用户名: 密码: 验证码:
不同诱变方法对油菜种子诱变效果及突变体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诱变可以产生丰富的突变,诱变技术已广泛的应用于作物育种和生物学研究中。射线辐射,化学诱变,空间搭载等诱变方法也较早的应用于油菜育种中,而不同诱变方法的诱变效果存在差异。
     本研究旨在利用诱变技术处理油菜种子,比较不同剂量的γ射线辐射、EMS和空间搭载诱变对甘蓝型油菜种子品质性状的诱变效果,探索利用诱变技术改良甘蓝型油菜种子品质的有效方法,期望获得品质优良的突变体。并对诱变后代中发现的矮秆突变体和苗期黄化突变体进行了遗传分析和基因定位。主要研究结果如下:
     1.不同诱变方法对甘蓝型油菜种子品质性状的诱变效果比较
     分别用800 Gy、1000 Gy和1200 Gy的Y射线,0.5%,1.0%和1.5%(v/v)的EMS溶液以及太空辐射处理三个甘蓝型油菜品系06-425、06-3741和06-7317。分析各种不同处理的M3代种子的品质,结果表明γ射线和EMS处理都能显著增加种子不同品质性状的变异,但诱变的效果存在差异。1.5%的EMS在黑籽甘蓝型油菜中能诱发较多的变异,更适合用于改良油菜种子品质。而对于黄籽品系则适合较低剂量的诱变剂处理。
     2.平阳霉素对甘蓝型油菜小孢子出胚率的影响
     利用不同浓度的平阳霉素处理5个甘蓝型油菜品系的游离小孢子,结果表明,0.1μg/ml的平阳霉素处理甘蓝型油菜小孢子30分钟能显著提高甘蓝型油菜小孢子出胚率,随着平阳霉素浓度的增加甘蓝型油菜小孢子出胚率也随之降低。但平阳霉素处理却降低了品系T8再生植株的加倍率,而对品系B409和T10再生植株的加倍率没有显著影响。利用AFLP技术分析了平阳霉素对品系T8、T10和B409双单倍体植株的诱变频率。结果表明,在甘蓝型油菜小孢子培养过程中本身就会产生0.095%到0.114%的变异,而平阳霉素处理没有显著增加其变异。
     3.矮秆突变体的研究
     在EMS诱变的M3株系中发现一个株高极度矮化的矮秆突变株系。遗传分析表明,其矮秆性状受一对隐性核基因控制,不存在细胞质效应。通过外源赤霉素处理和内源赤霉素含量的测定,结果表明外源赤霉素不能恢复矮秆突变体(bnaC.dwf)的株高,而且其叶片和茎干中的内源赤霉素含量也显著高于原始亲本。因此推断赤霉素传导途径基因的突变导致了突变体的矮化。利用AFLP标记结合群体集团分离分组法(BSA)共筛选到9个与BnaC.DWF基因紧密连锁的AFLP标记,并成功的将其中的四个AFLP标记转化为SCAR标记。并利用与BnaC.DWF基因连锁的SSR标记将BnaC.DWF基因定位于甘蓝型油菜C8连锁群。
     4.苗期黄化突变体的研究
     在EMS诱变的M2群体中发现了一个苗期黄化的突变体。遗传分析表明,其黄化性状受一对隐性核基因控制,不存在细胞质效应。利用AFLP标记结合群体集团分离分组法(BSA)共筛选到8个与BnaC. YGL基因紧密连锁的AFLP标记,并成功的将其中的四个AFLP标记转化为SCAR标记。并利用与BnaC. YGL基因连锁的SSR标记将BnaC. YGL基因定位于甘蓝型油菜C7连锁群。
Induced mutagenesis has become one of most important tool in plant biology and breeding for changing plant traits, studying gene function, and locating genes on chromosomes. The use of ionizing radiation, chemical mutagens and space environment for inducing variation is well established. However, the ionizing radiations, chemical mutagens and space environment have different efficiency in inducing mutations as they bring about both chromosome aberrations and gene mutations.
     In order to find the best induced mutagenesis and dosage to improve seeds quality of Brassica napus, Comparing effectiveness of different mutagens (gamma rays, Ethyl methane sulphonate and space environment) for seed quality in Brassica napus were studied in three B. napus lines. Then, the variation analysis of seeds compositions were described in the progeny to prove the feasibility of improving rapeseed seeds quality by induced mutagenesis. At the same time, some high oleic acid, high protein, low linolenic acid mutants were expected to be screened. Furthermore, we have obtained one dwarf mutant and the other one chlorophyll-deficient seedling with yellow-green leaves mutant from the B. napus inbred line T6 through chemical mutagen ethylmethane sulfonate (EMS). Genetic analysis and mapping of these two mutants were carried out. The main results were as follows:
     1. Comparing effectiveness of different mutagens (gamma rays, Ethyl methane sulphonate and space environment) for seed quality in B. napus
     Three different B. napus lines were treated with y ray (800 Gy,1000 Gy and 1200 Gy), EMS (0.5%,1.0% and 1.5%) and space radiation respectively. Analysis of the seeds compositions of M3 seeds suggested that both y ray EMS can increase the variation of seeds composition. However, different variation was detected between different treated methods. For rapeseed seeds compositions breeding,1.5% EMS was more effective than other ways in the black seeds lines. At the same time, lower dose of y ray (800 Gy) and EMS (0.5%) was more preferable for yellow seed lines.
     2. The effects of bleomycin on microspore embryogenesis in B. napus
     The effects of bleomycin on microspore embryogenesis and cell division were investigated using three concentrations of bleomycin in five semi-winter genotypes of B. napus viz. T8, T10, B409, P30, and DH1142. Inclusion of bleomycin in the culture medium at a concentration of 0.1μg ml-1 for 30 min significantly improved embryo production and cell division in all five genotypes. Embryo production was induced at rates two-and four-fold higher than controls after bleomycin treatment. Fifty plants regenerated by microspore embryogenesis treated with bleomycin in addition to non-treated controls of T8, T10, and B409 were selected for AFLP analysis. The results suggest that microspore culture is capable of producing 0.095% to 0.114% genetic variation, and there was no effect of bleomycin treatment on genetic stabilisation of doubled haploid populations versus the non-treated control.
     3. The research of one dwarf mutant
     In the present study, we have obtained one dwarf mutant (bnaC.dwf) from the B. napus inbred line T6 through chemical mutagen ethyl methanesulfonate (EMS). We have determined the phenotypic effects and genetic characteristics of dwarf mutant(bnaC.dwf). Genetic analysis revealed that one recessive gene is responsible for controlling the phenotypic expression of dwarf mutant. The dwarf mutant was insensitive to exogenous GA3 for plant height, suggesting that it is significantly playing a crucial role in the gibberellins response pathway. Amplified Fragment Length Polymorphism (AFLP) technique was applied for selecting markers linked to the BnaC.DWF gene which assisted in screening of dwarf and normal individuals in the BC4 population. We have identified nine AFLP markers linked to the BnaC.DWF gene, and four AFLP markers were successfully converted into Sequence Characterised Amplified Region (SCAR) markers. The BnaC.DWF gene was further mapped to the linkage region C8 by Simple Sequence Repeat (SSR) markers.
     4. The research of one chlorophyll-deficient seedling with yellow-green leaves mutant
     In the present study, we have obtained one chlorophyll-deficient seedling with yellow-green leaves mutant (bnaC.ygl) from the B. napus inbred line T6 through chemical mutagen ethyl methanesulfonate (EMS). We have determined the phenotypic effects and genetic characteristics of chlorophyll-deficient seedling mutant (bnaC.ygl). Genetic analysis revealed that one recessive gene is responsible for controlling the phenotypic expression of dwarf mutant. Amplified Fragment Length Polymorphism (AFLP) technique was applied for selecting markers linked to the BnaC.DWF gene which assisted in screening of dwarf and normal individuals in the BC4 population. We have identified nine AFLP markers linked to the BnaC.DWF gene, and four AFLP markers were successfully converted into Sequence Characterised Amplified Region (SCAR) markers. The BnaC.DWF gene was further mapped to the linkage region C8 by Simple Sequence Repeat (SSR) markers.
引文
1.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    2.顾宏辉,张冬青,张国庆,周伟军.油菜离体小孢子诱变育种研究进展.浙江农业学报,2003,15:318-322
    3.郭建辉,沈明山,蔡恩兴,洪富祥,陈丽萍,黄锡栋.香蕉离体试管芽诱变育种的研究V.漳蕉8号株系基因组变异检测.核农学报,2003,17(4):255-258
    4.何冰,刘玲珑,张文伟,万建民.植物叶色突变体.植物生理学通讯,2006,42:1-9
    5.何冬丽,杨光圣.甘蓝型油菜单倍体离体诱变及其效应的AFLP分子标记检测.中国油料作物学报,2004,26(2):10-14
    6.何冬丽.利用小孢子培养和诱变技术改良甘蓝型油菜CMS恢复系.[硕士论文].武汉:华中农业大学图书馆,2004
    7.和江明,王敬乔,陈薇,李根泽,董云松,寸守铣.用EMS诱变和小孢子培养快速获得甘蓝型油菜高油酸种质材料的研究.西南农业学报,2003,16:34-36
    8.黄天带.甘蓝型油菜矮秆突变体及矮秆基因分子标记的研究.[硕士学位论文].华中农业大学,2003
    9.黄镇.分子标记辅助选择培育新型甘蓝型油菜隐性细胞核雄性不育系.[博士学位论文].武汉:华中农业大学图书馆,2007
    10.刘后利.实用油菜栽培学.上海:上海科技出版社,1987,538-539
    11.刘后利.油菜遗传和育种.上海:上海科技出版社,1985
    12.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    13.刘仁虎,赵建伟,肖勇,孟金陵.拟南芥cDNA芯片和油菜—拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因.中国科学C辑生命科学,2005,35(1):13-21.
    14.柳学余.农作物化学诱变育种.南京:东南大学出版社,1992
    15.陆光远.甘蓝型油菜显性细胞核雄性不育基因和上位抑制基因的分子标记及应用.[博士学位论文].武汉:华中农业大学图书馆,2003
    16.马国荣,刘佑斌,盖钧镒.大豆细胞质遗传芽黄突变体的发现.作物学报,1994,20:334-338
    17.马惠平,赵永亮,杨光宇.诱变技术在作物育种中的应用.遗传,1998,20(4):48-50
    18.梅德圣.甘蓝型油菜株高和开花时间的QTL定位及黄籽性状的分了标记.[学位论文].中国农业科学院,2004
    19.蒲晓斌,张锦芳,李浩杰,黄驰,李治华,张启行,蒋梁材.甘蓝型油菜太空诱变后代农艺性状调查及品质分析.西南农业学报,2006,19:373-377
    20.浦惠明,戚存扣,傅寿仲.甘蓝型矮秆油菜“矮源1号”鉴定研究初报.中国种业,1995,1:23-24
    21.石淑稳,周永明,王晨,吴江生.γ射线和X射线对甘蓝型油菜小孢子胚状体再生的影响.中国油料作物学报,2004,26:6-9
    22.王保莉,郭蔼光,汪沛洪.小麦突变体返白系返白阶段叶绿素代谢的变化.植物学报,1996,38:557-562
    23.王园珍.甘蓝型油菜不同诱变方式诱变后代的遗传变异评价.[硕士论文].武汉:华中农业大学图书馆,2007
    24.温贤芳,张龙,戴维序,李春华.天地结合开展我国空间诱变育种研究.核农学报,2004,18(4):241-246
    25.吴江生,石淑稳,周永明,刘后利.甘蓝型双低油菜品种华双3号的选育和研究.华中农业大学学报,1999,18:1-4
    26.伍新玲.利用诱变技术改良油菜脂肪酸组成及油酸含量遗传研究.[硕士论文].武汉:华中农业大学图书馆,2004
    27.夏英武,吴关庭,舒庆尧.平阳霉素对水稻诱变效应的研究.核农学报,1997,11(1):26-30
    28.许耀奎.作物诱变育种.上海:上海科技出版社,1985
    29.张瑞,许鸿章,娄志贤,顾慧儿,张广善.争光霉素的研究,Ⅱ1争光霉素的分离、纯化、理化性质及鉴定争光霉素的研究Ⅱ.争光霉素的分离、纯化、理化性质及鉴定.微生物学报,1980,20(1):76-81
    30.张天真,潘家驹,冯福祯.一个有芽黄标记性状的棉花雄性不育系的遗传鉴定.中国农业科学,1989,22:17-21
    31.张天真.作物育种学总论.北京:中国农业出版社,2003,101-102
    32.赵克俭,刘正常,孟香琴,张仲纶.1987年中国发射的两颗卫星内辐射水平及 辐射危险度评价.见:中国微重力科学与空间实验.北京:中国科学技术出版社,1998,150-155
    33.赵丽梅,许耀奎.平阳霉素Pingyangmycin对大麦的诱变效应.核农学报,1990,4(4):199-205
    34. Agarwal P K, Parinita A, Jan B M, Custers, Liu C M, Bhojwani S S. PCIB an antiauxin enhances microspore embryogenesis in microspore culture of B. juncea. Plant Cell Tiss Org,2006,86:201-210
    35. Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos 17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol,2001,125:1248-1257
    36. Ahloowalia B S, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica,135:187-204
    37. Ali I, Shah S A, Shah S J A. Microspore mutagenesis in Brassica napus. Crucifer Newsletter,2001,23:25-26.
    38. Barak S, Heimer Y, Nejidat A, Volokita M. The peroxisomal glycolate oxidase gene is differentially expressed in yellow and white sectors of the DPI variegated tobacco mutant. Physiol Plantarum,2000,110:120-126
    39. Barro F, Fernandez-Escobar J, Vega M D, Martin A. Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica,2002,129:1-6
    40. Bentolila S, Hanson M R. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol Genet Genomics,2001,266:223-230
    41. Budziszewski G J, Lewis S P, Glover L W, Reineke J, Jones G, Ziemnik L S, Lonowski J, Nyfeler B, Aux G, Zhou Q, McElver J, Patton D A, Martienssen R, Grossniklaus U, Ma H, Law M, Levin J Z. Arabidopsis genes essential for seedling viability:isolation of insertional mutants and molecular cloning. Genetics,2001,159: 1765-1778.
    42. Casselman A, Vrebalov J, Conner J A, Singhal A, Giovannoni J, Nasrallah M E, Nasrallah J B. Determining the physical limits of the Brassica S locus by recombinational analysis. Plant Cell,2000,12:23-33
    43. Chandler P M, Marion-Poll A, Ellis M, Gubler F. Mutants at the Slenderl locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol, 2002,129:181-190
    44. Chen J L, Beversdorf W D. A comparison of traditional and haploid-derived breeding populations of oilseed rape (Brassica napus L.) for fatty acid composition of the seed oil. Euphytica,1990,51:59-65
    45. Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T. Detection of QTL for six yield-related traits in oilseed rape(Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet,2007,115:849-858
    46. Cheng H, Qin L, Lee S, Fu X, Richards D E, Cao D Luo D, Harberd N P, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function.2004,131:1055-1064
    47. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    48. Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L, Henikoff S. High-Throughput Screening for Induced Point Mutations. Plant Physiol,2001,126:480-484.
    49. Davies P J. Plant hormones:physiology, biochemistry and molecular biology. Dordrecht, The Netherlands:Kluwer academic publishers.1995,13-38
    50. Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci,2001,98:14162-14167
    51. Dill A, Thomas S G, Hu J, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPYI targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell,2004,16:1392-1405
    52. Fambrini M, Castagna A, Vecchia F D, Innocenti E D, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS Ⅱ activity and low endogenous level of abscisic acid. Plant Sci,2004,167:79-89
    53. Fernandez-gomez M E, Torre C D. Action of Bleomycin on proliferating plant cells. J Antibiot,1976,29:1096-1101
    54. Ferrie A M R, Keller W A. Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae. In Vitro Cell Dev-pl,2007,43:348-355
    55. Ferrie A M R, Taylor D C, Mackenzie S L, Rakow G, Raney J P, Keller W A. Microspore mutagenesis of Brassica species for fatty acid modifications:a preliminary evaluation. Plant Breeding,2008,127:501-506
    56. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet,1996,93:1017-1025
    57. Foisset N, Delourme R, Barret P, Renard M. Molecular tagging of the dwarf BREIZH (Bzh)gene in Brassica napus. Theor Appl Genet,1995,91:756-761
    58. Fridborg I, Kuusk S, Moritz T, Sundberg E. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell,1999,11:1019-1031
    59. Fu X, Richards D E, Fleck B, Xie D, Burton N, Harberd N P. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell,2004,16:1406-1418
    60. Gomi K, Matsuoka M. Gibberellin signaling pathway. Curr Opin Plant Biol,2003,6 (5):489-493
    61. Gubler F, Chandler P M, White R G, Llewellyn D J, Jacobsen J V. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol,2002,129:191-200
    62. Guzy-Wrobelska J, Szarejko I. Molecular and agronomic evaluation of wheat doubled haploid lines obtained through maize pollination and anther culture methods. Plant Breeding,2003,122:305-313
    63. Hansson A, Kannangara C G, Wettstein D, Hansson M. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA,1999,96:1744-1749
    64. Hedden P, Kamiya Y. Gibberellm biosynthesis:emzymes gene and their regulation. Annu Rev Plant Physiol PlantMol Biol,1997,48:431-460
    65. Hedden P, Phillips A L. Gibberellin metabolism:New insights revealed by the genes. Trends Plant Sci,2000,5:523-530
    66. Hedden P, Proebsting W M. Genetic analysis of Gibberellin biosynthesis. Plant Physiol,1999,119:365-370
    67. Hooley R. Gibberellins:perception, transduction and responses. Plant Mol Biol,1994, 26:1529-1555
    68. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfkl to a 43-kb contig in Kosena radish (Raphanus sativus L). Mol Genet Genomics,2003,269:388-394
    69. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell,2002,14:57-70
    70. Jacobsen S E, Olszewski N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell,1993,5:887-896.
    71. Khush GS. Green revolution:preparing for the 21st century. Genome,1999,42: 646-655
    72. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen,1944,12:172-175
    73. Lange T, Hedden P, G raebe J E. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA,1994,91:8552-8556
    74. Leyser O. Auxins:Lessons from a mutant weed. Physiol Plant,1997,100:407-414.
    75. Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet,2010,121:249-258
    76. Liu H C, Cheng H H, Tirunagaru V, Sofer L, Burnside J. A strategy to identify positional candidate genes conferring Marek's disease resistance by integrating DNA microarrays and genetic maping. Animal Genetics,2001,32:351-359
    77. Lopez-Juez E, Paul Jarvis R, Takeuchi A, Page A M, Chory J. New Arabidopsis cue mutants suggest a close connection between plastid-and phytochrome regulation of nuclear gene expression. Plant Physiol,1998,118:803-815
    78. Lowe A J, Jones A E, Raybould A F, Trick M, Moule C J, Edwards K J. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Mol Ecol Notes,2002,2:7-11
    79. Maluszynski M, Gustafson M P, Maluszynska J, Szarejko I. Advanced breeding for germplasm enhancement and yield improvement. In:Yield Gap and Productivity Decline in Rice Production. FAO, Rome,2001,191-224.
    80. McCallum C M, Comai L, Greene E A, Henikoff S. Targeted screening for induced mutations. Nat Biotechnology,2000,18:455-457.
    81. McGinnis K M, Thomas S G, Soule J D, Strader L C, Zale J M, Sun T P, Steber C M. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell,2003,15:1120-1130
    82. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA,1991,88:9828-9832
    83. Monde R A, Zito F, Olive J, Wollman F A, Stern D B. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J,2000,21: 61-72
    84. Muangprom A, Osborn TC. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet,2004,108: 1378-1384
    85. Muangprom A, Stephen G T, Sun T, Thomas C O. A novel dwarfing mutation in a Green Revolution gene from Brassica rapa. Plant Physiol,2005,137:931-938
    86. Murakami Y. Dwarfing genes in rice and their relation to gibberellin biosynthesis. In: Carr D J eds, Plant Growth Substances. Berlin:Springer-Verlag,1972,166-174
    87. Ogas J, Kaufmann S, Henderson J, Somerville C. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci,1999,96:13839-13844
    88. Olszewski N, Sun T P, Gubler F. Gibberellin signaling:biosynthesis, catabolism, and response pathway. Plant Cell,2002,14:61-80
    89. O'Neill D P, Ross J J. Auxin Regulation of the Gibberellin Pathway in Pea. Plant Physiol,2002,130:1974-1982
    90. Palmer C E, Keller W A, Arnison P G. Utilization of Brassica haploids. In:Jain S M, Sopory S K, Veilleux R E. Vitro Haploid Production in Higher Plants. Dordrecht, Netherlands:Kluwer Academic Publishers,1996.173-192
    91. Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991,3:1177-1186
    92. Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes,1997,11:3194-3205
    93. Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P.'Green revolution' genes encode mutant gibberellin response modulators. Nature,1999,400:256-261
    94. Phillips A L, Ward D A, Uknes S, Appleford N E J, Lange T, Huttly A K, Gaskin P, Graebe J E, Hedden P. Isolation and Expression of Three Gibberellin 20-Oxidase cDNA Clones from Arabidopsis. Plant Physiol,1995,108:1049-1057
    95. Phillips AL. Gibberellins in Arabidopsis. Plant Physiol Bioch,1998,36:115-124
    96. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    97. Prina A R, Arias M C, Lainez V, Landau A, Maldonado S. A cytoplasmically inherited mutant controlling early chloroplast development in barley seedlings. Theor Appl Genet,2003,107:1410-1418
    98. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor App1 Genet,2006, 114(1):67-80
    99. Robertson M, Swain S M, Chandler P M, Olszewski N E. Identification of a negative regulator of gibberellin action, HvSPY, in barley. Plant Cell,1998,10:995-1008.
    100.Ross J J, Murfet I C, Reid J B. Gibberellin mutants. Physiologia Plantarum,1997, 100:550-560
    101.Ross J J, O'neill D P, Smith J J, Kerckhoffs L H J, Elliott R C. Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J,2000,21:547-552
    102.Rucker B, Robbelen G. Development of high oleic acid rapeseed. Proceedings of the 9th international rapeseed congress.1995, Cambridge, UK
    103.Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of the phosphorylated repressor for GA signaling in an F-box mutant. Science,2003,299:1896-1898.
    104.Scarth R, McVetty P B E, Rimmer S R, Stefansson B R. Stellar low linolenic-high linoleic acid summer rape. Can J Plant Sci,1988,68:509-511
    105.Shen Y W, Kai Q H, Gao M W. A new thermosensitive radiation induced male-sterile rice line. Rice Genet Newsl,1993,10:97-98
    106.Silverstone A L and Sun T P. Gibberelins and green revolution. Trends Plant Sci, 2000,5:1-2
    107.Silverstone A L, Ciampaglio C N, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell,1998,10:155-169
    108.Singh U P, Prithiviraj B, Sarma B K. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol,2000,148: 591-595.
    109.Sun T. Gibberellin signal transduction. Curr Opin Plant Biol,2000,3:374-380
    110.Teresa C T, Laurencja S, Jan K. An in vitro mutagenesis selection system for Brassica napus L. Proceedings of the 10th international rapeseed congress.1999, Canberra, Australia
    111.Vos P, Hogers R, Bleeker M, Reijians M, VandeLee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414
    112.Wayne M L, McIntyre L M. Combining mapping and arraying:An approach to candidate gene identification. Proc Natl Acad Sci,2002,99:14903-14906
    113.Wolbang C M, Chandler P M, Smith J J, Ross J J. Auxin from the Developing Inflorescence Is Required for the Biosynthesis of Active Gibberellins in Barley Stems. Plant Physiol,2004,134:769-776
    114.Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jian L g, Wang C, Zhai H, Wan J. A Chlorophyll-deficient rice mutant with impaired Chlorophyllide esterification in Chlorophyll biosynthesis. Plant Physiol,2007,145: 29-40
    115.Yamaguchi S, Sun T, Kawaide H, Kamiya Y. The GA2 locus of Arabidopsis thaliana encodes ent-kauerne synthase of gibbeerllin biosynthesis. Plant Physiol,1998,116(4): 1271-1278
    116.Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T. Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis. Plant Cell,2007,19:3037-3057
    117.Zhao Y, Wang M L, Zhang W Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breeding,2000,119:131-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700