]. Journal of Petroleum Science and Engineering,2007,55(1-2):56-66.
    [106]Hardy M. B., Botermans C.W., Hamouda A., et al., The First Carbonate Field Application of a New Organically Crosslinked Water Shutoff Polymer System[C]. SPE 50738,1999.
    [107]Al-Muntasheri G. A., Hussein I. A., Nasr-El-Din H. A., et al., A Rheological Investigation of a High Temperature Organic Gel Used for Water Shut-off Treatments[J]. Journal of Petroleum Science and Engineering,2007,59(1-2):73-83.
    [108]Al-Muntasheri G. A., Nasr-El-Din H. A., Peters J. A., et al., Investigation of a High-Temperature Organic Water-Shutoff Gel:Reaction Mechanisms[J]. SPE Journal,2006,11(4):497-504.
    [109]Eoff L., Dalrymple D., Everett D., Goble Field Results of a Polymeric Gel System in Conformance Applications[C]. SPE 101822,2006.
    [110]Dalrymple D., Eoff L., Vasquez J., et al., Shallow Penetration Particle-Gel System for Water and Gas Shut-off Applications[C]. SPE 114886,2008.
    [111]Eoff L., Dalrymple D., Everett D., et al., Worldwide Field Applications of a Polymeric Gel System for Conformance Applications[J]. SPE Production & Operations,2007,22(2):231-235.
    [112]Vasquez J., Eoff L., Dalrymple D., Shallow Penetration Particle-Gel System for Water and Gas Shutoff Applications[C]. SPE 114885,2008.
    [113]Hardy M. G., Barrett E., Dedigama T., et al., Reducing Water Rates to Increase Hydrocarbon Rates in Australia[C]. SPE 122111,2009.
    [114]贾虎,蒲万芬,赵金洲,等.裂缝性油藏控水堵水方法研究与应用[J].地质科技情报,2010,29(5):62-70.
    [115]蒲万芬,周明,赵金洲,等.有机铬/活性酚醛树脂交联聚合物弱凝胶及其在濮城油田调驱中的应用[J].油田化学,2004,21(3):260-263.
    [116]Seright R. S., Use of Preformed Gels for Conformance Control in Fractured Systems[J]. SPE Production & Facilities,1997,12(1):59-65.
    [117]Seright R. S., Washout of Cr (III)-Acetate-HPAM Gels from Fractures[C]. SPE 80200,2003.
    [118]Fletcher A. J. P., Flew S., Forsdyke I. N., et al., Deep Diverting Gels for Very Cost-Effective Waterflood Control[J]. Journal of Petroleum Science and Engineering,1992.7(1-2):33-43.
    [119]Pritchett J., Frampton H., Brinkman J., et al.. Field Application of a New In-Depth Waterflood Conformance Improvement Tool[C]. SPE 84897,2003.
    [120]Bai B. J., Liu Y. Z., Coste, J. P., et al.. Preformed Particle Gel for Conformance Control:Transport Mechanism Through Porous Media[J]. SPE Reservoir Evalution and Engineering,2007,10(2): 176-182.
    [121]Husband M., Ohms D., Frampton H., et al., Results Of a Three-well Waterflood Sweep Improvement Trial In The Prudhoe Bay Field Using A Thermally Activated Particle System[C]. SPE 129967,2010.
    [122]Jia H.. Zhao J. Z., Pu W. F., et al., Thermal Study on Light Crude Oil for Application of High Pressure Air Injection (HPAI) Process by TG/DTG and DTA Tests[J]. Energy & Fuels,2012, 26(3):1575-1584.
    [123]Jia H., Zhao J. Z., Pu W. F., et al., The Influence of Clay Minerals Types on the Oxidation Thermokinetics of Crude Oil[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2012,34(10):877-886.
    [124]Coats A. W., Redfern J. P., Kinetic Parameters from Thermo Gravimetric Data[J]. Nature,1964,201: 68-69.
    [125]Kok M. V., Pokol G., Keskin C., et al., Light Crude Oil Combustion in the Presence of Limestone Matrix[J]. Journal of Thermal Analysis and Calorimetry,2004,75(3):781-786.
    [126]Kok M. V., Acar C., Kinetics of Crude Oil Combustion[J]. Journal of Thermal Analysis and Calorimetry,2006,83(2):445-449.
    [127]Kok M. V. Effect of Clay on Crude Oil Combustion by Thermal Analysis Techniques[J]. Journal of Thermal Analysis and Calorimetry,2006,84(2):361-366.
    [128]Al-Saffar H. B., Hasanin H., Price D., et al., Oxidation Reactions of a Light Crude Oil and Its SARA Fractions in Consolidated Cores[J]. Energy & Fuels,2001,15(1):182-188.
    [129]Bennion D. W., Donnelly J. K., Canada-Venezuela Oil Sands Symposium[C].1977, p.139.
    [130]Kok M. V., Effect of Pressure and Particle Size on the Thermal Cracking of Light Crude Oils in Sandstone Matrix[J]. Journal of Thermal Analysis and Calorimetry,2009,97(2):403-407.
    [131]Gillham T. H., Cerveny B. W., Turek E. A., et al., Keys to Increasing Production Via Air Injection in Gulf Coast Light Oil Reservoirs[C]. SPE 38848,1997.
    [132]Kok M. V., Gundogar A. S., Effect of Different Clay Concentrations on Crude Oil Combustion Kinetics by Thermogravimetry[J]. Journal of Thermal Analysis,2010,99(3):779-783.
    [133]Vossoughi S., Willhite G. P., Shoubary Y. EL, et al., Study of the Clay Effect on Crude Oil Combustion by Thermogravimetry and Differenial Scanning Calorimetry [J]. Journal of Thermal Analysis,1983.27(1):17-36.
    [134]Debenest G.. Mourzenko V. V., Thovert J.-F., Smouldering in Fixed Beds of Oil Shale Grains: Governing Parameters and Global Regimes[J]. Combustion Theory and Modelling,2005,9(2): 301-321.
    [135]Penberthy W. L., Ramey H. J., Design and Operation of Laboratory Combustion Tube[J]. SPE Journal,1966,69(2):183-198.
    [136]Rodriguez J. R., Experimental and Analytical Study to Model Temperature Profiles and Stoichiometry in Oxygen-Enriched In-Situ Combustion[D]. Doctoral Dissertation, Texas A&M University, College Station,2004.
    [137]Rodriguez J. R., Mamora D. D., Analytical Model of the Combustion Zone in Oxygen-Enriched In-Situ Combustion Tube Experiments[C]. Paper 2005-072 presented at the Canadian International Petroleum Conference, Jun 7-9, Calgary, Alberta,2005.
    [138]Jabbari H., Kharrat R., Zeng Z., et al., Modeling the Toe-to-Heel Air Injection Process by Introducing a New Method of Type-Curve Match[C]. SPE 132515,2010.
    [139]杜建芬,郭平,王仲林,等.轻质油藏高压注空气加速量热分析实验研究[J].西南石油大学学报,2007,29(2):17-21.
    [140]侯胜明,刘印华,于洪敏,等.注空气过程轻质原油低温氧化动力学[J].中国石油大学学报(自然科学版),2011,35(1):169-172.
    [141]Al-Saffar H. B., Price D., Soufi A., et al., Distinguishing between Over Lapping Low-Temperature and High Temperature Oxidation Data Obtained from a Pressurised Flow Reactor System Using Consolidated Core Material[J]. Fuel,2000,79(7):723-732.
    [142]Murugan P., Mahinpey N., Mani T, et al.. Effect of Low-Temperature Oxidation on the Pyrolysis and Ccombustion of Whole Oil[J]. Energy,2010,35(5):2317-2322.
    [143]Aldushin A. P., Rumanov I. E., Matkowsky B. J., Maximal Energy Accumulation in a Superadiabatic Filtration Combustion Wave[J]. Combustion and Flame,1999,118(1-2):76-90.
    [144]Martins M. F., Salvador S., Thovert J.-F., et al., Co-current Combustion of Oil Shale-Part 1: Characterisation of the Solid and Gaseous Products[J]. Fuel,2009,89(1):144-151.
    [145]Kumar M., Simulation of Laboratory In-Situ Combustion Data and Effect of Process Variations[C]. SPE 16027,1987.
    [146]Debenest G., Mourzenko V. V., Thovert J.-F., Three-Dimensional Microscale Numerical Simulation of Smoldering Process in Heterogeneous Porous Media[J]. Combustion Science and Technology,2008, 180(12):2170-2185.
    [147]Fassihi M. R., Gillham T. H., The Use of Air Injection To Improve the Double Displacement Processes[C]. SPE 26374,1993
    [148]Tingas J., Greaves M., Young T. J., Field Scale Simulation Study of In-Situ Combustion in High Pressure Light Oil Reservoirs[C]. SPE 35395,1996.
    [149]Zelenko V., Solignac F., Use of Accelerating Rate Calorimeter in Reservoir Oil Selection for Air Injection Process[C]. Paper 97-166 presented at the 7th Petroleum Conference of South Saskatchewan Section, Regina, SK, October,1997.
    [150]Ambastha A. K., Kumar M., New Insights into In-Situ Combustion Simulation for Heavy Oil Reservoirs[C]. SPE 56543,1999.
    [151]王弥康,张毅,黄善波,等.火烧油层热力采油[M].东营:石油大学出版社,1998.
    [152]刘慧卿.油藏数值模拟方法专题[M].东营:石油大学出版社,2001.
    [153]韩大匡,陈钦雷.油藏数值模拟基础[M].北京:石油工业出版社,2001.
    [154]曹琳.空气泡沫驱提高采收率数值模拟研究[D].中国石油大学(华东),硕士学位论文,2009.
    [155]伍友佳.油藏地质学(第二版)[M].北京:石油工业出版社,2004:185-186.
    [156]Advanced Process and Thermal Reservoir Simulator-STARS User Mannual[M]. Computer Modelling Group Ltd. Calgary, Canada,2005.
    [157]Poling B. E., Prausnitz J. M., O'Connell J. P., The Properties of Gases and Liquids (Fifth Edition) [M]. The McGraw-Hill Companies, Inc.,2001.
    [158]Albonico P., Bartosek M., Malandrino A., et al., Studies on Phenol-Formaldehyde Crosslinked Polymer Gels in Bulk and in Porous Media[C]. SPE 28983,1995.
    [159]Allison J. D., Purkaple J. D., Reducing Permeability of Highly Permeable Zones in Underground Formations[P]. U.S. Patent 4,773,481,1988.
    [160]Albonico P., Burrafato G., Lullo A. D., et al., Effective Gelation-Delaying Additives for Cr3+/Polymer Gels[C]. SPE 25221,1993.
    [161]Willhite G. P., Pancake R. E., Controlling Water Production Using Gelled Polymer Systems[C]. SPE 89464,2004.
    [162]Cordova M., Cheng M., Trejo J., et al., Delayed HP AM Gelation Via Transient Sequestration of Chromium in Polyelectrolyte Complex Nanoparticles[J]. Macromolecules,2008,41(12):4398-4404.
    [163]Falk D. O., Process for Selectively Plugging Permeable Zones in a Subterranean Formation[P]. U.S. Patent 4,485,875,1984.
    [164]Bryant S. L., Bartosek M., Lockhart T. P., Laboratory Evaluation of Phenol-Formaldehyde/Polymer Gelants for High-Temperature Applications[J]. Journal of Petroleum Science and Engineering,1997, 17(3-4):197-209.
    [165]Banerjee R., Patil K., Khilar K. C. Studies on Phenol-Formaldehyde Gel Formation at a High Temperature and at Different pH[J]. Canadia Journal of Chemical Engineering,2006,84(3):328-336.
    [166]Sydansk R. D., Argabright P. A., Conformance Improvement in a Subterranean Hydrocarbon-Bearing Formation Using a Polymer Gel[P]. U.S. Patent 4,683,949,1987.
    [167]Jia H., Pu W. F., Zhao J. Z., et al., Experimental Investigation of the Novel Phenol-Formaldehyde Cross-Linking HPAM Gel System:Based on the Secondary Cross-Linking Method of Organic Cross-Linkers and Its Gelation Performance Study after Flowing through Porous Media[J]. Energy& Fuels.2011,25(2):727-736.
    [168]Jia H., Pu W. F.. Zhao J. Z., et al, Research on the Gelation Performance of Low Toxic PEI Cross-Linking PHPAM Gel Systems as Water Shutoff Agents in Low Temperature Reservoirs[J]. Industrial & Engineering Chemistry Research,2010,49(20):9618-9624.
    [169]Al-Muntasheri G. A., Nasr-El-Din H. A., Zitha P. L. J., Gelation Kinetics and Performance Evaluation of an Organically Crosslinked Gel at High Temperature and Pressure[J]. SPE Journal,2008, 13(3):337-345.
    [170]Romero-Zeron L., Manalo F., Kantzas A. Characterization of Crosslinked Gel Kinetics and Gel Strength by Use of NMR[J]. SPE Reservoir Evaluation & Engineering,2008,11(3):439-453.
    [171]Selb J., Biggs S., Renoux D., et al., Hydrophobic and Electrostatic Interactions in Water-Soluble Associating Copolymers[J]. American Chemical Society, Advances in Chemistry,1996,248:251-278.
    [172]Al-Muntasheri G. A., Nasr-El-Din H. A., Al-Noaimi K. R., et al., A Study of Polyacrylamide-Based Gels Crosslinked With Polyethyleneimine[J]. SPE Journal,2009,14(2):245-251.
    [173]Bryant S. L., Bartosek M., Lockhart T. L., Propagation of Cr (III) in Porous Media and its Effect on Polymer Gelant Performance [J]. Journal of Petroleum Science and Engineering,1996,16(1-3):1-13.
    [174]Zitha P. L. J., Botermans C.W., Hoek J. E., et al., Control of Flow Through Porous Media Using Polymer Gels[J]. Journal of Applied Physics,2002,92(2):1143-1153.
    [175]Zhao J. Z., Jia H., Pu W. F., et al., Influences of Fracture Aperture on the Water-Shutoff Performance of Polyethyleneimine Cross-Linking Partially Hydrolyzed Polyacrylamide Gels in Hydraulic Fractured Reservoirs[J]. Energy & Fuels,2011,25(6):2616-2624.
    [176]Al-Muntasheri G. A., Polymer Gels for Water Control:NMR and CT Scan Studies[D]. Doctoral Disseration, King Fahd University of Petroleum & Minerals,2008. p 102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700