用户名: 密码: 验证码:
化学诱导小麦条锈菌毒性突变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是我国小麦上最重要的病害之一,小麦条锈病菌的毒性变异是造成小麦
    品种抗锈性丧失导致病害流行主要原因。关于锈菌的毒性变异机制已提出了多种途径,
    普遍认为突变是产生新毒性基因的主要途径。由于在自然界中尚未发现小麦条锈菌的有
    性态,对由于毒性基因的突变而产生的新小种很难进行深入的遗传分析,所以关于小麦
    条锈菌的毒性变异研究较其它锈菌少,而关于毒性突变研究则更少。本研究应用化学诱
    变剂甲基磺酸乙酯(EMS)对小麦条锈菌夏孢子进行诱变处理,对小麦条锈菌受诱变剂影
    响的各项生物学效应和毒性突变的特点进行研究,主要取得了以下几项结果:
     1. 建立了化学诱导小麦条锈菌毒性突变的优化体系:研究中发现诱变剂对处理当代
    条锈菌夏孢子的各项生物学特性有明显的削弱性影响,使其夏孢子存活力降低,致病力
    减弱和繁殖能力下降。不同处理时间和浓度的夏孢子萌发率经 CurveExpert(1.3)MMF 和
    Harris 两个模型拟合的曲线为倒 S 型,表明小麦条锈菌夏孢子萌发率在 EMS 处理的浓
    度曲线和时间曲线上均有一个最适拟合系数,且夏孢子对低剂量 EMS 十分敏感。据此
    构建的 EMS 对小麦条锈菌毒性突变的优化体系为:室温下,pH=7.0,C=0.03mol/L ,T=6~
    8min。小麦条锈菌夏孢子在此处理环境下的致死率在 80%~90%之间,根据微生物诱变
    筛选最佳诱变剂量的选择标准,上述参数可作为小麦条锈菌化学诱变的主要参量。
     2. 筛选了具有不同毒性变异特点的小麦条锈菌 CY17 和 CY31 突变菌系:CY17 有 5
    个毒性突变菌系17M1~17M5,17M1中9个突变菌株都对早洋发生了无毒性突变;17M2
    对维尔发生了毒性突变;17M3 对南大 2419 发生了毒性突变;17M4 同时对南大 2419
    和水源 11 都发生了毒性突变;17M5 对阿勃、水源 11 也同时为毒性突变。CY31 有 4
    个毒性突变菌系 31M1~31M4,31M1 中 6 个菌株对尤二和 T.E 为毒性突变体,31F14-1
    对丹麦 1 号只为中感,而 31MutS1是 CY32;31M2 对多个品种产生了无毒性突变;31M3
    和 31M4 分别为两个无毒性突变体 31C7-1和 31C7-2,它们在繁殖一代时对其筛选品种中
    四有致病能力,但在繁殖 3~4 代后,其致病力丧失,且对大部分鉴别寄主的反应型也
    随着降低,表明了 EMS 的多位点诱变作用。聚类图表明各突变菌系与其原始菌株的相
    关系数都在 85%以上,每个菌系中都有对不同品种发生多种微小突变的菌株,说明突变
    菌系与原始菌株既有一定的同源关系,又有微小的毒性变异区别,是化学诱变剂 EMS
    诱导单点突变和逐步突变后的结果。而且 CY17 以无毒性突变体居多,CY31 则以毒性
    突变体居多, 表明诱导后的弱毒菌株多为无毒性突变,而强毒性小种则主要为毒性变异。
     3. 研究了突变体与其原始菌株的寄生适合度:发现 CY17 各突变菌株之间的差异主
    要显示在夏孢子的生活能力和夏孢子在小麦叶片上的侵染和扩展能力上。根据贡献值排
    
    
    2 化学诱导小麦条锈菌毒性突变研究
    列的顺序为:17F08-1>17F09-1>17Mut-1>17F09-2>17F15-1>17F15-3>17CK。无毒性突变
    菌株的寄生适合度要高,原始菌株 CY17 的寄生适合度低于各突变菌株。CY31 突变株
    的各寄生适合度则由夏孢子堆长度、潜伏期、产孢期和夏孢子萌发率决定,代表了各突
    变菌系夏孢子的叶面扩张能力,引起发病的能力,夏孢子堆扩展后的衰老速度及夏孢子
    的存活能力。其寄生能力的次序为:31F14-3>31MutS-3>31C13-2>31MutH-1>31F14-2>
    31F14-1>31CK>31C17-1>31MutH-2>31MutS-2>31C7-1。毒性突变株 31F14-3和 31M utS-3
    的生存能力最高,而无毒性突变株 31 C7-1则为最低,原始菌株 31CK 居中,肯定了强致
    病力小种在国内的流行优势。
The studies here were conducted to determine if the chemical mutagen Ethyl Methane
    Sulphonate (EMS) applied to urediospores could alter the virulence of Puccinia striiformis
    and if mutants could detect on rust-resistant screening wheat cultivars. The results of the
    studies were reported as follows:
     1. EMS has extensive biological effects on the viability, pathogencity and reproduction
    of stripe rust. Germination rate of radiated spores was remarkably reduced, its disposal time
    and concentration curve have shown that urediospores of stripe rust were sensitive to lower
    disposal concentration and to longer time. The dose-germination curve were followed MMF
    and Harris mode in CurveExpert (1.3), they were inverse S shape. Implied its has a optimized
    parameter among in the space. On primary leaf of susceptible cultivars inoculated mutated
    urediospres, the latent period of rust infection was extended, rust incidence and severity were
    reduced, reproduction of urediospores of stripe rust decreased, and the host-pathogen
    interaction changed into incompatible with low-infection type. All of responses strengthened
    with the increase of disposal dose. An optimized mutagenic system of wheat stripe rust
    urediospore was designed,The results indicated that when the buffer PH value was7.0 in the
    normal temperature conditions, the uredospore of tripe rust disposed 7-8 minutes with
    0.03mol/L EMS solution the death rate has reached 80% to 90%. This number value adapted
    to the selection criterion of the optimum mutagenic dose of the microbe chemical mutagenesis
    experience value.
     2.Urediospores of patents culture, predominant race CY17-5 and CY31-3 were treated
    by EMS, induce mutant were screened on the Chinese differential cultivars and the
    near-isogenic lines (NILs) of rust. 11 and 8 mutant isolations were obtained with estimated
    mutation rates 10-5~10-6. 5 mutant groups isolate form CY17-5, code 17M1 to 17M5, they
    have 86% similarity with its patents culture. And 4 mutant groups form CY31-3, code 31M1
    to 31M4, using 92% similarity cut-off point. The virulence of the mutants to a set of
    differentials used in Chinese race survey was different from all of the known races of stripe
    rust. Most mutant isolates kept stable virulence such as 17M2 to Wirgilio, 17M3 to Mentana,
    17M4 to Mentana、Suwon11 and 17M5 to Abbonanza、Suwon11, 31M1 were virulent on
    Jubilejina 2 and Trigo Eureka. But races in 17M1 were avirlent on Early Premium, races of
    31M2、31M3 and 31M4 were detected to avirlent on several differential cultivars. The
    virulences of mutants were also surveyed to the near-isogenic lines of stripe rust. From the
    
    
    4 化学诱导小麦条锈菌毒性突变研究
    relative responses of Chinese cultivars and NILs, the resistant genes of former can be
    conclusion.
     3.The relative parasitic fitness of 16 mutants was evaluated on susceptible cultivars in
    this study. The results showed that three primary element attributed to CY17 races adaptability,
    which represent sporulation capacity, the speed of growth and senescence of colony
    respectively. CY31 was decided by urediospore germination ability, sporulation speed and the
    size of uredosporus. According to the principal components analysis, the sequence of CY17
    fitness was 17F08-1>17F09-1>17Mut-1>17F09-2>17F15-1>17F15-3>17CK, the avirulent
    mutants, 17F08-1 and 17F09-1 have higher vigor. Otherwise the order of CY31, 31F14-3>
    31mutS-3>31C13-2>31MutH-1>31F14-2>31F14-1>31CK>31C17-1>31MutH-2>31MutS-2
    >31C7-1, 31F14-3 and 31MutS-3 have more energy than the avirulent ones.
     The results suggested that the technique mutation of wheat stripe rust is feasibility and
    credibility. Mutation is important mechanism of virulence variation in asexual population of
    rust fungi.
引文
1. 袁红旭.禾顶囊壳(Gaeumannomyces graminis)致病性的紫外诱变及遗传学研究.西北
     农林大学博士论文.1998.
     2. 刘树俊,魏荣宣等. 稻瘟病菌致病突变体的REMI诱变与鉴定.生物工程学报.1998.
     (14)3:254-259.
     3. 张文荟,周益军,范永坚,程兆榜,吴淑华.稻瘟病菌限制酶介导整合(REMI)转化的致
     病性诱变.南京师大学报(自然科学版) 2002.(25)2:17-21.
     4. 李宏宇,潘初沂,陈涵等.稻瘟病菌T-DNA插入方法优化及其突变体分析 生物工程
     学报.2003.(19)4:419-423.
     5. 安学丽,蔡一林,王久光,王国强,孙海燕.化学诱变及其在农作物育种上应用.核农学
     报.2003.17(3):239-242.
     6. 鲁国东,黄大年.植物病原菌无毒基因分离及特性的研究进展. 生物工程进展.1994.
     14. (4):37-40.
     7. 查冬兴,唐纪良,马庆生.转座子诱变甘蓝黑腐病菌所获胞外多糖突变体的类型.广西
     科学.1997.4(1):34~37.
     8. 陈功友,张学民,张性娣等.水稻条斑病菌的化学诱变及hrp基因突变体的功能互补
     研究.农业生物技术学报.2000.8(2):117-122.
     9. 陈功友,王金生.植物病原细菌致病性决定因子植物病理学报.2002.32(1): 1-7.
     10. 陈功友,潘小玫,王金生.水稻白叶枯病菌化学诱变hrp基因突变体及相关性状的研究.
     植物病理学报,2001,31(3):199-207.
     11. 王金生.分子植物病理学.北京:中国农业出版社.1999.
     12. 王刚.稻瘟菌插入突变体库的构建及产孢缺陷兼生长缓慢型突变体的分子遗传学研
     究.西北农业大学博士论文. 2002.
     13. 井金学.紫外线诱导小麦条锈病菌毒性突变的研究.西北农业大学博士论文.1992.
     14. 井金学,商鸿生,李振岐. Co-γ射线对小麦条锈菌夏孢子的生物学效应.核农学
     60
     报.1992.6(2):116-120.
     15. 井金学,商鸿生,李振岐.紫外线照射对小麦条锈菌生物学效应的研究.植物病理学报.
     1993.23(4):299-304.
     16. 单卫星,陈受宜,吴立人等.我国小麦条锈菌模式菌系的DNA指纹分析.科学通报.
     1996.41(15):1427-1430.
     17. 单卫星.小麦条锈菌分子遗传标记的建立.西北农业大学博士论文.1995.
     18. 单卫星,陈受宜,张耕耘等.小麦条锈菌一个中度重复DNA系列家族的鉴定.中国科学
     (C辑).1997.27:241-246.
     19. 单卫星,陈受宜,吴立人等.中国小麦条锈菌流行小种的RAPD分析.中国农业科
     学.1995,28:1-7.
    
    
    参考文献41
    20. 单卫星,李振岐.PCR技术在植物病原物和植物抗病研究中的应用.植物生理通讯.
     1995.31:137-143.
    21. 曾士迈.植物病原菌寄生适合度测定方法的研究(以小麦条锈菌为例).植物病理学报.
     1996.26(2): 97-104.
    22. 王凤乐,商鸿生,李振岐.小麦条锈菌相对寄生适合度继代测定方法的探讨.植物病理
     学报.2000.30(4):301-305.
    23. 万安民,牛永春,吴立人等.1991~1996年我国小麦条锈菌生理转化研究.植物病理学
     报.1999.29(1):15-21.
    24. 杨华安,吴立人.我国小麦条锈菌生理小种毒性基因及致病性特点分析.植物病理学
     报.1990.20(3):213-217.
    25. 王凤乐,吴立人,万安民.中国小麦条锈菌群体毒性变异研究.中国农业科学.
     1995.28(1):8-14.
    26. 商鸿生.小麦条锈菌群体毒性结构和变异.西北农学院学报.1985.3:70-82.
    27. 杨华安,R.W.Stubbs.中国小麦条锈菌鉴别寄主抗条锈基因初步分析.植物保护学报.
     1990.17(1):67-72.
    28. 李振岐,商鸿生.小麦锈病及其防治.上海.上海科技出版社.1989.
    29. 章名春.工业微生物诱变育种.北京.科学出版社. 1984.
    30. 王洪凯,林福呈,李德葆.稻瘟病菌致病相关基因研究进展.菌物系统.2002. 21(3):
     459-464.
    31. 蓝海燕,陈正华.植物与病原真菌互作的分子生物学及其研究进展.生物工程进展.
     2000.20(4):16-22.
    32. 周晓罡,朱立煌,李进斌等.稻瘟病菌细菌人工染色体(BAC)基因组文库的构建.云南
     农业大学学报. 2002.17(4):3631-334.
    33. 蔡新忠,徐幼平,郑重.植物病原物无毒基因及其功能.生物工程学报.2002.18(1):5-9.
    34. 张修国,邓晖,李雪玲等.植物病原微生物的分子检测与抗病基因克隆的研究.山东农
     业大学学报.(自然科学版).2001.32(1): 99-102.
    35. 李振岐,曾士迈.中国小麦条锈病.北京.中国农业出版社.
    36. 李振岐,康振生,陆和平,马青.小麦条锈菌的异核作用研究.第三届海峡两岸植物
     病理学学术讨论会论文.1997.1-7.
    37. 杨作敏,谢超杰,孙其信.后条中32时期我国小麦条锈抗源之现状,作物学报.
     2003.29(2): 161-168.
    38. 张传飞.小麦条锈菌(Puccinia striiformis West)主要生理小种相对寄生适合度的研究.
     西北农业大学硕士论文. 1988.
    39. 祝丽英,池书敏.甲基磺酸乙酯(EMS)在创造玉米新种质中的应用[J].玉米科学, 
     2001,9 (3): 14 -17
    
    
    42 化学诱导小麦条锈菌毒性突变研究
     40. Kassanis, B., I. MacFarlane. Interaction of virus strain, fungus isolate, and host species
     in the transmission of tobacco necrosis virus.Virology.1965. 26: 603-612.
     41. Griffiths,D.J.,and Carr,J.H. induced mutation for pathogenicity in Puccinia coronata
     avenae.Trans.Br.Mycol. 1961.44:601-607.
     42. Flor H H. Mutations in flax rust induce by ultraviolet radiation. Science.1956. 124:
     888-889.
     43. Flor H H.X-ray induced mutations for pathogenicity in the F2 of race 22×1 of the flax
     rust fungus. Phytopathology. 1957.47:11.
     44. Flor H H. Mutation to wider virulence in Melampsora Lini [J].Phytopathology J, 1958,
     48:297-301.
     45. Flor H H. The inheritance of X-rays induced mutation to virulence in urediospore
     culture of race 1 of Melempsora lini. Phytopathology 1960 50: 603-605.
     46. Schwinghamer, E. A. radiation-induced mutations in race 1 of the flax rust fungus.
     Phytopathology. 1957. 47:31.
     47. Luig N H. A high reversion rate for yellow urediospore color in Puccinia graminis f.sp
     tritici [J]. Phytopathology J, 1967, 57:1091-1093.
     48. Luig N H. Mutation studies in Puccinia graminis tritici. Proceedings of the 5th
     International wheat Symposium.1979.pp.533-539.
     49. Statler G D. Mutations affecting virulence in Puccinia recondite [J]. Phytopathology J,
     1985, 75:565-567.
     50. Statler G D. Mutations to virulence and avirulence in Melampsora Lini. Phtopathology.
     1985a. 75:771-773.
     51. Teo C E, Baker, E.P., Mutants of Puccinia gramins avenae induced by Ethyl Methane
     Sulphonate[J] .Nature J.1966 , 2 (207) :632-633.
     52. Teo C E, Baker, E.P., Mutagenic effects of Ethyl Methane Sulphonate on the oat sten
     rust pathogen (puccinia graminis f.sp.avenae).Proc.inn.Soc.N.S.W. 1975. 99:166--173.
     53. Chakraborty BN, Patterson NA. Kapoor MAn electroporation-based system for
     high-e|ciency transformation of germinated conidia of flamentous fungi. Can J
     Microbiol. 1991. 37: 858-863.
     54. Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, NunokawaY. Transformation of
     intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem .1994.58:
     2224-2227.
     55. Herzog R.W. Daniell H. Singh. N. K. Lemke P. A. A comparative study on the
     transformation of Aspergillus nidulans by microprojectile bombardment of conidia and
     a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl
    
    
    参考文献 43
     Microbiol Biotechnol. 1996. 45: 333-337.
    56. Schieltl R H et al. Integration of DNA fragments by illegitimate recombination in
     Saccharmyces cerevisiae. Proc. Natl. Acad.Sci.USA, 1991, 88:7585-7589.
    57. Lu,S. Tagged mutations at the Toxl locus of Cochliobolus heterostrophus by restriction
     enzme-mediated integration[J].Proc Nat Acad Sci USA,1994,91:12649-12653.
    58. Chaure P., Gurr S. J. and Spanu P. Stable transformation of Erysiphe graminis, an
     obligate biotrophic pathogen of bar-ley. Nat. Biotech. 2000. 18: 205–207.
    59. Christiansen SK, Knudsen S, Giese H. Biolistic transformation of the obligate plant
     pathogenic fungus, Erysiphe graminis f. sp. hordei. Curr Genet (1995) 29:100-102.
    60. Hinnen A., Hicks J. B. and Fink G. R. Transformation of yeast chimaeric ColE1
     plasmid carrying LEU2. Proc. Natl Acad. Sci. USA 1978. 75: 1929–1933.
    61. Mishra N. C. and Tatum E. L. Non-mendelian inheri-tance of DNA-mediated inositol
     independence in Neurospora. Proc. Natl. Acad. Sci. USA 1973. 70: 3875–3879.
    62. Tam L.-W. And Lefebvre P. A. Cloning of flagellar genes in Chlamydomonas
     reinhardtiiI by DNA insertional mutagenesis. Genetics. 1993. 135: 375–384.
    63. Tilburn J., Roussel F. and Scazzocchio C. Insertional in-activation and cloning of the
     wA gene of Aspergillus nidulans. Genetics 1990. 126: 81–90.
    64. Mullins E. D., Kang S. Transformation: a tool for studying fungal pathogens of plants.
     CMLS, Cell. Mol. Life Sci. 58 (2001) 2043–2052.
    65. Schillberg S, Gross P, Tiburzy R. Isolation and characterization of the EF-1 alpha gene
     of the flamentous fungus Puccinia graminis f. sp.tritici. Curr Genet. (1995).
     27:367-372.
    66. Gates J.E, Loegering W.Q. Mutation to wider virulence in Puccinia graminis f. sp.
     tritici: evidence for the existence of loci which allow the fungus to overcome several
     host stem rust resistance genes simultaneously. Appl Environ Microbiol. (1991).
     57:2332-2336.
    67. Bhairi S.M, Staples R.C. Transient expression of the b-glucuronidase gene introduced
     into Uromyces appendiculates uredospores by particle bombardment. Phytopathology.
     (1992) 82: 986-989.
    68. Judelson H.S, Coffey M.D, Arredondo F.R, Tyler B.M. Transformation of the
     oomycete pathogen Phytophtora megasperma f. sp. glycinea occurs by DNA integration
     into single or multiple chromosomes. Curr Genet. (1993). 23:211-218.
    69. Schillberg S., Tiburzy R, Fischer R. Transient transformation of the rust fungus
     Puccinia graminis f. sp. Tritici. Mol Gen Genet (2000) 262: 911-915.
    70. N eufferM G. M utagenesis. In: FreelingM &W albot V (eds). The Maize Handbook.
    
    
    44 化学诱导小麦条锈菌毒性突变研究
     New Yo rk: Springer2002.
     71. Bird R and Neuffer M G. Induced mutations in maize. In: J a nick J (ed.) Plant Breeding
     Review s (5). New York Van No strand Reinhold, 1987, 139-180.
     72. Rossmann, M. G. The evolution of RNA viruses. Bioessays 1987.7:99–103.
     73. Virol.J. Identification of specific cucumber necrosis virus coat protein amino acids
     affecting fungus transmission and zoospore attachment .Journal of Virology. Jun 2001;
     75: 5576 - 5583.
     74. Keen,N.T. Annu.Rev.Genet. 1990 a.24:447-463.
     75. Lindgren P B. The role of hrp genes during plant-bacterial interactions [J].Annu. Rev.
     Phytopathol. , 1997, 35:129-152.
     76. Kelemu, S. et al. Mol. plant-Micobe Interact.1990. 3:59-65.
     77. Hopkins, C. M. et al. Mol. plant- Micobe Interact.1992. 5:451-459.
     78. Lev S., Sharon A., Hadar R., Ma H. and Horwitz B. A. A mitogen-activated protein
     kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation,
     appres-sorium formation and pathogenicity: diverse roles for mitogen-activated protein
     kinase. Proc. Natl. Acad. Sci. USA. (1999) 96: 13542–13547.
     79. J. E. Hamer, B. Valent, and F. G. Chumley Mutations at the SMO Genetic Locus
     Affect the Shape of Diverse Cell Types in the Rice Blast Fungus Genetics, Jun 1989;
     122: 351 –361.
     80. Szabo G. and Schablik M. Behavior of DNA-induced inositol-independent
     transformants of Neurospora crassa in sexual crosses. Theor. Appl. Genet. (1982) .61:
     171–175.
     81. Hamer, J. E. Valent, B. and Chumley, F.G. Mutations at the SMO genetic locus affect
     the shape of diverse cell types in the rice blast fungus. Genetics, Jun 1989; 122: 351 –
     361.
     82. Kang S, Sweigard JA,Valent B. The PWL host specificity gene family in the blast
     fungus Magnaporthe grisea.MPMI.1995.8:939-948.
     83. Jia.Y,McAdams. SA, Bryan,G. T, et al. Direct interaction of resistance gene and
     avirulence gene products confers rice blast resistance. The E MBO Jourrnal, 2000.19
     (15): 4004-4014.
     84. Mark L. Farman , Sally A. Leong. Chromosome walking to the AVR1-CO39 avirulence
     gene of Magnaporthe grisea: discrepancy between the physical and genetic maps.
     Genetics, Nov 1998; 150: 1049 - 1058.
     85. R. Linning, D. Lin, N. Lee, M. Abdennadher, D. Gaudet, P. Thomas, D. Mills, J. W.
     Kronstad, and G. Bakkeren. Marker-based cloning of the region containing the UhAvr1
    
    
    参考文献 45
     avirulence gene from the basidiomycete barley pathogen Ustilago hordei. Genetics, Jan
     2004; 166: 99 –111.
    86. Yulin Jia, Sean A. McAdams, Gregory T. Bryan, Howard P. Hershey, and Barbara
     Valent. Direct interaction of resistance gene and avirulence gene products confers rice
     blast resistance. EMBO J. Aug 2000; 19: 4004 –4014.
    87. Peter N.Dodds. Gregory J.Lawrence. Ann-Mare Catanzariti. Michael A.Ayliffe and
     Jeffery G.Ellis. The Melampsora lini AvrL56 avirluence genes are expressed in
     haustoria’s and their products are recognized inside plant cells. The Plant Cell.
     2004.16.755-768.
    88. Gassner,G.,and staib,W.,1932. Uber mutataionen in einer biologoschen rasse von
     Puccinia glumarum tritici (Schmidt) Erikss and Henn.Z. Indukt Abstammungs and
     vererbungslehre.43: 155-180.
    89. Watson,I.A., Luig. N. Progressive increase in virulence in Puccinia graminis f.sp.tritici.
     Phytopathology. 1968.58:70-73.
    90. Samborski,D.J.,and Dyck,P.L., Inheritance of virulence in wheat leaf rust on the
     standard differential wheat varieties. Can.Genet.Cytol. 1968.10:24-32.
    91. Samborski,D.J., and Dyck. P.L. Inheritance of virulence in Puccinia recondite on six
     backcross lines of wheat with single genes for resistance to leaf rust. Can.H.Bot.
     1976.54:1666-1671.
    92. Green,G.J. A color mutation, its inheritance and the inheritance of pathogenicity in
     Puccinia graminis Pers.CAAN.j.Bot. 1964.42:1643-1664.
    93. Green,G.J. Physiologic races of wheat stem rust in Canada from 1919 to 1969.
     Can.J.Bot. 1971.49:1575-1588.
    94. Green,G.J. Virulence changes in Puccinia graminis f.sp.tritici in Canada.
     Can.J.Bot.1975 53: 1377-1386.
    95. Stubbs,R.W., Puccinia striiformis West.f.sp.tritici, The evolution of the genetic
     relationship of host and parasites, Abst,istint. Congr. Plant pathol.1968.196.
    96. Stubbs,R.W.,Artificial mutation in the study of the relationship between races of yellow
     rust of wheat. Proc. Eur . Mediterr. Cereal rusts Conf.2nd. 1968. pp. 60-62.
    97. Stubbs, T. W., Puccinia striiformis West.f.sp.tritici. The evolution of the genetic
     relationship of host and parasite. Int. Congress plant patholoty, 1st, 1968. Abstracts,pp.
     198.
    98. Jonson,T. Newton M., The inheritance of mutation character in Puccinia graminisCan.J.
     Res. C.1943.21:205-210.
    99. Jonson,T., Man-guided evolution in plant rust. Science 1961.133:357-362.
    
    
    46 化学诱导小麦条锈菌毒性突变研究
     100. Jonson. R., Priestley, T. H., Taylor, E. C., Occurrence of virulence in Puccinia
     striiformis for Compare wheat in England. Cereal Rusts Bull.1978. 6:11-13.
     101. Albert H. Ellingboe and John R. Raper. Somatic recombination in schizophyllum
     commune.Genetics, Jan 1962.47: 85 - 98.
     102. John F. Leslie and Namboori B. Raju. Recessive mutations from natural populations
     of neurospora crassa that are expressed in the sexual diplophase. Genetics, Dec 1985;
     111: 759 - 777.
     103. Newton,M., Johnson. T. Color mutations in Puccinia graminis tritici (Pers.)Erikss
     and Henn. Phytopathology 1927. 80:221-223.
     104. Schwinghamer. E.A. The relation between radiation dose and the frequency of
     mutations for pathogenicity in melampsora lini. Phytopathology. 1959.49:260-269.
     105. Newton A C, Caten C E., Johnson R. Variation for isozyme and double-stranded
     RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant pathology.
     1985,34:235-247.
     106. Zhang R, DiCkinson M J, Pryor,A. Double-strand RNAs in the rust fungi.Annu Rev
     Phytopathol. 1994,32:115-133.
     107. Dickinson M.J, Pryor A. Isometric virus-like particles encapsodate the
     double-Stranded RNA found in Puccinia striiformis,Puccinia recondite and Puccinia
     sorghi. Can J Bot.1989.67:3 420-3425.
     108. Chen, X. M., Line, T. F., and Leung, H. relationship between virulence variation and
     DNA polymorphism in Puccinia striiformis. Phytopathology 1993.83:1489-1497.
     109. Pierre H.G.M. De Wit Pathogen avirulence and plant resistance: a key role for
     recognition. Trends in plant science 1997.2(12): 452-458.
     110. D.W.Gabriel, N. Lisker, and A. H. Ellingboe. The induction and analysis of two
     classes of mutations affecting pathogenicity in an obligate parasite. 1982.72:1026-1028.
     111. Eli. A Stahl and John G Bishop. Plant-pathogen arms races at the molecular level.
     Current opinion in plant biology. 2000.3:299-304.
     112. Frank F White, Bing Yang and Lowell B Johnson. Prospects for understanding
     avirulence gene function. Current opinion in plant biology. 2000,3:291-298.
     113. Zambino, P. J., Kubelik, A.R. and Szabo, L. J. Gene action and linkage of avirulence
     genes to DNA markers in the rust fungus, Puccinia graminis. Phytopathology
     90:819-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700