用户名: 密码: 验证码:
生物质与天然气基及其互补的多联产系统集成开拓研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工、动力和环境等领域与学科的交叉已经成为当代能源科学发展的趋势。寻求资源、能源高效利用的有效途径与方法,逐步成为人类可持续发展的重要问题之一。本学位论文依托国家自然科学基金及973项目等科研任务,研究单一能源输入以及多能源互补的多联产系统中的若干问题。主要包含以天然气重整为案例分析化学能梯级利用在化学反应过程中的应用,以及基于此提出的新型多联产系统开拓研究两个层面。
     从化学反应动力学结合化学热力学角度出发,建立了天然气重整过程所需要外界提供的时间能耗与反应进度之间的关系式;从吉布斯自由能前后变化角度出发,分析了重整过程吉布斯自由能的变化与反应进度之间的关系。计算与分析结果表明,当重整率比较高(>0.6)时,单位天然气重整所需要的能耗和时间大幅增加,而吉布斯自由能将大幅降低,这将会导致单位天然气的平均重整代价骤然增加。这种现象普遍存在于其它很多基元反应非零次方的化学反应过程,可以将适度反应潜在节能拓延其应用范围到其它化工生产领域以及动力领域,通过耦合化工与动力两个生产过程,可以突破传统化工系统追求单一产品转化率所带来的单位产品高能耗的弊端,实现燃料化学能、物理能的综合梯级利用。
     研究提出天然气部分重整的甲醇动力串联型多联产系统。该系统的特点为:依据化学能梯级利用原则,该系统采用了天然气部分重整,降低单位合成气的生产能耗;根据“组分对口、分级转化”系统集成原则,将合成气中适合甲醇生产成分用于化工生产进行资源化利用,剩余成分作为动力系统燃料进行能量化利用。对此系统进行火用平衡分析表明系统的关键过程为重整过程和甲醇合成过程,并通过图像火用(EUD)分析揭示过程内部能量释放、交换以及蕴含的节能潜力。与分产系统进行性能比较,采用该多联产方式生产同样的甲醇和电力时,可以实现节能5-10个百分点。针对可再生能源中生物质能所特有的碳氢结构特点,提出了以生物质气化为龙头的甲醇动力串联型多联产系统。该系统将化工生产过程与热力过程有机结合起来,通过先资源化利用后能量化利用逐级释放生物质能,从而实现了生物质化学能、物理能的梯级利用。与生物质基甲醇分产与动力分产火用效率仅有44%和41%相比,该多联产系统通过调节未反应气的循环量,在输出化动比0.6-1.8之内,能够获得7%-10%的节能率以及44%-49%的系统火用效率。
     根据天然气资源和生物质能源二者不同碳氢比例成分特点,提出了天然气与生物质互补的甲醇动力串联型多联产系统(包含两种方案)。在该多联产系统中将天然气—水蒸气部分重整造气和生物质气化造气结合起来,通过纯物理混合的方式实现了甲醇合成气的最佳碳氢配比,并利用适度反应潜在的节能优势耦合了甲醇生产与电力生产过程。不但实现了天然气和生物质的碳氢组分互补,还实现了合成气化学能的梯级利用。对该多联产系统进行性能分析表明,在甲醇合成气一次性通过系统中,天然气与生物质的输入比在0.5-8范围内变化时,系统能够获得8-10%的节能率;在未反应气采取部分循环时,系统能获得9.5%上的节能率。
Synthetically combining the power generation,the chemical production andenvironment protection is the trend and character of the development of energy science.Searching the effective methods to make good use of resources and energy has becomevery important for continuous development.Focusing on this objective,the main study ofthis dissertation proposes the novel polygeneration systems based on natural gas andbiomass individually and on both of them as co-feed.The work was supported by theNational Natural Science Foundation of China and the Hi-tech Research and DevelopmentProgram of China,the researches include the mechanism of natural reforming,which willreveal the cascaded utilization of chemical energy during the chemical reaction,and theproposal of the novel polygeneration systems based on that principle.
     From the viewpoint of chemical kinetics and thermodynamics,the relation formula ofthe energy and time consumption supplied by outside with the extend of reaction was setup;moreover,from the viewpoint of Gibbs free energy,the relation of the change of Gibbsfree energy and the extend of reaction was also analysied.The results of calculation andanalysis shown that,when the extend of reaction over 0.6,the energy and timeconsumption will grow rapidly,and at the same time,the Gibbs free energy will decreasevery quickly.That is to say,the costs for per mole methane reforming will grow very highwith a higher extend of reaction.The phenomenon is very common in many reactionswhose elementary reaction with nonzero capital,thus the mechanisms can be extended itsrange of application,such as the chemical industry and power field.Coupling the chemicalprocess and power generation,can reduce the high energy and time consumption of perproduct in traditional chemical process for purchasing very high conversion ratio of rawmaterials,and realize the cascaded utilization of fuel.
     A new polygeneration system based on natural gas partial reforming is proposed, which produces methanol and power with tandem type.The characters of this systemincludes:Based the principle of cascaded utilization of chemical energy,this systemadopts partial reforming of natural gas,which aims to reduce the energy consumption forper mole syngas production;Based on the principle of cascade conversion of materialaccording to the compositions,a part of syngas that suites for chemical production is usedin the chemical process and the left is sent to gas turbine as fuel.By the analysis of systemexergy balance,found out that,the key processes are reforming process and methanolsynthesis process,more over,the EUD methodology is selected in order to reveal the innerenergy release,exchange and energy saving potential.Comparing with individual systems,this polygeneration system can realize 5-10% energy saving potential.According to thecomposition characters of biomass,a new polygeneration system based on biomassgasification is proposed,which produces methanol and power.This system coupled themethanol syntheis subsystem and power generation subsystem,so as to realize the cascadeutilization of the chemical energy in gasification gas.Comparing with the individualsystems,this polygeneration system can realize 7%-10% energy saving potential andobtain exergy efficiency between 44%-49%.The energy in biomass can be released stepby step in this system,which will bring the high effective utilization of bio energy.
     Taking into account of the different carbon and hydrogen ratio in natural gas andbiomass,a new polygeneration system with two schemes based on biomass and naturalgas as co-feed is presented here.By coupling the partial reforming of natural gas andgasification of biomass to produce syngas,the best ratio of carbon to hydrogen formethanol production can be obtained easily without any energy penalty.More over,thissystem can realize not only the complementation of natural gas and biomass but also thecascaded utilization of syngas by coupling chemical process and power generation.Thesystem performance shown that,the system with the syngas once through scheme,cansave 8%-10% energy when the input ratio of natural gas to biomass range from 0.5 to 8;with the partial recycling of unreacted syngas scheme,the system can realize energysaving ratio at least 9.5%.
引文
[1]中国科学院能源战略研究组.中国能源可持续发展战略专题研究.北京:科学出版社2006
    [2]周凤起,周大地.中国中长期能源战略.北京:中国计划出版社,1999
    [3]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统.第一版,北京:科学出版社,2008
    [4]Yan.J.Y.Biomass gasification power generation technologies-The state of the art of reserch,development and demonstration,Technical report,Department of Chemical Engineering and Technology Royal Institute of Technology.1998
    [5]Peter M.Energy production from biomass:Part 1.Overview of biomass,Biosource Technology.2002,83(1):37-46
    [6]Yah J.Y,Alvfors P.,Eidensten L.et al.A Future for Biomass.Mechanical Engineering.1997,119(10):94-96
    [7]Peter M.Energy production from biomass:Part 3.Gasification technologies,Biosource Technology.2002,83(1):5-63
    [8]Belgiorno V.Energy from gasification of solid fuel.Waste Management.2003,23(1):1-15
    [9]袁振宏,吴创之等生物质能利用原理与技术.第一版北京:化学工业出版社,2005
    [10]马隆龙,吴创之等生物质气化技术及其应用.北京:化学工业出版社,2003.
    [11]Stahl K,Neergaard M.IGCC power plant for biomass utilisation,Va¨rnamo,Sweden.Biomass Bioenerg.1998,15(3):205-211.
    [12]Demirbas A.Biomass resources for energy and chemical industry energy.Educ.Sci Technol.2001,5(1):21-45
    [13]Baker E G.,Elliott D.C.Transportation fuels from wood.Altern.Energy Sources.1983,3(3):363-376
    [14]Singh B.P.,Panigrahi M.R,Ray H.S.Review ofbiomass as a source of energy for India.Energy Sources.2000,22(7):649-58
    [15]Richard L.B,Ralph P.O.Biomass-fired power generation.Fuel Processing Technology.1998,54(1):1-16
    [16]Hall D.O,Rosillo C.F,Groot P.Biomass energy lessons from case studies in developing countries.Energy Policy.1992,20(1):62-73
    [17]Hughes E.Biomass co-firing:economics,policy and opportunities.Biomass Bioenergy.2000,19(6):457-65
    [18]Haykiri A.H.Combustion characteristics of different biomass materials.Energy Convers Manage 2003,44(1):155-62
    [19]Tillman D.A.Wood as an energy resource.New York:Academic Press.1978
    [20]Hughes E.E,Tillman D.A.Biomass cofiring:status and prospects 1996.Fuel Process Technol 1998,54(1 ):127-42
    [21]Wu C.Z,Huang H,Zheng S.P,Yin X.L.An economic analysis of biomass gasification and power generation in China.Bioresource Technology.2002,83(1):65-70
    [22]Yuan Z.H,Wu C.Z,Huang H,Lin G.F.Research and development of biomass energy in China.Energy Technol Policy.2002,1(1/2):108-144
    [23]Baker E.G,Brown M.D.Catalytic steam gasificaiton of bagasse for the production of methanol.Energy Biomass Wastes.1984,23(8):651-674
    [24]Hamelinck C.N.,Van H.G.,Faaij A.P.C.Ethanol from lignocellulosic biomass:techno-economic performance in short-,middle-and long-term.Biomass and Bioenergy.2005,28(4):384-410
    [25]Demirbas A.Biomass resources for energy and chemical industry.Energy Edu Sci Technol.2000,5(2):21-45
    [26]Demirbas A.Yields of oil products from thermochemical biomass conversion processes.Energy Convers Manage.1998,39(3):685-690
    [27]Plzak V,Went H.Energetic utilizaiton ofbiomass.Chem.Ing Tech.1992,64(12):1084-1095
    [28]刘艳阳生物质热裂解质取胜生物油的实验研究.[硕士学位论文].吉林:吉林农业大学.2005
    [29]陈森生物质热解特性及热解动力学研究.[硕士学位论文].南京:南京理工大学.2005
    [30]张洪岗固体载热体催化气化生物质制氢工艺研究.[硕士学位论文].大连:大连理工大学.2005
    [31]蒋剑春生物质热化学转化行为特性和工程化研究.[博士学位论文].江苏:中国林业科学研究院.2003
    [32]吕鹏梅,熊祖鸿,常杰等生物质催化气化制取富氢燃气的研究.环境污染治理技术与设备.2003,4(11):31-34.
    [33]毛肖岸,郝小红等超临界水中纤维素气化制氢的实验研究.工程热物理学报.2003,24(3):388-390
    [34]王艳辉氢能及制氢的应用技术现状及发展趋势.化工进展.2001.(1):6-8
    [35]小林由则,家幡达雄,前田隆之等生物质气化制造甲醇体系的开发.三菱重工技报.200l,38(2):108-111
    [36]Phillips C.M.,Kinoshita D.R.Thermochemical production of methanol from biomass in Hawaii.Applied Energy.1990,35(3):167-175
    [37]李昌珠,蒋丽娟等生物柴油-绿色能源.第一版.北京:化学工业出版社,2005
    [38]Jame R.Will the Global Methanol Market Ever Settle down?Asia methanol Conference,Kual a Lumpur,Malysia.1999
    [39]贺黎明,沈召军甲烷的转化和利用.北京:化学工业出版社,2005
    [40]黄军军,方梦祥,王勤辉等天然气利用技术及其应用.能源工程.2004,(1):24-27
    [41]汪寿建等编天然气综合利用技术.北京:化学工业出版社,2003.
    [42]齐国祯,谢在库等煤或天然气经甲醇制低碳烯烃工艺研究新进展.现代化工.2005,25(2):9-13
    [43]Pisarenko E.V.,Pisarenko V.N.,Abaskuliev J.A.Method of methanol production [P].RU 2002,2:198-838
    [44]Pisarenko V.N.,Abaskuliev J.A.,Kosunov O.A.Method of methanol production[P].RU:2001,2:188-790
    [45]林汝谋,金红光燃气轮机发电动力装置.第一版,北京:中国电力出版社.2004
    [46]郑丹星,陈斌,齐云等新型氨吸收式动力/制冷负荷循环的热力学分析.工程热物理学报.2002,23(5):20 1-204
    [47]Palsson J,Arriagada J,Moiler B.F.SOFC systems with CO2 capture.5th European SOFC Forum,Lucerne,Switzerland.2002,1065-1074
    [48]Hirschenhofer J.H.,Staffer D.B.,White J.S.Carbon dioxide capture in fuel cell power systems International Energy Conversion Engineering Conference,New York.1994,1120-1125
    [49]Jin H.G.,Ishida M.Development of a novel chemical-looping combustion:Synthesis of a looping material with a double metal oxide of CoO-NiO.Energy&Fuels.1998,12(6):1272-1277
    [50]Ishida M,Jin H.G.A new advanced power-generation system using chemical-looping combustion.Energy.1994,19(4):415-422
    [51]Ishida M.,Jin H.G.Chemical-looping combustion power generation plant system.US Patent 5,447,024,1995
    [52]Ishida M.,Jin H.G.CO2 recovery in a power plant with chemical looping combustion.Energy Convers.Manag.1997,38(6):187-192
    [53]Ishida M.,Jin H.G.Greenhouse gas control by a novel combustion:no energy penalty and no CO_2 separation equipment,Greenhouse Gas Control Technologies.1999,627-632.
    [54]Jin H.G,Ishida M.Reactivity study on a novel hydrogen fueled chemical-looping combustion,Int.J.Hydrogen Energy.2001,26(8):889-894
    [55]郑丹星化学热泵及其开发现状.化工进展.1988,(1):16-22
    [56]Jin H.G.,Ishida M.Graphical exergy analysis of complex cycles.Energy.1993,18(6):615-625
    [57]蔡尔辅,陈树辉化工厂系统设计.第二版,北京:化学工业出版社,2004
    [58]金红光,刘泽龙,江丽霞等广义总能系统开拓研究进展.中国学术期刊文摘(科技快报).2000,(8):59-68
    [59]金红光,王宝群,刘泽龙,郑丹星化工与动力广义总能系统的前景.化工学报.2001,52(7):565-571
    [60]金红光,高林等煤基化工与动力多联产系统开拓研究.工程热物理学报.2001,22(4):397-40l
    [61]倪维斗,郑洪弢,李政,江宁多联产能源系统.中国能源.2003,(2):7-10
    [62]高林.煤基化工-动力多联产系统开拓研究[博士学位论文]北京:中国科学院2005
    [63]倪维斗,郑洪驶,李政以多联产为支撑点的“合成气城市”规划-煤炭城市的可持续发展.中国人口资源与环境.2003,13(1):39-43
    [64]Jackson R.G.Polygeneration System for Power and Methanol Based on Coal Gasification.Coal Conversion.1989,(3):60-64.
    [65]McGowan F.Controlling the greenhouse effect:the role of renewables.Energy Policy.1991,19(2):111-118
    [66]Baker A.J.Wood Fuel Properties and Fuel Products from Woods.In.Fuelwood,management and utilisation seminar.Proceedings.East Lansing,MI:Michigan State University.1983,14-15
    [67]Mollersten K.,Yan J.Y.,Moreira J.R.Potential market niches for biomass energy with CO_2 capture and storage—opportunities for energy supply with negative CO_2 emissions.Biomass and Bioenergy 2003,25(3):273-85
    [68]Marrison C.I.,Larson E.D.Cost versus scale for advanced plantation-based biomass energy systems in the USA and Brazil.In:Proceedings of the Second Biomass Conference of the Americas.National Renewable Energy Laboratory NREL,Golden,CO,USA.1995
    [69]Perlack R.D.,Wright L.L.Technical and economic status of wood energy feedstock production.Energy.1995,20(4):279-284
    [70]Wooley R.,Ruth M.,Glassner D.,Sheehan J.Process design and costing of bioethanol technology:a tool for determining the status and direction of research and development.Biotechnology Progress.199,15(5):794-803
    [71]洪慧燃料化学能与物理能综合梯级利用的热力循环.[博士学位论文].北京:中国科学院,2004
    [72]Buck R.,Abele M.,et al.Receiver for solar-hybrld gas turbine and CC systems.Proc.of 10 th Solar PACES Int.Symp.Solar Thermal.Sydney.Australia.2000,95-100
    [73]Romero M.,Buck R.,Pacheco J.E.An update on solar central reveiver systems,projects and technologies.ASME J.Solar Energy Engineering,2002,124(2):98-109
    [74]Tamme R.,Buck R.,Epstein M.,etal.Solar upgrading of fuels for generation of electricity.ASME.Solar Energy Engineering.200,123(2):160-163
    [75]张娜,蔡睿贤,刘泽龙等给水加热型联合循环性能简明式.中国电机工程学报.200l,21(7):35-39
    [76]张娜.给水加热型联合循环的变工况性能.工程热物理学报.2002,23(5):529-534
    [77]Pace S.and Waiters A.Repowring fossil steam power plant with combusiton turbine-based technologies.ASME Paper 96-GT-20
    [78]刘泽龙,金红光,蒋洪德等改造常规汽轮机电站联合循环系统的热力分析.工程热物理学报.2001,22(1):1-4
    [79]蔡睿贤,金红光,林汝谋21世纪l 00个交叉科学:能源动力系统与环境协调相容的难题.北京:科学出版社.2005,366-37 l
    [80]金红光新一代能源环境动力系统.中国科学基金.2001,15(1):47-50
    [81]Wigley T.M.L.,Richels R.,Edmuds J.A.Economic and Environmental Choices in the stabilizaiton of atomospheric CO2 Concentration.Nature.1996,379:240-243
    [82]Simbeck D.R.Cogeneration for CO2 reduction and polygeneration for CO_2 sequestration.Presented at the first national conference on carbon sequestion,Washington DC,2001
    [83]Kaya Y.,Tamaki M.etl Japan's strategy in thechnology development for mitigating global warming.Energy conversion and management.1996,37(6-8):679-684
    [84]Kane R.L.,Klein D.E.Carbon sequesiton:an option for mitigating global climate change.CEP.2001,97(6):44-52
    [85]金红光,王宝群化学能梯级利用机理探讨.工程热物理学报.2004,25(2):181-184
    [86]金红光,洪慧,王宝群等化学能与物理能综合梯级利用原理.中国科学 E 辑,工程科学,材料科学.2005,35(3):299-313
    [87]Akers.W.W.,Camp D.P.Kinetics of the methane-steam reaction.A.I.CH.E.1955,1(4):471-475
    [88]傅献彩,沈文霞等物理化学.第五版.北京:高等教育出版社,2006
    [89]许越化学反应动力学.第一版.北京:化学工业出版社.2005
    [90]郑丹星流体与过程热力学.第一版.北京:化学工业出版社,2005
    [91]Rostrup.J.S.Catalytic steam reforming.Catal Sci Technol.1984,5(5):1-117
    [92]雍永祜甲醇工业发展的若干思考.煤化工.2004,(1):9-13
    [93]Tsang S.C.Recent advances in the conversion of methane to synthesis gas.Catalysis Today.1995,23:3-15
    [94]Edwards H,Maitra A.M.The chemistry of methane reforming with carbondioxide and its current and potential applications.Fuel Processing Technoloy.1995,42:269-289
    [95]Mednick R.L.,Romeo J.P.Design and Evaluation of Liquid Phase Methanol Synthesis Technology.Proceedings of U.S DOE/FE Indirect Liquefaction Contractor's Review Meeting.1988,15-17.
    [96]Kingsport T.Commercial-Scale Demonstration of The Liquid Phase Methanol(LPMEOH)process,US Parents cleared by Chicago.2000.
    [97]Brown W.R.,Fenduto F.S.(Air Products and Chemicals,Inc.).Fuel and Power Coproduction-The Integrated Gasification/Liquid-Phase Methanol(LPMEOH)Demonstration Project.First Annual Clean Coal Technology Conference,Cleveland,Ohio.1992
    [98]宋维端,肖任坚等甲醇工学.北京:化学工业出版社,1991
    [99]Gao L.,Jin H.G.,Liu Z.L etal.Exergy analysis of coal-based polygeneration system for power and chemical production.Energy.2004,29(12-15):2359-2371.
    [100]Jin H.G.Future Research on Exergy and its Application:Simultaneous Resolution of Energy and Environment.Proceedings of ECOS99,Tokyo.1999,114-125.
    [101]朱明善能量系统的火用分析.第一版,北京:清华大学出版社,1988
    [102]Jin H.G.,M.Ishida.,Kobayashi M.et al.Exergy evaluation of two current advanced power plants:supercritical steam turbine and combined cycle.ASME Trans.Journal of Energy Resources Technology.1997,119(4):250-256.
    [103]Zheng D.X.,Uchiyama Y.,Ishida M.Energy-utilization diagrams for two types of LNG power generation system.Energy.1986,11(6):631-639
    [104]Ishiad M.,Nakagawa N.Exergy analysis of prevaporation system based on an energy utilizaiton diagram.J.Membrane Sci.1985,24:271-283
    [105]Wall G.Exergy tools.Proc.Instn Mech.Engrs Part A:Power and Energy.2003,217(2):125-136
    [106]Reed T.B.Biomass Gasification Principle and Technology.Noyes Data Corporation,Park Ridge,NJ.1981
    [107]Palz W.,Chartier P.,Hall D.O.Energy from Biomass,Applied Science Publishers Ltd.,London.1981,982-985
    [108]Ecotraffic R&D AB and Nykomb Synergetics AB.Feasibility phase project for biomass-derived alcohols for automotive and industrial uses,Final report.1997.
    [109]Mitsubishi Heavy Industries.Biomass gasification methanol synthesis system.2006,http://www.mhi.co.jp/power/e_power/techno/biomass/
    [110]Graboski M.,Bain R.Properties of biomass relevant to gasification.In:Reed,T.B.(Ed.),Biomass Gasification Principles and technology.Noyes Data Corporation,New Jersey.1981 41-71
    [111]Babu S P.Thermal gasification of biomass technology development:end of task report for 1992 to 1994.Biomass and Bioenergy.1995,9:5-15
    [112]Ruggiero M.,Manfrida G.An euqilibrium model for biomass gasificaiton processes.Renewable Energy.1996,16:1106-1109
    [113]Chern S.M.,Walawender W.P.,Fan L.T.Equilibrium modeling of a downdraft gasifier.1.Overall gasifier.Chemical Engineering Communications.1991,108:243-265
    [114]White W.B.,Johnson S.M.,Dantzig G.B.Chemical equilibrium in complex mixtures.Journal of Chemical Physics.1958,28:751-755
    [115]Zeleznik F.J.Calculation of complex chemical equilibria.Industrial and Engineering Chemistry. 1968,60(6):27-57
    [116]Li X.T.Grace J.R.Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier.Fuel.2001,80(2):195-207
    [117]Li X.T.Biomass gasification in a circulating fluidized bed.PhD Thesis,Department of Chemical and Biological Engineering,University of British Columbia.2002
    [118]Wang Y.,Kinoshita C.M.Kinetic model of biomass gasification.Solar Energy.1993,51(1):19-25
    [119]Daniele F.,Marco M.A two-phase one-dimensional biomass gasificaiton kinetics model.Biomass and Bioenergy.2001,21(2):121-132
    [120]Patisson F.,Galant F.M.,Ablitzer D.A non-isothermal,non-equimolar transient kinetic model for gas-solid reactions.Chem Eng Sci.1998,53(4):697-708
    [121]Kojima T.,Assavadakorn P.,Furusawa T.Measurement and evaluation of gasification kinetics of sawdust char with steam in an experimental fluidized bed.Fuel Process Technol.1993,36(1-3):201-207
    [122]Chang C.C.,Fan L.T.,Walawender W.P.Dynamic modeling of biomass gasification in a fluidized bed.AIChE Symp Ser.1984,80(234):52-59
    [123]Samy S.S.Two phase biomass air-steam gasification model for fluidized bed reactor.Biomass and bioenergy.2002,22(6):439-487.
    [124]Jennen T.,Hiller R.,Koneke D.,Weinspach P.M.Modeling of gasification of wood in a circulating fluidized bed.Chemical Engineering Technology.1999,22(10):822-826.
    [125]Hao L.,Bernard M.Gibbs Modeling NH3 and HCN emissions from biomass circulating fluidized bed gasifiers.Fuel,2003(82):1591-1604.
    [126]阴秀丽固体生物质循环流化床气化炉数学模型的研究.[硕士论文]广州:中国科学院广州能源研究所.1993
    [127]Fiaschi D.,Bettagli N.,Desideri U.A Biomass Combustion Gasification model:validation and sensitivity analysis.Journal of Energy Resources Technology,A.S.M.E.Transaction.1995,117-329
    [128]Narvaez I.,Grio A.,Aznar M.P.,Corella J.Biomass gasification with air in an atmospheric bubbling fluidized bed.Effect of six operational variables on the quality of the produced raw gas.Ind,Eng.Chem.Res.1996,35(7):2110-2120
    [129]Schuster G.,LoVer G.,Weigl K.,Hofnauer H.Biomass steam gasification—an extensive parametric modeling study.Bioresource Technology.2001,77(11):71-79
    [130]Corella J.,Alvaro S.Modeling criculating fluidized bed biomass gasifiers:A pseudo-rigorous model for stationary state.Fuel processing technology.2005,86(2):1021-1053
    [131]Bilodeau J.F.,Therien N.,Proulx P.,Czernik S.,Chorent E.A mathematical model of fluidized bed biomass gasification.Can J.Chem.Eng.1993,71 (2):549-557
    [132]Devi L.,Ptasinski K.J.,Frans J.J.,Janssen G.A review of the primary measures for tar elimination in biomass gasification processes.Biomass and Bioenergy.2003,24(2):125-140
    [133]Kurkela E.Removal of Particulates and Alkali Metals from Pressurized Fluid-Bed Gasification of Peat and Biomass-Gas Cleanup for Gas turbine Applications.Energy from Biomass and Wastes XVI.IGT,Chicago.1992,947-970
    [134]Wu C.Z.,Xu B.Y.,Luo Z.F.,Zhou X.G.Performance analysis of a biomass circulating fluidized bed gasifier.Biomass and Bioenergy.1992,3(2):105-110
    [135]Patel J.G.and Mensinger M.C.Recent developments in gasification of low grade fuels.In:M.Korhonen Ed.,Low-grade fuels,VTT Symposium 107.Espoo,VTT Technical Research Centre of Finland.1990,1:275-334
    [136]Keller J.and Meis R.Combined-cycle power generation from coal,peat and biomass using the High-Temperature Winkler (HTW) Technology.Braunkohle.l 990,42(6):11-17
    [137]Solantausta Y.and Kurkela E.The production of electricity from peat by integrated gasification-combined cycle conversion.In:D.L.Klass (Ed.),Proc.Symp.Energy from Biomass and Wastes XⅡ,New Orleans,LA,15-19 Feb.,1988.Institute of Gas Technology Chicago
    [138]Larson E.D.and Svenningsson P.Development of Biomass Gasification Systems for Gas Turbine Power Generation,Energy from Biomass and Wastes XIV.IGT,Chicago.1990,797-813
    [139]Paisley M.A.Gas turbine power generation from biomass gasification.IGTI Cogenturbo,ASME.1994,9:625-630
    [140]Wan E.I.and Fraser M.D.Economic Assessment of Advanced Biomass Gasification Systems.Energy from Biomass and Wastes XV.IGT,Chicago.1991
    [141]Katofsky R.E.Production of fluid fuels from Biomass.Center for Energy and Environmental Studies report No.279,Princeton University.1993
    [142]Evans R J.Development of biomass gasification to produce substitute fuels.IGT Report PNL-6518/UC-245,Chicago,IL.1988
    [143]Tomasz C,Marek S.Co-gasification of biomass and coal for methanol synthesis.Applied Energy.2003,74(3):393-403
    [144]Demirbas M.F.,Mustafa B.Recent advances on the production and utilizaiton trends of bio-fuels:A global perspective.Energy Conversion and Management.2006,47(15-16):2371-2381
    [145]Hamelinck C.N.,Faaij A.P.Future prospects for production of methanol and hydrogen from biomass.Report NWS-E-2001-49.The Netherlands:Utrecht University.2001
    [146]Valero A.and Uson S.Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant.Energy.2006,31(10-11):1643-1655.
    [1]Gas Turbine World,2004-2005 GTW Handbook,Vol.24,2005.
    [2]张娜,蔡睿贤,林汝谋,方钢.燃气轮机发电机组简捷估价方法.燃气轮机技术.12,1992.
    [3]Zhang Na,Cai Rui-xian,Lin Ru-mou,Fang Gang.Price Estimation Formular for Gas Turbine Generation Sets,Proc,ENSEC'93:393-397,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700