用户名: 密码: 验证码:
耐辐射球菌细胞内锰离子水平调控相关蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌细胞内的金属离子动态平衡与细胞的生理生长具有密切关系,许多过渡价态金属离子,包括Mn(Ⅱ)、Zn(Ⅱ)、Ca(Ⅱ)等,不但可以作为蛋白的辅因子参与细胞的多种氧化还原反应,还可以作为信号因子参与基因组转录调控,影响细胞的毒性以及极端抗性等。因此细胞内金属离子的调控对于细菌维持正常生理活动至关重要,而关于细菌细胞内金属离子调控的研究也一直是微生物领域的热点。
     作为极端微生物家族的重要成员,耐辐射球菌对于电离辐射、紫外线、化学诱变剂、干燥等具有极强抗性,而越来越多的研究表明,耐辐射球菌对于极端环境的适应能力得益于其超强的抗氧化能力,其细胞内积累的超高锰离子水平一直被认为是其最重要的抗氧化机制之一,因此耐辐射球菌是极好的研究细菌细胞锰离子代谢调控的模式生物,通过研究其锰离子调控机制,不但可以进一步了解耐辐射球菌的极端抗性机制,而且对于拓展细菌细胞金属离子调控机制也具有重要意义。本文主要通过细胞吸收及外排两个方面,研究了耐辐射球菌的细胞内锰离子动态调控机制,研究结果如下:
     1.我们首次鉴定得到耐辐射球菌锰离子外排蛋白(Dr1236)。在构建了Dr1236的基因缺失突变株后,我们发现突变株对于锰离子的抗性下降,而且细胞内的锰离子水平显著升高,说明Dr1236在耐辐射球菌锰离子抗性及细胞内锰离子动态调控机制中,发挥了重要的作用。进一步的研究发现,突变株细胞内锰离子浓度升高以后,其电离辐射、紫外、过氧化氢抗性都明显增强,表明细胞内锰离子确实参与了细胞的极端抗性,而这种保护作用很可能是通过降低自由基对蛋白的攻击实现的。然而,虽然突变株细胞在积累了高水平锰离子之后,极端抗性有了不同程度的增加,但是细胞的生长周期却远远短于野生株,表明锰离子的过高积累对细胞的整体机能造成了损伤,这也从侧面反映出锰离子外排蛋白对于细胞的重要作用。
     2.dr0865编码了耐辐射球菌唯一一个Fur同源蛋白,Fur蛋白在其它细菌中参与了锰离子吸收通道蛋白的转录调控,因此我们利用大肠杆菌表达系统体外表达了dr0865,并研究了其生化性质。生物信息学研究表明,Dr0865很可能包含了结合三个金属离子的结构,这种结构可能赋予了其独特的生物学功能。DNA结合活性实验表明,Dr0865可以与dr2283、dr2284、dr2524的启动子结合,而且结合活性与金属离子的浓度成正比,另一方面却不能与dr1709的启动子结合;β-半乳糖甘酶活性实验表明Dr0865与dr2283、dr2284、dr2523的启动子的结合可能促进了其转录,考虑到Dr0865的DNA结合活性依赖于金属离子的浓度,及Dr0865突变株的过氧化氢抗性增强,因此我们推测dr2283、dr2284、dr2523(?)(?)可能编码了一种铁离子外排通道蛋白,而其具体调控机制还需要进一步研究。
     3.dr2539编码耐辐射球菌的DtxR/MntR家族蛋白,这类蛋白家族对于细胞锰离子或铁离子调控至关重要,通过在Dr2539 N-端融合表达助溶片段IF,我们成功得到Dr2539蛋白。DNA结合活性实验表明,Dr2539只能与dr1709的启动子结合,而且EMSA和p-半乳糖甘酶活性实验表明,蛋白的结合活性受到锰离子和铁离子的调控,表明Dr2539与此前所报道的MntR蛋白结构上可能存在很大差异,因此我们构建了Dr2539突变体,并将突变体补偿Dr2539突变株,包括C-D11M、C-H98Y、C-E101D、C-Tru,通过检测补偿株对于锰离子的抗性,发现C-D11M及C-Tru锰离子抗性相对于野生Dr2539补偿株明显下降,而C-E101D的抗性并没有明显变化;惊奇的是,H98Y补偿株对6-7Mm Mn(Ⅱ)极度敏感,这与此前所报道的DtxR激活模型一致,因此我们推测,dr2539所编码的MntR蛋白很可能利用一种类似于DtxR的激活模式,而且可能参与了细胞内锰离子与铁离子动态平衡的调控。
     综上所述,在研究了耐辐射球菌细胞内锰离子外排和吸收系统后,我们的结果表明锰离子的确参与了耐辐射球菌的极端抗性机制,此外,金属离子调控蛋白Dr0865和Dr2539的生化活性表明,耐辐射球菌的金属离子调控机制与目前发现的细菌调控机制存在很大差异,而这种差异可能与其极端环境生存能力有关。我们的研究为下一步深入研究耐辐射球菌金属离子调控蛋白Dr0865和Dr2539结构奠定了基础。
Homeostasis of metal ions is closely related to the physiological processes of growth in bacterial cells. Some transition metal ions, such as Fe(Ⅱ), Mn(Ⅱ), Zn(Ⅱ), Ca(Ⅱ), could not only consider as the protein cofactors joining in the reaction of oxidizing reduction, but also set as the signal factors involving in the regulation of gene transcription and affecting the cytotoxicity and extreme resistance. Therefore, it is essential in regulating metal ions as to maintain normal physiology activity in bacterial cells. Moreover, the study of the regulation of metal ions in bacterial cells has always been a hotspot in the field of microbiology.
     Deinococcus radiodurans, an important member of extreme micro-organisms family, has high resistances to ionizing radiation, ultraviolet (UV) radiation, chemical mutation and desiccation. However, more and more studies show that adaptability of D. radiodurans is benefit from its anti-oxidative ability. Furthermore, the high concentration of intracellular manganese ions is always considered to be one of the most important antioxidation mechanisms. Therefore, D. radiodurans is a great kind of model organisms to study in regulating manganese ions metabolism. By studying the regulatory metabolism of manganese ions, we could not only to delve more deeply into the extremely resistant mechanism of D. radiodurans, but it is also significant to widen the regulatory mechanisms of metal ions in bacterial cells. In this study, by researching the manganese acquisition and efflux mechanism, we investigated the regulation of intracellular manganese homeostasis of D. radiodurans. The results of the studies are listed as follows:
     1. First of all, we identified and evaluated a manganese efflux protein (Drl236) in D. radiodurans. Dr1236 is the second manganese efflux protein that indentified from bacterial and is also first verified as the third type of efflux protein. By constructing the Dr1236 deletion mutant, we found the resistance of Dr1236 to manganese ions was decreased. whereas the level of intracellular manganese concentration is markedly increased. This indicated that Dr1236 play an critical role in the manganese resistance mechanism and in regulating intracellular manganese levels. Further, compared with the wild-type strain, the bacteria has extremely higher resistance to ionizing radiation, ultraviolet (UV) radiation and H2O2 after intracellular manganese content in mutant increased. The results indicated that the manganese ions are indispensable involved in the resistance of D. radiodurans cells, and then the protective effects may be realized by reducing the challenge of free radical to protein. Though the mutant cells accumulated higher intracellular concentration of manganese ions and extreme resistance was also increased differently, the cell lifespan of mutant cells is far shorter than the wild-type strain. The result showed that manganese ions at high concentrations are toxic to cells. Moreover, manganese efflux protein plays the key role in D. radiodurans.
     2. Dr0865, which encodes the only Fur homologue, may be involved in the regulation of intracellular manganese levels in D. radiodurans. E. coli expression system was used to express the dr0865 and its biochemical characteristics were also investigated. Additionally, bioinformatics study showed that Dr0865 probably has three metal-binding sites and add up to a distinct advantage of biological function. DNA binding activity assay showed that Dr0865 could bind with the promoters of dr2283、dr2284、dr2523, the binding activities are positive proportional to the concentration of metal ions. On the other hand, Dr0865 could not bind with the promoter of dr 1709. (3-galactosidase activity assay showed that Dr0865 binds with promoters of dr2283、dr2284、dr2523 could promote gene transcription. Moreover, it should be considered that the DNA binding activity of Dr0865 is dependent to metal ions concentration and the mutant resistance of Dr0865 is enhanced to H2O2. We supposed that dr2283、dr2284、dr2523 probably encode a new kind of Fe2+efflux protein. Furthermore, the regulatory mechanism of Fe ions is still unclear and needs further study.
     3. Dr2539 belongs to the MntR/DtxR family, and this family plays important role in intracellular Mn- or Fe- homeostasis regulation. A solubility-enhancing partner of translation initiation factor (IF) was fused to dr2539, and Dr2539 was successfully expressed in vitro. EMSA results indicated that Dr2539 can bind with the dr1709 promoter and the DNA binding activity of Dr2539 depended on the concentration of Mn and Fe. It is quite different with previous reported MntR because it is always Mn specifically binding protein. Bioinformatic analysis has shown that Dr2539 has DtxR characteristics, and further site-directed mutagenesis was carried out in order to explain why Dr2539 can response to both Mn and Fe. Different Dr2539 mutants were constructed and complemented to dr2539 null mutant. By examine the manganese resistance of complemented strains (C-D11M、C-H98Y、C-E101D、C-Tru), we found that the manganese resistance of C-D11M and C-Tru decreased compared with wild strain. Surprisingly, the resistance of C-H98Y decreased dramatically in 6-7mM Mn(II), while that recovered in>7mM. It is consistent with previous reported three step active model of DtxR, therefore, we suppose that the Dr2539 may be active in DtxR-like pattern, and it may also be involved in Mn/Fe homeostasis regulation.
     In sum, we investigated the manganese efflux ans acquisition system, and the results indicate that the manganese involved in the extreme resistance of D. radiodurans. Moreover, the biochemical characteristics of metalloregulator Dr0865 and Dr2539 suggested that the intracellular metal concentration regulated system in D. radiodurans may be different with that of presented reported bacteria, and our studies gave a good first step for further Dr0865 and Dr2539 structure analysis.
引文
1. Anderson AW, Nordon HC, R.F.Cain, ParrishG, and D. G, Studies on a radio-resistant microccus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. J. Food technol 1956.10(575-578).
    2. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis J. FEMS Microbiol Rev,2003.27(2-3):p.215-37.
    3. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and D. Ghosal, Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates gamma-radiation resistance J. Science,2004.306(5698):p.1025-8.
    4. Chen, H., R. Wu, G. Xu, X. Fang, X. Qiu, H. Guo, B. Tian, and Y. Hua, DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans J. Biochem Biophys Res Commun,2010.396(2):p.413-8.
    5. Chen, H., G. Xu, Y. Zhao, B. Tian, H. Lu, X. Yu, Z. Xu, N. Ying, S. Hu, and Y. Hua, A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans J. PLoS One,2008.3(2):p. e1602.
    6. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, J.G. Kiang, R. Fukumoto, D.Y. Lee, N.B. Wehr, G.A. Viteri, B.S. Berlett, and R.L. Levine, Small-Molecule Antioxidant Proteome-Shields in Deinococcus radiodurans J. PLoS One,2010.5(9).
    7. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, R.D. Leapman, B. Lai, B. Ravel, S.-M.W. Li, K.M. Kemner, and J.K. Fredrickson, Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance J. PLoS Biol,2007.5(4):p. e92.
    8. Hua, S., C. Shenghe, L. Zongwei, W. Yanping, and Q. Guangyong, Functional analysis of a putative transcriptional regulator gene dr2539 in Deinococcus radiodurans J. AFR J MICROBIOL RES,2010.4(7):p.515-522.
    9. Chang, S., H. Shu, Z. Li, Y. Wang, L. Chen, Y. Hua, and G Qin, Disruption of manganese ions [Mn(II)] transporter genes DR1709 or DR2523 in extremely radio-resistant bacterium Deinococcus radiodurans J. Wei Sheng Wu Xue Bao,2009. 49(4):p.438-44.
    10. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly, Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics J. Microbiol Mol Biol Rev,2001.65(1):p.44-79.
    11. Thompson, B.G. and R.G. Murray, Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark J. Can J Microbiol,1981.27(7):p.729-34.
    12. Sleytr, U.B., M. Kocur, A.M. Glauert, and M.J. Thornley, A study by freeze-etching of the fine structure of Micrococcus radiodurans J. Arch Mikrobiol,1973.94(1):p.77-87.
    13. Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn, and W.O. Saxton, Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans J. J Mol Biol,1986.187(2):p.241-50.
    14. Anderson, R. and K. Hansen, Structure of a novel phosphoglycolipid from Deinococcus radiodurans J. J Biol Chem,1985.260(22):p.12219-23.
    15. Quintela, J.C., F. Garcia-del Portillo, E. Pittenauer, G. Allmaier, and M.A. de Pedro, Peptidoglycan fine structure of the radiotolerant bacterium Deinococcus radiodurans Sark J. J Bacteriol,1999.181(1):p.334-7.
    16. Ferreira, A.C., M.F. Nobre, F.A. Rainey, M.T. Silva, R. Wait, J. Burghardt, A.P. Chung, and M.S. da Costa, Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs J. Int J Syst Bacteriol,1997.47(4):p.939-47.
    17. Yuan, M., W. Zhang, S. Dai, J. Wu, Y. Wang, T. Tao, M. Chen, and M. Lin, Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium J. Int J Syst Evol Microbiol,2009.59(Pt 6):p.1513-7.
    18. Rainey, F.A., M. Ferreira, M.F. Nobre, K. Ray, D. Bagaley, A.M. Earl, J.R. Battista. B. Gomez-Silva, C.P. McKay, and M.S. da Costa, Deinococcus peraridilitoris sp. nov., isolated from a coastal desert J. Int J Syst Evol Microbiol,2007.57(Pt 7):p.1408-12.
    19. Yang, Y, T. Itoh, S. Yokobori, S. Itahashi, H. Shimada, K. Satoh, H. Ohba,I. Narumi, and A. Yamagishi, Deinococcus aerius sp. nov., isolated from the high atmosphere J. Int J Syst Evol Microbiol,2009.59(Pt 8):p.1862-6.
    20. Weon, H,Y., B.Y. Kim, P. Schumann, J.A. Son, J. Jang, S.J. Go, and S.W. Kwon, Deinococcus cellulosilyticus sp. nov., isolated from air J. Int J Syst Evol Microbiol,2007. 57(Pt8):p.1685-8.
    21. Suresh, K., G.S. Reddy, S. Sengupta, and S. Shivaji, Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India J. Int J Syst Evol Microbiol,2004.54(Pt 2):p.457-61.
    22. Lai, W.A-., P. Kampfer, A.B. Arun, F.. Shen, B. Huber, P.D. Rekha, and C.C. Young, Deinococcus ficus sp. nov, isolated from the rhizosphere of Ficus religiosa L J. Int J Syst Evol Microbiol,2006.56(Pt 4):p.787-91.
    23. Im, W.T., H.M. Jung, L.N. Ten, M.K. Kim, N. Bora, M. Goodfellow, S. Lim, J. Jung, and S.T. Lee, Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov. isolated from activated sludge J. Int J Syst Evol Microbiol. 2008.58(Pt 10):p.2348-53.
    24. Omelchenko, M.V., Y.I. Wolf, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, M.J. Daly, E.V. Koonin, and K.S. Makarova, Comparative genomics of Thermus ihermophilus and Deinococcus radiodurans:divergent routes of adaptation to thermophily and radiation resistance J. BMC Evol Biol,2005.5:p.57.
    25. Lin, J., R. Qi, C. Aston, J. Jing, T.S. Anantharaman, B. Mishra, O. White. M.J. Daly, K.W. Minton, J.C. Venter, and D.C. Schwartz, Whole-genome shotgun optical mapping of Deinococcus radiodurans J. Science,1999.285(5433):p.1558-62.
    26. Hua, Y, I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, and B. Shen, Pprl:a general switch responsible for extreme radioresistance of Deinococcus radiodurans J. Biochemical and Biophysical Research Communications,2003.306(2):p.354-360.
    27. Hansen, M.T, Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans J. J Bacteriol,1978.134(1):p.71-5.
    28. Battista,J.R., Against all odds:the survival strategies of Deinococcus radiodurans J. Annu Rev Microbiol,1997.51:p.203-24.
    29. Burrell, A.D., P. Feldschreiber, and C.J. Dean, DNA-membrane association and the repair of double breaks in x-irradiated Micrococcus radiodurans J. Biochim Biophys Acta, 1971.247(1):p.38-53.
    30. Mortimer, R.K., Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae J. Radiat Res,1958.9(3):p.312-26.
    31. Krasin, F. and F. Hutchinson, Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome J. J Mol Biol, 1977.116(1):p.81-98.
    32. Zimmerman, J.M. and J.R. Battista, A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae J. BMC Microbiol,2005.5:p.17.
    33. Daly, M.J., A new perspective on radiation resistance based on Deinococcus radiodurans J. Nat Rev Microbiol,2009.7(3):p.237-45.
    34. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, R.D. Leapman, B. Lai, B. Ravel, S.M. Li, K.M. Kemner, and J.K. Fredrickson, Protein oxidation implicated as the primary determinant of bacterial radioresistance J. PLoS Biol,2007.5(4): p. e92.
    35. Harper, J.W. and S.J. Elledge, The DNA damage response:ten years after J. Mol Cell,2007.28(5):p.739-45.
    36. Battista, J.R., A.M. Earl, and M.. Park, Why is Deinococcus radiodurans so resistant to ionizing radiation? J. Trends Microbiol,1999.7(9):p.362-5.
    37. Frenkiel-Krispin, D. and A. Minsky, Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans J. J Struct Biol,2006.
    38. Paques, F. and J.E. Haber, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae J. Microbiol Mol Biol Rev,1999.63(2): p.349-404.
    39. Daly, M.J., L. Ouyang, P. Fuchs, and K.W. Minton, In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans J. J Bacteriol,1994.176(12):p.3508-17.
    40. Carroll, J.D., M.J. Daly, and K.W. Minton, Expression of recA in Deinococcus radiodurans J. J Bacteriol,1996.178(1):p.130-5.
    41. Daly, M.J., O. Ling, and K.W. Minton, Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans J. J Bacteriol,1994. 176(24):p.7506-15.
    42. Daly, M.J. and K.W. Minton, Recombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans J. Gene,1997.187(2):p.225-9.
    43. Clark, A.J. and S.J. Sandler, Homologous genetic recombination:the pieces begin to fall into place J. Crit Rev Microbiol,1994.20(2):p.125-42.
    44. Kolodner, R., S.D. Hall, and C. Luisi-DeLuca, Homologous pairing proteins encoded by the Escherichia coli recE and recT genes J. Mol Microbiol,1994.11(1):p. 23-30.
    45. Kowalczykowski, S.C., D.A. Dixon, A.K. Eggleston, S.D. Lauder, and W.M. Rehrauer, Biochemistry of homologous recombination in Escherichia coli J. Microbiol Rev, 1994.58(3):p.401-65.
    46. Zhou, Q., X. Zhang, H. Xu, B. Xu, and Y. Hua, A new role of Deinococcus radiodurans RecD in antioxidant pathway J. FEMS Microbiol Lett,2007.271(1):p. 118-25.
    47. Khairnar, N.P., V.A. Kamble, and H.S. Misra, RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans J. DNA Repair (Amst),2008.7(1):p.40-7.
    48. Cox, M.M., Regulation of bacterial RecA protein function J. Crit Rev Biochem Mol Biol,2007.42(1):p.41-63.
    49. Smith, K.C., Recombinational DNA repair:the ignored repair systems J. Bioessays,2004.26(12):p.1322-6.
    50. Kitayama, S., M. Kohoroku, A. Takagi, and H. Itoh, Mutation of D. radiodurans in a gene homologous to ruvB of E. coli J. Mutat Res,1997.385(2):p.151-7.
    51. Funayama, T., I. Narumi, M. Kikuchi, S. Kitayama, H. Watanabe, and K. Yamamoto, Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans J. Mutat Res,1999.435(2):p.151-61.
    52. Xu, G., L. Wang, H. Chen, H. Lu, N. Ying, B. Tian, and Y. Hua, RecO is essential for DNA damage repair in Deinococcus radiodurans J. J Bacteriol,2008.190(7):p. 2624-8.
    53. Kim, J.I. and M.M. Cox, The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways J. Proc Natl Acad Sci U S A,2002.99(12):p.7917-21.
    54. Pitcher, R.S., N.C. Brissett, and A.J. Doherty, Nonhomologous end-joining in bacteria:a microbial perspective J. Annu Rev Microbiol,2007.61:p.259-82.
    55. Pitcher, R.S., T.E. Wilson, and A.J. Doherty, New insights into NHEJ repair processes in prokaryotes J. Cell Cycle,2005.4(5):p.675-8.
    56. Narumi, I., K. Satoh, S. Cui, T. Funayama, S. Kitayama, and H. Watanabe, PprA:a novel protein from Deinococcus radiodurans that stimulates DNA ligation J. Mol Microbiol, 2004.54(1):p.278-85.
    57. Zahradka, K., D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A.B. Lindner, and M. Radman, Reassembly of shattered chromosomes in Deinococcus radiodurans J. Nature,2006.443(7111):p.569-73.
    58. Zablocka, A. and M. Janusz, [The two faces of reactive oxygen species] J. Postepy Hig Med Dosw (Online),2008.62:p.118-24.
    59. Ghosal, D., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko. A. Venkateswaran, M. Zhai, H.M. Kostandarithes, H. Brim, K.S. Makarova, L.P. Wackett. J.K. Fredrickson, and M.J. Daly, How radiation kills cells:survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress J. FEMS Microbiol Rev, 2005.29(2):p.361-75.
    60. Krisko, A. and M. Radman, Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans J. Proc Natl Acad Sci U S A.107(32):p.14373-7.
    61. Markillie, L.M., S.M. Varnum, P. Hradecky, and K.K. Wong, Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants J. J Bacteriol,1999.181(2):p.666-9.
    62. Tian, B., Z. Xu, Z. Sun, J. Lin, and Y. Hua, Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses J. Biochim Biophys Acta,2007.1770(6):p. 902-11.
    63. Xu, Z., B. Tian, Z. Sun, J. Lin, and Y. Hua, Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans J. Microbiology,2007.153(Pt 5):p.1642-52.
    64. Ma, Z., F.E. Jacobsen, and D.P. Giedroc, Coordination chemistry of bacterial metal transport and sensing J. Chem Rev,2009.109(10):p.4644-81.
    65. Tottey, S., K.J. Waldron, S.J. Firbank, B. Reale, C. Bessant, K. Sato, T.R. Cheek, J. Gray, M.J. Banfield, C. Dennison, and N.J. Robinson, Protein-folding location can regulate manganese-binding versus copper-or zinc-binding J. Nature,2008.455(7216):p.1138-42.
    66. Waldron, K.J. and N.J. Robinson, How do bacterial cells ensure that metalloproteins get the correct metal? J. Nat Rev Microbiol,2009.7(1):p.25-35.
    67. Papp-Wallace, K.M. and M.E. Maguire, Manganese transport and the role of manganese in virulence J. Annu Rev Microbiol,2006.60:p.187-209.
    68. Kehres, D.G., A. Janakiraman, J.M. Slauch, and M.E. Maguire, Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H(2)O(2), Fe(2+), and Mn(2+) J. J Bacteriol,2002.184(12):p.3151-8.
    69. Kehres, D.G., M.L. Zaharik, B.B. Finlay, and M.E. Maguire, The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen J. Mol Microbiol,2000.36(5):p.1085-100.
    70. Que, Q. and J.D. Helmann, Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins J. Mol Microbiol,2000.35(6):p.1454-68.
    71. Bearden, S.W., T.M. Staggs, and R.D. Perry, An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11 J. J Bacteriol, 1998.180(5):p.1135-47.
    72. Kehres, D.G., A. Janakiraman, J.M. Slauch, and M.E. Maguire, SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar Typhimurium J. J Bacteriol, 2002.184(12):p.3159-66.
    73. Boyer, E., I. Bergevin, D. Malo, P. Gros, and M.F. Cellier, Acquisition of Mn(Ⅱ) in addition to Fe(Ⅱ) is required for full virulence of Salmonella enterica serovar Typhimurium J. Infect Immun,2002.70(11):p.6032-42.
    74. Perry, R.D., I. Mier, Jr., and J.D. Fetherston, Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth J. Biometals,2007.20(3-4):p. 699-703.
    75. Makui, H., E. Roig, S.T. Cole, J.D. Helmann, P. Gros. and M.F. Cellier, Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter J. Mol Microbiol,2000.35(5):p.1065-78.
    76. Agranoff, D., I.M. Monahan, J.A. Mangan, P.D. Butcher, and S. Krishna, Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family J. J Exp Med,1999.190(5):p.717-24.
    77. Qian,Y.,J.H. Lee, and R.K. Holmes, Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae J. J Bacteriol,2002.184(17):p.4846-56.
    78. Nevo, Y. and N. Nelson, The NRAMP family of metal-ion transporters J. Biochim Biophys Acta,2006.1763(7):p.609-20.
    79. Courville, P., R. Chaloupka, and M.F. Cellier, Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters J. Biochem Cell Biol,2006.84(6):p.960-78.
    80. Anjem, A., S. Varghese, and J.A. Imlay, Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli J. Mol Microbiol,2009.72(4):p. 844-58.
    81. Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavrommatis, S. Pitluck, P.M. Richardson, C. Detter, T. Brettin, E. Saunders, B. Lai, B. Ravel, K.M. Kemner, Y.I. Wolf, A. Sorokin, A.V. Gerasimova, M.S. Gelfand, J.K. Fredrickson, E.V. Koonin, and M.J. Daly, Deinococcus geothermalis:the pool of extreme radiation resistance genes shrinks J. PLoS One,2007.2(9):p. e955.
    82. Rosch, J.W., G. Gao, G. Ridout, YD. Wang, and E.I. Tuomanen, Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae J. Mol Microbiol,2009.72(1):p.12-25.
    83. Nies, D.H., Efflux-mediated heavy metal resistance in prokaryotes J. FEMS Microbiol Rev,2003.27(2-3):p.313-39.
    84. Fisher, S., L. Buxbaum, K. Toth, E. Eisenstadt, and S. Silver, Regulation of manganese accumulation and exchange in Bacillus subtilis W23 J. J Bacteriol,1973.113(3): p.1373-80.
    85. Leibowitz, P.J., L.S. Schwartzberg, and A.K. Bruce, The in vivo association of manganese with the chromosome of Micrococcus radiodurans J. Photochem Photobiol, 1976.23(1):p.45-50.
    86. Sun, H., G. Xu, H. Zhan, H. Chen, Z. Sun, B. Tian, and Y. Hua, Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans J. BMC Microbiol.10:p.319.
    87. Braune, B., D. Muir, B. DeMarch, M. Gamberg, K. Poole, R. Currie, M. Dodd, W. Duschenko, J. Earner, B. Elkin, M. Evans, S. Grundy, C. Hebert, R. Johnstone, K. Kidd, B. Koenig, L. Lockhart, H. Marshall, K. Reimer, J. Sanderson, and L. Shutt, Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review J. Sci Total Environ,1999.230(1-3):p.145-207.
    88. Touati, D., Iron and oxidative stress in bacteria J. Arch Biochem Biophys,2000. 373(1):p.1-6.
    89. Friedman, Y.E. and M.R. O'Brian, A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum J. J Biol Chem,2003.278(40):p. 38395-401.
    90. Althaus, E.W., C.E. Outten, K.E. Olson, H. Cao, and T.V. O'Halloran, The ferric uptake regulation (Fur) repressor is a zinc metalloprotein J. Biochemistry,1999.38(20):p. 6559-69.
    91. Gonzalez de Peredo, A., C. Saint-Pierre, A. Adrait, L. Jacquamet, J.M. Latour, I. Michaud-Soret, and E. Forest, Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli:chemical modification and mass spectrometry analysis J. Biochemistry,1999.38(26):p.8582-9.
    92. Jacquamet, L., D. Aberdam, A. Adrait, J.L. Hazemann, J.M. Latour, and I. Michaud-Soret, X-ray absorption spectroscopy of a new zinc site in the fur protein from Escherichia coli J. Biochemistry,1998.37(8):p.2564-71.
    93. Pohl, E., J.C. Haller, A. Mijovilovich, W. Meyer-Klaucke, E. Garman, and M.L. Vasil, Architecture of a protein central to iron homeostasis:crystal structure and spectroscopic analysis of the ferric uptake regulator J. Mol Microbiol,2003.47(4):p. 903-15.
    94. Hall, H.K. and J.W. Foster, The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition J. J Bacteriol,1996.178(19):p.5683-91.
    95. Bsat, N. and J.D. Helmann, Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo J. J Bacteriol,1999.181(14):p. 4299-307.
    96. Hassett, D.J., P.A. Sokol, M.L. Howell, J.F. Ma, H.T. Schweizer, U. Ochsner, and M.L. Vasil, Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities J. J Bacteriol,1996.178(14):p. 3996-4003.
    97. Dian, C, S. Vitale, G.A. Leonard, C. Bahlawane, C. Fauquant, D. Leduc, C. Muller, H. de Reuse, I. Michaud-Soret, and L. Terradot, The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites J. Mol Microbiol. 79(5):p.1260-1275.
    98. Outten, F.W., C.E. Outten, J. Hale, and T.V. O'Halloran, Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR J. J Biol Chem,2000.275(40):p.31024-9.
    99. Busenlehner, L.S., M.A. Pennella, and D.P. Giedroc, The SmtB/ArsR family of metalloregulatory transcriptional repressors:Structural insights into prokaryotic metal resistance J. FEMS Microbiol Rev,2003.27(2-3):p.131-43.
    100. O'Halloran, T.V., Transition metals in control of gene expression J. Science,1993. 261(5122):p.715-25.
    101. Spiering, M.M., D. Ringe, J.R. Murphy, and M.A. Marletta, Metal stoichiometry and functional studies of the diphtheria toxin repressor J. Proc Natl Acad Sci U S A,2003. 100(7):p.3808-13.
    102. White, A., X. Ding, J.C. vanderSpek, J.R. Murphy, and D. Ringe, Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex J. Nature,1998. 394(6692):p.502-6.
    103.Wylie, G.P., V. Rangachari, E.A. Bienkiewicz, V. Marin, N. Bhattacharya, J.F. Love, J.R. Murphy, and T.M. Logan, Prolylpeptide binding by the prokaryotic SH3-like domain of the diphtheria toxin repressor:a regulatory switch J. Biochemistry,2005.44(1): p.40-51.
    104. Golynskiy, M.V., T.C. Davis, J.D. Helmann, and S.M. Cohen, Metal-induced structural organization and stabilization of the metalloregulatory protein MntR J. Biochemistry,2005.44(9):p.3380-9.
    105. Love, J.F., J.C. vanderSpek, V. Marin, L. Guerrero, T.M. Logan, and J.R. Murphy, Genetic and biophysical studies of diphtheria toxin repressor (DtxR) and the hyperactive mutant DtxR(E175K) support a multistep model of activation J. Proc Natl Acad Sci U S A, 2004.101(8):p.2506-11.
    106. Schmitt, M.P., E.M. Twiddy, and R.K. Holmes, Purification and characterization of the diphtheria toxin repressor J. Proc Natl Acad Sci U S A,1992.89(16):p.7576-80.
    107. Tao, X., N. Schiering, H.Y. Zeng, D. Ringe, and J.R. Murphy, Iron, DtxR, and the regulation of diphtheria toxin expression J. Mol Microbiol,1994.14(2):p.191-7.
    108. Posey, J.E., J.M. Hardham, S.J. Norris, and F.C. Gherardini, Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum J. Proc Natl Acad Sci U S A,1999.96(19):p.10887-92.
    109. Jakubovics, N.S., A.W. Smith, and H.F. Jenkinson, Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR J. Mol Microbiol,2000.38(1):p. 140-53.
    110. Hill, P.J., A. Cockayne, P. Landers, J.A. Morrissey, C.M. Sims, and P. Williams, SirR, a novel iron-dependent repressor in Staphylococcus epidermidis J. Infect Immun, 1998.66(9):p.4123-9.
    111. Lieser, S.A., T.C. Davis, J.D. Helmann, and S.M. Cohen, DNA-binding and oligomerization studies of the manganese (Ⅱ) metalloregulatory protein MntR from Bacillus subtilis J.Biochemistry,2003.42(43):p.12634-42.
    112. Guedon, E. and J.D. Helmann, Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators J. Mol Microbiol,2003.48(2):p.495-506.
    113. Brett, P.J., M.N. Burtnick, J.C. Fenno, and F.C. Gherardini, Treponema denticola TroR is a manganese-and iron-dependent transcriptional repressor J. Mol Microbiol,2008. 70(2):p.396-409.
    1. Fisher, S., L. Buxbaum, K. Toth, E. Eisenstadt, and S. Silver, Regulation of manganese accumulation and exchange in Bacillus subtilis W23 J. J Bacteriol,1973.113(3): p.1373-80.
    2. Grass, G, M. Otto, B. Fricke, C.J. Haney, C. Rensing, D.H. Nies, and D. Munkelt, FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress J. Arch Microbiol,2005.183(1):p.9-18.
    3. Rosch, J.W., G. Gao, G. Ridout, YD. Wang, and E.I. Tuomanen, Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae J. Mol Microbiol,2009.72(1):p.12-25.
    4. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, R.D. Leapman, B. Lai, B. Ravel, S.-M.W. Li, K.M. Kemner, and J.K. Fredrickson, Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance J. PLoS Biol,2007.5(4):p. e92.
    5. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and D. Ghosal, Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates gamma-radiation resistance J. Science,2004.306(5698):p.1025-8.
    6. Moore, C.M. and J.D. Helmann, Metal ion homeostasis in Bacillus subtilis J. Curr Opin Microbiol,2005.8(2):p.188-95.
    7. Munson, G.P., D.L. Lam, F.W. Outten, and T.V. O'Halloran, Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12 J. J Bacteriol,2000.182(20):p.5864-71.
    8. Huang, L., X. Hua, H. Lu, G. Gao, B. Tian, B. Shen, and Y. Hua, Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans J. DNA Repair (Amst),2007.6(2):p.167-76.
    9. Xu, Z., B. Tian, Z. Sun, J. Lin, and Y. Hua, Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans J. Microbiology,2007.153(Pt 5):p.1642-52.
    10. Chen, H., G. Xu, Y. Zhao, B. Tian, H. Lu, X. Yu, Z. Xu, N. Ying, S. Hu, and Y. Hua, A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans J. PLoS One,2008.3(2):p. e1602.
    11. Carbonneau, M.A., A.M. Melin, A. Perromat, and M. Clerc, The action of free radicals on Deinococcus radiodurans carotenoids J. Arch Biochem Biophys,1989.275(1): p.244-51.
    12. Bradford, M.M., A rapid and sensitive method for the quantitation of micro gram quantities of protein utilizing the principle of protein-dye binding J. Analytical biochemistry, 1976.72(1-2):p.248-254.
    13. Huang, L., X. Hua, H. Lu, G. Gao, B. Tian, B. Shen, and Y. Hua, Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans J. DNA Repair,2007.6(2):p.167-76.
    14. Tanaka, M., I. Narumi, T. Funayama, M. Kikuchi, H. Watanabe, T. Matsunaga, O. Nikaido, and K. Yamamoto, Characterization of pathways dependent on the uvsE, uvrAl, or uvrA2 gene product for UV resistance in Deinococcus radiodurans J. Journal of Bacteriology,2005.187(11):p.3693-7.
    15. Drake, J.W., A constant rate of spontaneous mutation in DNA-based microbes J. Proceedings of the National Academy of Sciences of the United States of America,1991. 88(16):p.7160-4.
    16. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method J. Methods,2001.25(4):p. 402-8.
    17. Ma, Z., F.E. Jacobsen, and D.P. Giedroc, Coordination chemistry of bacterial metal transport and sensing J. Chem Rev,2009.109(10):p.4644-81.
    18. Rosch, J.W., G. Gao, G. Ridout, Y.D. Wang, and E.I. Tuomanen, Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae J. Molecular Microbiology,2009.72(1):p.12-25.
    19. Daly, M.J., A new perspective on radiation resistance based on Deinococcus radiodurans J. Nat Rev Microbiol,2009.7(3):p.237-45.
    20. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, J.G. Kiang, R. Fukumoto, D.Y. Lee, N.B. Wehr, G.A. Viteri, B.S. Berlett, and R.L. Levine, Small-Molecule Antioxidant Proteome-Shields in Deinococcus radiodurans J. PLoS One,2010.5(9).
    21. Blasius, M., I. Shevelev, E. Jolivet, S. Sommer, and U. Hubscher, DNA polymerase X from Deinococcus radiodurans possesses a structure-modulated 3'-->5'exonuclease activity involved in radioresistance J. Mol Microbiol,2006.60(1):p.165-76.
    22. Chou, F.I. and S.T. Tan, Manganese(Ⅱ) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture J. Journal of Bacteriology,1990.172(4):p.2029-35.
    23. Privalle, C.T. and I. Fridovich, Iron specificity of the Fur-dependent regulation of the biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli J. J Biol Chem,1993.268(7):p.5178-81.
    24. Qian, Y., J.H. Lee, and R.K. Holmes, Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae J. J Bacteriol,2002.184(17):p.4846-56.
    25. Que, Q. and J.D. Helmann, Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins J. Mol Microbiol,2000.35(6):p.1454-68.
    26. Lee. P.C. and C. Schmidt-Dannert, Metabolic engineering towards biotechnological production of carotenoids in microorganisms J. Appl Microbiol Biotechnol,2002.60(1-2):p.1-11.
    27. Cox, M.M. and J.R. Battista, Deinococcus radiodurans-the consummate survivor J. Nat Rev Microbiol,2005.3(11):p.882-92.
    28. Daly, M.J., Modulating radiation resistance:Insights based on defenses against reactive oxygen species in the radioresistant bacterium Deinococcus radiodurans J. Clin Lab Med,2006.26(2):p.491-504, x.
    1. Braun, V. and M. Braun, Active transport of iron and siderophore antibiotics J. Curr Opin Chem Biol,2002.5(2):p.194-201.
    2. Privalle, C.T. and I. Fridovich, Iron specificity of the Fur-dependent regulation of the biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli J. J Biol Chem,1993.268(7):p.5178-81.
    3. Andrews, S.C., A.K. Robinson, and F. Rodriguez-Quinones, Bacterial iron homeostasis J. FEMS Microbiol Rev,2003.27(2-3):p.215-37.
    4. Masse, E. and S. Gottesman, A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli J. Proceedings of the National Academy of Sciences of the United States of America,2002.99(7):p.4620-5.
    5. Hantke, K., Iron and metal regulation in bacteria J. Current Opinion in Microbiology,2001.4(2):p.172-7.
    6. Bellini, P. and A.M. Hemmings, In vitro characterization of a bacterial manganese uptake regulator of the fur superfamily J. Biochemistry,2006.45(8):p.2686-98.
    7. Dian, C., S. Vitale, G.A. Leonard, C. Bahlawane, C. Fauquant, D. Leduc, C. Muller, H. de Reuse, I. Michaud-Soret, and L. Terradot, The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites J. Mol Microbiol. 79(5):p.1260-1275.
    8. Chen, H., R. Wu, G. Xu, X. Fang, X. Qiu, H. Guo, B. Tian, and Y. Hua, DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans J. Biochem Biophys Res Commun,2010.396(2):p.413-8.
    9. Gao, G, D. Le, L. Huang, H. Lu, I. Narumi, and Y. Hua, Internal promoter characterization and expression of the Deinococcus radiodurans pprl-folP gene cluster J. FEMS Microbiol Lett,2006.257(2):p.195-201.
    10. Huang, L., X. Hua, H. Lu, G. Gao, B. Tian, B. Shen, and Y. Hua, Three tandem HRDC domains have synergistic effect on the RecO functions in Deinococcus radiodurans J. DNA Repair,2007.6(2):p.167-76.
    11. Nishimura, A., M. Morita, Y. Nishimura, and Y. Sugino, A rapid and highly efficient method for preparation of competent Escherichia coli cells J. Nucleic Acids Res, 1990.18(20):p.6169.
    12. Baynham, P. J. and D. J. Wozniak, Identification and characterization ofAlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription J. Mol Microbiol,1996.22(1):p.97-108.
    13. Kenney, L.J., M.D. Bauer, and T.J. Silhavy, Phosphorylation-dependent conformational changes in OmpR, an osmoregulatory DNA-binding protein of Escherichia coli J. Proc Natl Acad Sci U S A,1995.92(19):p.8866-70.
    14. Prigent-Combaret, C., E. Brombacher, O. Vidal, A. Ambert, P. Lejeune, P. Landini, and C. Dorel, Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene J. J BacterioL 2001.183(24):p. 7213-23.
    15. Platero, R., V. de Lorenzo, B. Garat, and E. Fabiano, Sinorhizobium meliloti fur-like (Mur) protein binds a fur box-like sequence present in the mntA promoter in a manganese-responsive manner J. Appl Environ Microbiol,2007.73(15):p.4832-8.
    16. Ma, Z., F.E. Jacobsen, and D.P. Giedroc, Coordination chemistry of bacterial metal transport and sensing J. Chem Rev,2009.109(10):p.4644-81.
    17. Baichoo, N., T. Wang, R. Ye, and J.D. Helmann, Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon J. Mol Microbiol,2002.45(6):p. 1613-29.
    18. Busenlehner, L.S., M.A. Pennella, and D.P. Giedroc, The SmtB/ArsR family of metalloregulatory transcriptional repressors:Structural insights into prokaryotic metal resistance J. FEMS Microbiol Rev,2003.27(2-3):p.131-43.
    19. Friedman, Y.E. and M.R. O'Brian, The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro J. J Biol Chem,2004.279(31):p.32100-5.
    1. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and D. Ghosal, Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates gamma-radiation resistance J. Science,2004.306(5698):p.1025-8.
    2. Daly, M.J., Modulating radiation resistance:Insights based on defenses against reactive oxygen species in the radioresistant bacterium Deinococcus radiodurans J. Clin Lab Med,2006.26(2):p.491-504, x.
    3. Helmann, J.D., OxyR:a molecular code for redox sensing? J. Sci STKE,2002. 2002(157):p. pe46.
    4. Hohle, T.H. and M.R. O'Brian, The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein J. Mol Microbiol,2009.72(2):p.399-409.
    5. Anjem, A., S. Varghese, and J.A. Imlay, Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli J. Mol Microbiol,2009.72(4):p. 844-58.
    6. Chen, H., G. Xu, Y. Zhao, B. Tian, H. Lu, X. Yu, Z. Xu, N. Ying, S. Hu, and Y. Hua, A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans J. PLoS One,2008.3(2):p. e1602.
    7. Fisher, S., L. Buxbaum, K. Toth, E. Eisenstadt, and S. Silver, Regulation of manganese accumulation and exchange in Bacillus subtilis W23 J. J Bacteriol,1973.113(3): p.1373-80.
    8. Golynskiy, M.V., T.C. Davis, J.D. Helmann, and S.M. Cohen, Metal-induced structural organization and stabilization of the metalloregulatory protein MntR J. Biochemistry,2005.44(9):p.3380-9.
    9. D'Aquino, J.A., J. Tetenbaum-Novatt, A. White, F. Berkovitch, and D. Ringe, Mechanism of metal ion activation of the diphtheria toxin repressor DtxR J. Proc Natl Acad Sci U S A,2005.102(51):p.18408-13.
    10. Ding, X., H. Zeng, N. Schiering, D. Ringe, and J.R. Murphy, Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis J. Nat Struct Biol,1996.3(4):p.382-7.
    11. Chen, H., R. Wu, G. Xu, X. Fang, X. Qiu, H. Guo, B. Tian, and Y. Hua, DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans J. Biochem Biophys Res Commun,2010.396(2):p.413-8.
    12. Gao, G., D. Le, L. Huang, H. Lu, I. Narumi, and Y. Hua, Internal promoter characterization and expression of the Deinococcus radiodurans pprl-folP gene cluster J. FEMS Microbiol Lett,2006.257(2):p.195-201.
    13. Huang, L., X. Hua, H. Lu, G. Gao, B. Tian, B. Shen, and Y. Hua, Three tandem HRDC domains have synergistic effect on the RecO functions in Deinococcus radiodurans J. DNA Repair 2007.6(2):p.167-76.
    14. Sorensen, H.P., H.U. Sperling-Petersen, and K.K. Mortensen, A favorable solubility partner for the recombinant expression of streptavidin J. Protein Expr Purif,2003. 32(2):p.252-9.
    15. Hua, Y., I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, and B. Shen, Pprl:a general switch responsible for extreme radioresistance of Deinococcus radiodurans J. Biochem Biophys Res Commun,2003.306(2):p.354-360.
    16. Fuangthong, M. and J.D. Helmann, The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative J. Proc Natl Acad Sci U S A,2002.99(10):p.6690-5.
    17. Guedon, E., C.M. Moore, Q. Que, T. Wang, R.W. Ye, and J.D. Helmann, The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and sigmaB regulons J. Mol Microbiol,2003.49(6):p.1477-91.
    18. Ma, Z., F.E. Jacobsen, and D.P. Giedroc, Coordination chemistry of bacterial metal transport and sensing J. Chem Rev,2009.109(10):p.4644-81.
    19. Nevo, Y. and N. Nelson, The NRAMP family of metal-ion transporters J. Biochim Biophys Acta,2006.1763(7):p.609-20.
    20. Love, J.F., J.C. vanderSpek, V. Marin, L. Guerrero, T.M. Logan, and J.R. Murphy, Genetic and biophysical studies of diphtheria toxin repressor (DtxR) and the hyperactive mutant DtxR(E175K) support a multistep model of activation J. Proc Natl Acad Sci U S A, 2004.101(8):p.2506-11.
    21. Leibowitz, P.J., L.S. Schwartzberg, and A.K. Bruce, The in vivo association of manganese with the chromosome of Micrococcus radiodurans J. Photochem Photobiol, 1976.23(1):p.45-50.
    22. Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavrommatis, S. Pitluck, P.M. Richardson, C. Detter, T. Brettin, E. Saunders, B. Lai, B. Ravel, K.M. Kemner, Y.I. Wolf, A. Sorokin, A.V. Gerasimova, M.S. Gelfand, J.K. Fredrickson, E.V. Koonin, and M.J. Daly, Deinococcus geothermalis:the pool of extreme radiation resistance genes shrinks J. PLoS One,2007.2(9):p. e955.
    23. Patzer, S.I. and K. Hantke, Dual repression by Fe(2+)-Fur and Mn(2+)-MntR of the mntH gene, encoding an NRAMP-like Mn(2+) transporter in Escherichia coli J. J Bacteriol,2001.183(16):p.4806-13.
    24. Kehres, D.G., A. Janakiraman, J.M. Slauch, and M.E. Maguire, Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H(2)O(2), Fe(2+), and Mn(2+) J. J Bacteriol,2002.184(12):p.3151-8.
    25. Hill, P.J., A. Cockayne, P. Landers, J.A. Morrissey, C.M. Sims, and P. Williams, SirR, a novel iron-dependent repressor in Staphylococcus epidermidis J. Infect Immun, 1998.66(9):p.4123-9.
    26. Moore, C.M. and J.D. Helmann, Metal ion homeostasis in Bacillus subtilis J. Curr Opin Microbiol,2005.8(2):p.188-95.
    27. Brett, P.J., M.N. Burtnick, J.C. Fenno, and F.C Gherardini, Treponema denticola TroR is a manganese-and iron-dependent transcriptional repressor J. Mol Microbiol,2008. 70(2):p.396-409.
    28. Guedon, E. and J.D. Helmann, Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators J. Mol Microbiol,2003.48(2):p.495-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700