用户名: 密码: 验证码:
煤在NaOCl水溶液中的选择性氧化和产物的精细分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤是重要的重质碳资源,其清洁和高效利用对于我国国民经济的可持续发展具有重要意义,而清洁和高效利用的关键是对其结构的充分了解。氧化解聚是研究煤的有机质大分子网络结构及从中获取有机化合物的重要技术。在温和条件下适度和选择性地氧化解聚煤,尽可能多的将其所含有机质转化为组成比较简单的有机化合物,并揭示氧化解聚反应的机理,是全面了解煤的组成结构特征、建立有效分离和分析反应混合物的科学方法,最终实现对煤的高附加值利用的关键。而NaOCl水溶液不但是廉价、易得、环境友好的氧化剂,更为重要的是它对煤中有机质具有良好的解聚活性和较高选择性,因此煤的NaOCl氧化解聚是一条值得探索的煤高效利用之路。
     本课题研究了4种不同变质程度的煤和一系列煤模型化合物(CRMCs)在NaOCl水溶液中的氧化解聚反应,通过对反应过程的优化、产物的分离和分析及反应机理的考察,为煤的高附加值利用提供可靠的理论依据和技术支撑,并得出以下主要结论:通过对煤与NaOCl水溶液用量的配比、反应温度、反应时间及pH值等多种因素对煤氧化解聚的影响,发现褐煤较烟煤易反应。确定褐煤的最佳氧化解聚条件为:煤/NaOCl用量的配比为1/100(g/mL),初始pH值为12.0左右于30 oC下反应24h左右;烟煤的最佳氧化解聚条件为煤/NaOCl用量配比为1/120(g/mL),初始pH值为10.5左右于40oC下反应36h左右。
     利用GC/MS对煤氧化解聚产物进行分析,发现煤的解聚产物非常复杂,氯代物、脂肪酸和芳酸是煤氧化的典型物质。通过依次用五种不同极性溶剂对煤氧化所得水溶物的萃取,实现了氧化产物族组分的初步分离。乙醚和EA可以对极性较大的含氧及含氯有机物进行富集;CS_2可以有效萃取有机硫化合物和烷烃,PE对极性小的烃类化合物萃取率较高,苯对烃和酯的萃取率均较高;在盐中苯环上羧基数超过4个的苯多酸含量较高。
     依次用乙醚、CS_2和甲醇对三种煤氧化所得固体酸(FC_2)进行超声萃取,结果表明对FC_2的萃取率按甲醇、乙醚和CS_2的顺序递减。用NaOCl水溶液对FC_2进行二次氧化,发现氧化产物与其原煤的氧化产物相比,所得产物主要是苯环上含4个羧基以上的苯多酸,同时化合物种类大大减少,这说明FC_2结构以高度缩合的芳环为主。
     依次用PE、CS_2、丙酮和甲醇4种溶剂对4种煤的氧化残煤(FC1)进行索式萃取,发现甲醇的萃取率最高。利用GC/MS对各级萃取物进行分析,发现东滩和黑岱沟煤FC1的PE萃取物及所有丙酮和甲醇萃取物中均无GC/MS可检测信息。其余萃取物中所检测到的化合物主要以含氧化合物、芳烃和烷烃为主。
     通过“分级萃取-柱层析分离-重结晶”对煤的NaOCl水溶液氧化解聚产物进行了精细分离,得到了8种苯多酸甲酯纯品,并且其同分异构体也得到了有效分离。实现了煤氧化部分产物的精细分离,为从天然大分子化合物中制备苯多酸提供了一种新的切实可行的方法,同时也为实现煤的高附加值利用提供了重要的技术手段。
     通过考察CRMCs与NaOCl水溶液的反应,发现NaOCl水溶液几乎可以与各种类型化合物发生反应,反应机理比较复杂,存在氧化、加成、取代和自由基等多种竞争反应。苯环较稳定不易被氧化,侧链比苯环更易氧化;稠环芳烃(包括萘环)比苯环活泼,而且比侧链具有更强的反应性;同时稠芳环上的取代基对其氧化开环方式起重要的影响作用;烷烃与NaOCl的反应性较弱,CCl_4的加入能大大提高其反应性,因此推断烷烃与NaOCl反应可能以自由基反应机理进行;含氧化合物与NaOCl比较容易反应;含氮和硫化合物中的氮和硫原子易被氧化为相应的氮氧和硫氧化合物,且与其相连的键易发生氧化断裂。并在此基础上进一步探讨了煤的反应机理。
     该论文有图132幅,表67个,参考文献230篇
As important heavy carbon resource, efficient utilization of coal is very important to thesustainable development of our national economy, while the key to effective use is ofknowledgeofitsstructure.Coaloxidationisanimportantapproachforbothunderstandingcoalorganic matter macromolecular network structure and obtaining organic chemicals. Theresearches of under mild conditions in moderate and selective depolymerization of organicmatter in coal as much as possible for the composition of simple organic compounds andoxidativedepolymerizationmechanism are helpfultounderstandcoalstructuralcharacteristics,establish an scientific method of separation and analysis for products and prepare highvalue-added products from coal.Comparedtoother oxidants,NaOClhas someobvious merits,such as cheaper, easy availability, environmental friendly, and higher reactivity toward coaloxidative degradation. These merits, especially for the high reactivity toward coal oxidativedegradation, possibly make coal oxidated under mild conditions, thereforecoal oxidation withNaOClisaworthwhilewaytoexploretheefficientuseofcoal.
     To provide a reliable theoretical basis and technical support for high value-added utilizationofcoal,oxidativedegradationbehaviors offourdifferent rankcoals anda series ofcoal relatedmodel compounds (CRMCs) with aqueous NaOCl solution, including the reaction processoptimization, separation and analysis of oxidation products and the reaction mechanism, wereinvestigatedinthisstudy.Themainresultsinthisworkareasfollows:
     The effects of ratio of NaOCl to coal, reaction temperature, pH value and reaction time onthe coal oxidative degradation were investigated. The results show that lignite was more easilyreactive than bituminous coal. The optimum operation conditions for lignite oxidativedegradation are 30 oC, pH, 12.0, NaOCl/coal 1/100 (g/mL) and 24 h and forbituminous coaloxidativedegradationare 40oC,pH10.5,NaOCl/coal1:120(g/mL)and 36h.
     Coal oxidation products were analyzed with GC/MS. The results indicated that the productswere very complex, and chlorinated compounds, fatty acids, aromatic acids were typical coaloxidation substances. Oxidative product was sequentially extracted with five different polarsolvents and achieved a simple group separation. Oxygen-containing and chlorine-containingorganic compounds could be enriched with ether and ethyl acetate, and the extracts of CS_2contained a large amounts of organic sulfur compounds and alkanes, and hydrocarbons withsmall polar were the main components of petroleum ether, and benzene on the extraction ofhydrocarbons and esters were high extracts, and the content of benzene polycarboxylic acidswithmorethanfourcarboxylicgroupsattachedtobenzenewerehighinsalt.
     Three solid acids (FC_2) produced from coal oxidation were extracted with ether, CS_2 and methanol sequentially under ultrasonic. It is found that the extraction yield of methanolon thethreesolidacidswashighest,followedbyether,andCS_2 wasminimum.FC_2wasoxidized withNaOCl. The results showed that the kinds of compounds in the oxidative products of FC_2greatly reduced compared with those of raw coal. The compounds were mainly benzenepolycarboxylic acids with more than four carboxy. It is indicated that the structure of FC_2 wasahighercondensedaromaticrings.
     Four coal oxidation residues (FC1) were extracted with petroleum ether, CS_2, acetone andmethanol underSoxhlet,sequentially.Theextractionyieldofmethanolishighest.BasedontheGC/MS anaysis ofextracts, it is foundthat nonecompounds weredetected from theextracts ofpetroleum ether from Dongtan and Heidaigou oxidation residues and the extracts of acetoneand methanol from all four oxidation residues. The main compounds detected in other extractswereoxygen-containingcompounds,aromaticsandalkanes.
     Using graded extraction-separation with column chromatography-crystallization technologyto subtly separate the oxidation products, eight kinds of pure methyl benzene polycarboxylicacids were obtained, and their isomers were also effective separated. It is achieved partialoxidation products of the fine coal separation, which provides a new feasible method forobtainingbenzenepolycarboxylicacidsfromnaturalmacromoleculesmaterials, andprovidesanimportanttechnologyforhighvalue-addeduseofcoal.
     It was found that NaOCl can react with almost all types of compounds by examiningCRMCs reaction with NaOCl. The reaction mechanism is complex due to the presence ofmany competitive reactions, such as oxidation, addition, substitution, and free radicals. Theside chain on the benzene ring is oxidized rather than the benzene ring itself; polycyclicaromatic hydrocarbons (including naphthalene) are more reactive toward NaOCl than sidechain; substituentsonthearomaticringplaysanimportantwaytoinfluenceontheoxidationofaromatic ring; the reactivity of alkane with NaOCl is weak, while it is greatly enhanced byCCl4 addded, so the mechanism of alkane reaction with NaOCl may be by free radical;oxygenated compounds easily react with NaOCl; organic nitrogen and sulfur compounds areeasily oxidized to the corresponding nitrogen oxide and sulfur oxides, and their associatedbondswereeasilybroken.ThemechanismsofcoaloxidationwithNaOClwerealsodiscussed.
     132figures,67tables,230 references.
引文
[1]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2010.
    [2]英国石油公司(BP).世界能源统计年鉴[M].2010.
    [3]MukhopadhyayPK,HatcherPG.Compositionof coal[J].AmAssocPetGeol,1993,38:79-118.
    [4] HatcherP G, Spiker E C, Szeverenyi N M, et al. Selective preservation and origin of petroleum-formingaquatickerogen[J].Nature,1983,305 (5934):498-501.
    [5] Teichmüller M. The genesis of coal from the viewpoint of coal petrology[J]. Int J Coal Geol, 1989, 12(1-4):1-87.
    [6]陈昌国,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21(2):7-13.
    [7]刘旭光,李保庆.煤大分子结构的计算机模拟[J].煤炭转化,1999,22(3):1-5.
    [8]曾凡桂,张通,王三跃,等.煤超分子结构的概念及其研究途径与方法[J].煤炭学报,2005,30(1):85-89.
    [9]程君,周安宁,李建伟.煤结构研究进展[J].煤炭转化,2001,24(4):1-6,12.
    [10]张代钧,鲜学福.煤大分子结构研究的进展[J].重庆大学学报:自然科学版,1993,16(2):58-63.
    [11]张代钧,鲜学福.煤大分子堆垛结构的研究[J].重庆大学学报:自然科学版,1992,15(3):56-61.
    [12]汪高强,水恒福.煤的缔合分子结构研究新进展[J].安徽工业大学学报,2004,21(4):288-290.
    [13]陈宏刚,李凡.煤结构的计算机辅助分子设计研究[J].煤炭转化,1996,19(4):1-10.
    [14]李凡,吴东,刘丽晨,等.用吡啶抽提法对煤岩显微组分结构变化的研究[J].煤炭转化,1992,15(2):65-72.
    [15]谷小会,史士东,周铭.神华煤直接液化残渣中沥青烯组分的分子结构研究[J].煤炭学报,2006,31(6):785-789.
    [16]树华.用X射线驻波研究有机大分子结构[J].物理,2005,34(4):310.
    [17]王晓华,宗志敏,秦志宏,等.有机波谱法在分子煤化学领域中的研究进展[J].煤炭转化,2001,24(1):5-10.
    [18]张卫,曾凡桂.中等变质程度煤中羟基的红外光谱分析[J].太原理工大学学报,2005,36(5):545-548.
    [19]张代钧,鲜学福.红外光谱法研究煤大分子结构[J].光谱学与光谱分析.1989,9(3):17-19.
    [20]朱素渝,李凡.用核磁共振和红外光谱构造煤抽提物的结构模型[J].燃料化学学报,1994,22(4):427-433.
    [21]徐秀峰,张蓬洲.高分辨固体13C-NMR和XPS技术表征碳的骨架结构[J].煤炭转化,1995,18(4):57-62.
    [22]徐秀峰,杨保联.用13C-NMR及DEPT技术分析气煤加氢产物中沥青烯段分的组成结构[J].燃料化学学报,1995,23(4):410-416.
    [23]马志茹,杨保联.峰峰肥煤的固体高分辨核磁共振研究[J].燃料化学学报,1996,24(3):251-255.
    [24]罗陨飞,李文华,陈亚飞.中低变质程度煤显微组分结构的13C-NMR研究[J].燃料化学学报,2005,33(5):540-543.
    [25]徐龙君,刘成伦.用X射线衍射和FTIR光谱研究突出区煤的结构[J].重庆大学学报:自然科学版,1999,22(4):23-27.
    [26]田承圣,曾凡桂.镜煤与丝炭结构的X射线衍射初步分析[J].太原理工大学学报,2001,32(2):102-105.
    [27]罗陨飞,李文华.中低变质程度煤显微组分大分子结构的XRD研究[J].煤炭学报,2004,29(3):338-341.
    [28]王丽,张蓬洲.煤的XRD结构分析[J].煤炭转化,1997,20(1):50-53.
    [29]阮传德,王岩国.无烟煤结构的高分辨电镜研究[J].燃料化学学报,1995,23(1):75-79.
    [30] PobinerH.Improvedinflectionpointsinthenon-aqueouspotentiometrictitrationofacidfunctionalitiesin lignin chemicals by using internal standardization and ion exchange[J]. Anal Chim Acta, 1983, 155(C): 57-65.
    [31] Chen Z, Lin M, Ignowski J, et al. Mathematical modeling of fluidized bed combustion. 4: N2O andNOX emissionsfromthecombustionofchar[J].Fuel, 2001,80(9):1259-1272.
    [32] Glick D C, Davis A. Operation and composition of thePenn State coal sample bank and data base[J].OrgGeochem,1991,17 (4):421-430.
    [33] Sun L B, Zong ZM, Kou J H, et al.Identification of organic chlorines and iodinesin the extracts fromhydrotreatedargonnepremiumcoal residues[J]. EnergyFuels, 2007,21(4):2238-2239.
    [34] Kambara S, Takarada T, Toyoshima M, et al. Relation between functional forms of coal nitrogen andNOxemissionsfrompulverizedcoalcombustion[J].Fuel,1995, 74(9):1247-1253.
    [35] Ohshima Y, Wang Y, Tsubouchi N, et al. Approach to the iron-catalyzed formation process of N2 fromheterocyclic nitrogen in carbon by use of XRD and XPS methods[J]. Prepr Pap-Am Chem Soc, DivFuel Chem,2000,45(2):335-337.
    [36] Tomita A. Suppression of nitrogen oxides emission by carbonaceous reductants[J]. Fuel Process.Technol,2001,71 (1-3):53-70.
    [37] Aho M J, H?m?l?inen J P, Tummavuori J L. Conversion of peat and coal nitrogen through HCN andNH, tonitrogenoxidesat800°C[J].Fuel, 1993,72(6): 837-841.
    [38] Zhou Q, Hu H, Liu Q, et al. Effect of atmosphere on evolution ofsulfur-containing gases during coalpyrolysis[J].EnergyFuels,2005,19 (3):892-897.
    [39] SchaferHNS.Determinationofthetotal acidityoflow-rankcoals[J]. Fuel,1970,49 (3):271-280.
    [40] SchaferHNS.Carboxyl groupsandionexchangeinlow-rankcoals[J]. Fuel,1970,49 (2):197-213.
    [41] Murata S, Hosokawa M, Kidena K, et al. Analysis of oxygen-functional groups in brown coals[J].FuelProcess Technol, 2000,67(3): 231-243.
    [42] Aida T, Tsutsumi Y, Yoshinaga T. Reliable chemical determination of oxygen-containing fuctionalitiesin coal and coal products. Carboxylic acid and phenolic hydroxyl functionalities[J]. Prepr Pap-AmChem Soc, Div Fuel Chem,1996,41 (2):744-746.
    [43] Kidena K, Murata S, Nomura M. Investigation on coal plasticity: correlation of the plasticity and aTGA-derivedparameter[J]. EnergyFuels,1998,12(4):782-787.
    [44] WeiX Y,WangXH,ZongZM.Extractionof organonitrogen compoundsfrom five Chinese coalswithmethanol[J]. EnergyFuels,2009,23(10):4848-4851.
    [45] Wei X Y, Ni Z H, Xiong Y C, et al. Pd/C-catalyzed release of organonitrogen compounds frombituminous coals[J].EnergyFuels,2002,16 (2):527-528.
    [46] Knicker H, Llldemann H D. N-15 and C-13 CPMAS and solution NMR studies of N-15enriched plantmaterialduring600daysofmicrobialdegradation[J]. OrgGeochem,1995,23(4):329-341.
    [47] Knicker H, Hatcher P G, Scaroni A W. Solid-state 15N NMR spectroscopy of coal[J]. Energy Fuels,1995,9(6):999-1002..
    [48] Kirtley S M, Mullins O C, Van E J, et al. Nitrogen chemical structure in petroleumasphaltene and coalbyX-rayabsorptionspectroscopy[J].Fuel,1993,72(1):133-135.
    [49] Wójtowicz MA,PelsJR,Moulijn JA.Thefateofnitrogen functionalitiesin coalduring pyrolysisandcombustion[J]. Fuel,1995,74(4):507-516.
    [50] Burchill P, Welch L S. Variation of nitrogen content and functionality with rank for some UKbituminouscoals[J].Fuel, 1989,68(1): 100-104.
    [51] Knicker H, Hatcher P G, Scaroni AW. Asolid-state15NNMR spectroscopic investigation of the originofnitrogenstructuresincoal[J].Int.J.CoalGeol.,1996,32 (1-4):255-278.
    [52] Tegelaar E W, de Leeuw J W, Derenne S, et al. An reappraisal of kerogen formation[J]. GeochimCosmochimActa,1989,53(11): 3103-3106..
    [53] Hatcher P G, Lerch Iii H E, Vincent Verheyen T. Organic geochemical studies of the transformation ofgymnospermousxylemduring peatification andcoalification to subbituminouscoal[J]. IntJCoalGeol,1989,13 (1-4):65-97.
    [54] Hatcher P G, Wilson M A, Vassallo AM, et al. Studies of angiospermous wood in Australian browncoal by nuclear magnetic resonance and analytical pyrolysis: new insights into the early coalificationprocess[J].IntJ CoalGeol,1989,13 (1-4):99-126.
    [55] Largeau C, Casadevall E, Kadouri A, et al. Formation of botryococcus-derived kerogens. comparativestudy of immature torbanite and of the extant alga Botqwoccus braunii[J]. Org Geochem, 1984, 6 (C):327-332.
    [56] Largeau C, Derenne S, Casadevall E, et al. Pyrolysis of immature Torbanite and of the resistantbiopolymer (PRB Al isolated from extant alga Botqococcus braunii. Mechanism of formation andstructureofTorbanite[J].OrgGeochem,1986,10 (4-6):1023-1032.
    [57] Largeau C, Derenne S, Casadevall E, et al. Occurrence and origin of“ultralaminar”structures in“amorphous”kerogens of various source rocks and oil shales[J]. Org Geochem, 1990, 16 (4-6):889-895.
    [58] BaruahMK.The chemicalstructure ofsecondarysulfurin Assamcoal[J]. FuelProcessTechnol, 1992,31(2):115-126.
    [59] Baruah M K, Gogoi PC. Anew form of sulphur in coal: the discovery of an iron-sulphur coordinationcompound[J].Fuel,1998,77 (9/10):979-985.
    [60] ChandraD,ChoseS,ChaudhuriSG.AbnormalitiesinthechemicalpropertiesoftertiarycoalsofUpperAssamandArunachalPradesh[J]. Fuel,1984,63 (9):1318-1323.
    [61] Maes I I, Gryglewicz G, Machnikowska H, et al. Rankdependence of organic sulfur functionalities incoal[J].Fuel, 1997,76(5):391-396.
    [62] Shiraishi Y, Yamada A, Hirai T. Desulfurization and denitrogenation of light oils by methylviologen-modified aluminosilicateadsorbent[J]. EnergyFuels,2004,18(5):1400-1404.
    [63] SasaokaE,HiranoS,KasaokaS,etal.Stabilityof Zinc oxide high-temperaturedesulfurizationsorbentsforreduction[J].EnergyFuels,1994,8(3):763-769.
    [64] Zhu W, Li H, Jiang X, et al. Oxidative desulfurization of fuels catalyzed by peroxotungsten andperoxomolybdenumcomplexesinionic liquids[J].EnergyFuels,2007,21(5):2514-2516.
    [65] Zhao J, Huang J, Zhang J, et al. Influence of fly ash on high temperature desulfurization using Ironoxide sorbent[J].EnergyFuels,2002,16 (6):1585-1590.
    [66] Zhong S, Hepworth M T. Thermodynamic studies of iron oxysulfide as a sulfur sorbent[J]. EnergyFuels,1993,7(6): 1073-1078.
    [67] ZhongS,HepworthMT.Kineticstudiesofironoxysulfideasasulfursorbent[J]. EnergyFuels,1994,8(1):276-283.
    [68] Zhao D, Sun Z, Li F, et al. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NOcoordinated ionic liquid[J].EnergyFuels,2008,22 (5):3065-3069.
    [69] XuD, Zhu W, LiH, etal. Oxidative desulfurization offuels catalyzed byV2O5 in Ionicliquidsatroomtemperature[J]. EnergyFuels,2009,23(12):5929-5933.
    [70] Wang J, Zhao D, Li K. Oxidative desulfurization ofdibenzothiophenecatalyzed byBr?nstedacid ionicliquid[J].EnergyFuels,2009,23 (8):3831-3834.
    [71] Venkateshwar Rao T, Sain B, Kafola S, et al. Oxidative desulfurization of HDS diesel using thealdehyde/molecular oxygenoxidationsystem[J].EnergyFuels,2007,21 (6):3420-3424.
    [72] Shiraishi Y, Hirai T. Desulfurization of vacuum gas oil based on chemical oxidation followed byliquid-liquidextraction[J]. EnergyFuels,2003,18(1):37-40.
    [73] Pysh'yev S, Shevchuk K, Chmielarz L, et al. Effect of the water-vapor content on the oxidativedesulfurizationof sulfur-rich coal[J].EnergyFuels,2006,21(1):216-221.
    [74] Wan G, Duan A, Zhang Y, et al. Hydrodesulfurization of fluidized catalytic cracking diesel oil overNiW/AMB catalysts containing H-Typeβ-Zeolite in Situ synthesized from Kaolin material[J]. EnergyFuels,2009,23(8):3846-3852.
    [75] Siewe C N, Ng F T T. Hydrodesulfurization of cold lake diesel fraction using dispersed catalysts:influenceofhydroprocessingmediumand sourcesofH2[J].EnergyFuels,1998,12 (3):598-606.
    [76] Shimizu K, Saito I, Shimamura K, et al. Desulfurization and solubilization of high-sulfur coal bysuperacidHF/BF3[J].EnergyFuels,1998,12 (4):734-739.
    [77] Zhao D, Liu R, Wang J, et al. Photochemical oxidation-ionic liquid extraction coupling techniqueindeepdesulphurizationof lightoil[J].Energy Fuels,2008,22 (2):1100-1103.
    [78] GonsalveshL,MarinovSP,StefanovaM,etal.Biodesulphurizedsubbituminouscoalbydifferentfungiandbacteriastudiedbyreductivepyrolysis.Part1:Initialcoal[J].Fuel,2008,87(12):2533-2543.
    [79] Yamamoto M, Komaki S, Nakajima D, et al. Enhancement of Ca(OH)2/fly ash sorbent for thedry-desulfurization process[J].EnergyFuels, 2006,20(5): 1901-1905.
    [80] Velu S, Ma X, Song C, et al. Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-basedadsorbentfor microsolidoxide fuel cells[J].Energy Fuels,2005,19 (3):1116-1125.
    [81] ShanJ-H, Liu X-Q, Sun L-B, etal. Cu-Ce bimetal ion-exchangedYZeolitesforselectiveadsorption ofthiophenicsulfur[J].Energy Fuels,2008,22 (6):3955-3959.
    [82] Seredych M, Bandosz T J. Desulfurization of digester gas on industrial-sludge-derived adsorbents[J].Energy Fuels,2007,21 (2):858-866.
    [83] Seredych M, Bandosz T J. Desulfurization of digester gas on wood-based activatedcarbons modifiedwithnitrogen:importanceofsurfacechemistry[J].EnergyFuels,2008,22 (2):850-859.
    [84] Liu B S, Xu D F, Chu J X, et al. Deep desulfurization by the adsorption process of fluidized catalyticcracking(FCC)dieselovermesoporousAl-MCM-41materials[J]. EnergyFuels,2006,21(1):250-255.
    [85] Borah D. Electron-transfer-induced desulfurization of organic sulfur from sub-bituminous coal[J].Energy Fuels,2004,18 (5):1463-1471.
    [86] Wei Z, Zeng G, Xie Z. Microwave catalytic desulfurization and denitrification simultaneously onFe/Ca-5AZeolitecatalyst[J].EnergyFuels, 2009,23(6): 2947-2951.
    [87] Andres J M, Ferrando A C, Membrado L. Chemical desulfurization of coal with hydroiodic acid[J].Energy Fuels,1996,10 (2):425-430.
    [88] Sun L B, Wei X Y, Liu X Q, et al. Release of organonitrogen and organosulfur compounds duringhydrotreatment of Pocahontas No. 3 coal residue over an activated carbon[J]. Energy Fuels, 2009, 23(10):5284-5286.
    [89] SunLB,ZongZ M, KouJH,etal.Thermal releaseand catalytic removalof organic sulfurcompoundsfromUpperFreeportcoal[J].Energy Fuels,2005,19 (2):339-342.
    [90]孟庆函,李善祥,李保庆.低阶煤氧化降解的研究及开发前景[J].腐殖酸,1998,(2):5-8,11.
    [91]刘振学,魏贤勇,刘泽常.煤的氧化反应研究进展[J].煤炭转化,2000,23(4):7-10.
    [92] Swann PD, Evans D G. Low-temperature oxidation of brown coal. 3. Reaction with molecular oxygenattemperaturesclosetoambient[J].Fuel,1979,58(4): 276-280.
    [93] Calemma V, Del Piero G, Rausa R, et al. Changes in optical properties of coals during air oxidation atmoderatetemperature[J].Fuel,1995,74(3):383-388.
    [94] Calemma V, Iwanski P, Rausa R, et al. Changes in coal structure accompanying the formation ofregeneratedhumicacidsduringairoxidation[J]. Fuel,1994,73 (5):700-707.
    [95] RausaR,CalemmaV,GhelliS,etal.Studyoflowtemperaturecoaloxidationby13CCP/MASn.m.r[J].Fuel,1989,68(9):1168-1172.
    [96] De Abreu Y, Patil P, Marquez A I, et al. Characterization of electrooxidized Pittsburgh No. 8 coal[J].Fuel,2007,86(4):573-584.
    [97] Juan R, Ruiz C, Andrés J, et al. Production of humic acids from lignites and subbituminous coals byalkaline-airoxidation[J].Fuel,1990,69 (2):161-165.
    [98] OshikaT,OkuwakiA.Formationofaromaticcarboxylicacidsfromcoal-tarpitchbytwo-stepoxidationwithoxygeninwaterandinalkalinesolution[J].Fuel,1994,73(1):77-81.
    [99] Hayashi J I, Matsuo Y, Kusakabe K, et al. Depolymerization of lower rank coals bylow-temperature Ooxidation[J].EnergyFuels,1997,11(1): 227-235.
    [100] Hayashi J I, Aizawa S, Kumagai H, et al. Evaluation of macromolecular structure of abrowncoal bymeansofoxidativedegradationinaqueousphase[J].Energy Fuels,1999,13 (1):69-76.
    [101] Grzybek T, Pietrzak R, Wachowska H. The comparison of oxygen and sulfur species formed by coaloxidation with O2/Na2CO3or peroxyacetic acid solution XPS studies[J]. Energy Fuels, 2004, 18 (3):804-809.
    [102] Bergh J J, CronjéI J, Dekker J, et al. Non-catalytic oxidation of water-slurried coal with oxygen:identificationoffulvicacidsandacutetoxicity[J]. Fuel,1997,76 (2):149-154.
    [103] ChoEH,LuoQ.Coaloxidationandcalciumloadingonoxidizedcoal[J].FuelProcessTechnol,1996,46 (1):25-39.
    [104] YürümY,AltuntasN. Airoxidation ofBeypazarilignite at50°C, 100°C and 150°C[J]. Fuel, 1998, 77(15): 1809-1814.
    [105] Ndaji F E, Thomas K M. The effects of oxidation on the macromolecular structure of coal[J]. Fuel,1995,74 (6):932-937.
    [106] Clemens AH, Matheson T W, Rogers D E. Low temperature oxidation studies of dried New Zealandcoals[J].Fuel,1991,70(2):215-221.
    [107] Wang D M, Zhong X X, Gu J J, et al. Changes in active functional groups during low-temperatureoxidationofcoal[J]. MiningScienceandTechnology,2010,20 (1):35-40.
    [108] Qi X Y, Wang D M, Zhong X X, et al. Characteristics of oxygen consumption of coal at programmedtemperatures[J]. MiningScienceandTechnology,2010,20(3):372-377.
    [109] Krishnaswamy S, Bhat S, Gunn R D, et al. Low-temperature oxidation of coal. 1. A single-particlereaction-diffusionmodel[J].Fuel,1996,75 (3):333-343.
    [110]KrishnaswamyS,GunnRD,AgarwalPK.Low-temperatureoxidationofcoal.2.Anexperimentalandmodellinginvestigationusingafixed-bedisothermalflowreactor[J].Fuel,1996,75(3):344-352.
    [111] Krishnaswamy S, Agarwal P K, Gunn R D. Low-temperature oxidation of coal. 3. Modellingspontaneouscombustionincoalstockpiles[J]. Fuel, 1996,75(3):353-362.
    [112] McCutcheon A L, Wilson M A. Low-temperature oxidation of bituminous coal and the influence ofmoisture[J]. EnergyFuels,2003,17(4):929-933.
    [113] Grzybek T, Pietrzak R,Wachowska H.The influence ofoxidation with air in comparison to oxygen insodium carbonate solution on the surface composition of coals of different ranks[J]. Fuel, 2006, 85(7-8):1016-1023.
    [114] KurkováM, Klika Z, KlikováC, et al. Humic acids from oxidized coals: I. Elemental composition,titration curves, heavy metalsin HAsamples, nuclearmagnetic resonance spectra ofHAsand infraredspectroscopy[J]. Chemosphere,2004,54 (8):1237-1245.
    [115]RhoadsCA, SenftleJT,ColemanMM,etal.Furtherstudiesofcoaloxidation[J].Fuel,1983,62(12):1387-1392.
    [116] Sweeney M. Comparative studies in the ozonolysis of lignin and coal[J]. Thermochim Acta, 1981, 48(3):263-275.
    [117] Patrakov Y F, Fedyaeva O N, Semenova S A, et al. Influence of ozone treatment on change ofstructural-chemical parameters of coal vitrinites and their reactivity during the thermal liquefactionprocess[J].Fuel,2006,85(9): 1264-1272.
    [118] Semenova S A, Patrakov Y F, Batina M V. Preparation of oxygen-containing organic products frombed-oxidized browncoalby ozonation[J].RussJApplChem,2009,82 (1):80-85.
    [119] Zhumanova M, Usanboev N, Namazov S, et al. Oxidation of brown coal of Angren deposit with amixtureofnitricandsulfuricacids[J].RussJApplChem,2009,82 (12):2223-2229.
    [120] JuettnerB,SmithRC,HowardHC.Theactionofnitric acidonabituminouscoal[J].JAmChemSoc,1935,57 (11): 2322-2326.
    [121] Alvarez R, Clemente C, Gómez-Limón D. The influence of nitric acid oxidation of low rank coal anditsimpactoncoalstructure[J]. Fuel,2003,82 (15-17):2007-2015.
    [122] Alam H, Moghaddam A, Omidkhah M. The influence of process parameters on desulfurization ofMezinocoalbyHNO3/HClleaching[J].FuelProcessTechnol,2009,90(1):1-7.
    [123] Pietrzak R, Wachowska H. The influence of oxidation with HNO3 on the surface composition ofhigh-sulphurcoals:XPSstudy[J].FuelProcessTechnol,2006,87 (11):1021-1029.
    [124] BoronDJ,TaylorSR.Mildoxidationsofcoal:1.Hydrogenperoxideoxidation[J].Fuel,1985,64(2):209-211.
    [125] TakagiH, Isoda T, Kusakabe K, etal. The 6th Japan-Chinese symposiumproceeding[C]. Zao, Miyagi,Japan,1998.
    [126] Mae K, Miura K, Maki T, et al. Proceedings International Conference Coal Science[C].1995:365-368.
    [127] Miura K, MaeK, Okutsu H,etal.Newoxidativedegradation method forproducingfattyacidsin highyieldsandhighselectivityfrom low-rankcoals[J]. EnergyFuels, 1996,10(6):1196-1201.
    [128] MiuraK.Mildconversionofcoalforproducingvaluablechemicals[J].FuelProcessTechnol,2000,62(2-3):119-135.
    [129] Mae K, Maki T, Araki J, et al. Extraction of low-rank coals oxidized with hydrogen peroxide inconventionallyusedsolventsat roomtemperature[J].EnergyFuels,1997,11(4):825-831.
    [130] Mae K, Maki T, Okutsu H, et al. Examination of relationship between coal structure and pyrolysisyields using oxidized brown coals having different macromolecular networks[J]. Fuel, 2000, 79(3-4):417-425.
    [131] Mae K, Shindo H, Miura K. A New two-step oxidative degradation method for producing valuablechemicalsfromlowrankcoalsunder mildconditions[J].EnergyFuels, 2001,15(3):611-617.
    [132] Isoda T, Takagi H, Kusakabe K, et al. Structural changes of alcohol-solubilized Yallourn coal in thehydrogenationoveraRu/Al2O3catalyst[J]. EnergyFuels,1998,12(3):503-511.
    [133] Henning K, Steffes H J, Fakoussa R M. Effects on the molecular weight distribution of coal-derivedhumicacidsstudiedbyultrafiltration[J].FuelProcessTechnol,1997,52 (1-3):225-237.
    [134] Sugano M, Ikemizu R, Mashimo K. Effects of the oxidation pretreatment with hydrogen peroxide onthe hydrogenolysis reactivity of coal liquefaction residue[J]. Fuel Process Technol, 2002, 77-78:67-73.
    [135] Wang T, Zhu X. Conversion and kinetics of the oxidation of coal in supercritical water[J]. EnergyFuels,2004,18 (5):1569-1572.
    [136] LiuZ-X,LiuZ-C,ZongZ-M,etal.GC/MS analysisofwater-solubleproductsfromthemild oxidationofLongkoubrowncoalwithH2O2[J].EnergyFuels,2003,17(2):424-426.
    [137] Karaca H, Ceylan K. Chemical cleaning of Turkish lignites by leaching with aqueous hydrogenperoxide[J]. FuelProcessTechnol,1997,50(1):19-33.
    [138] Borah D, Baruah M K, Haque I. Oxidation of high sulphur coal. Part 2. Desulphurisation of organicsulphurbyhydrogenperoxideinpresenceofmetalions[J]. Fuel,2001,80 (10):1475-1488.
    [139] WangT, ZhuX.Sulfurtransformationsduring supercriticalwateroxidation ofaChinese coal[J]. Fuel,2003,82 (18):2267-2272.
    [140] Djerassi C, R. E R. Oxidations with ruthenium tetroxide[J]. J Am Chem Soc, 1953, 75 (15):3838-3840.
    [141] Olson E S, Diehl J W, Froehlich M L, et al. Elucidation of aliphatic structures in low-rank coals withrutheniumtetroxideoxidations[J].Fuel,1987,66(7):968-972.
    [142] Olson E S, Diehl J W, Froehlich M L. Structural features of low-rank coals important in liquefaction,bioconversionandgasification[J]. FuelProcessTechnol,1987,15 (C):319-326.
    [143] Mallya N, Zingaro R A. Ruthenium tetroxide -a reagent with the potential for the study of oxygenfunctionalitiesincoal[J]. Fuel,1984,63 (3):423-425.
    [144] Stock L M, Tse K-T. Ruthenium tetroxide catalysed oxidation of illinois no.6 coal and somerepresentativehydrocarbons[J].Fuel,1983,62(8):974-976.
    [145] Stock LM, Wang S-H. Ruthenium tetroxide catalysed oxidation of Illinois No. 6 coal: The formationofvolatilemonocarboxylicacids[J]. Fuel,1985,64 (12):1713-1717.
    [146] Stock L M, Wang S H. Ruthenium tetroxide catalysed oxidation of coals: The formation of aliphaticandbenzenecarboxylicacids[J]. Fuel, 1986,65(11): 1552-1562.
    [147] Stock LM, Wang S H. The ruthenium(VIII)-catalyzed oxidation of Illinois No.6 bituminous coal: anapplicationofg.c.-FT-i.r.spectroscopyforstructuralanalysis[J]. Fuel, 1987,66(7): 921-924.
    [148] Artok L, Murata S, Nomura M, et al. Reexamination of the RICO method[J].Energy Fuels, 1998, 12(2):391-398.
    [149] Peng P A, Morales-Izquierdo A, Lown E M, et al. Chemical structure and biomarker content ofJinghan asphaltenesandkerogens[J].EnergyFuels,1999,13(2):248-265.
    [150] MurataS,TaniY,HiroM,etal.StructuralanalysisofcoalthroughRICOreaction:detailedanalysisofheavyfractions[J]. Fuel,2001,80(14):2099-2109.
    [151] Kidena K, Tani Y, Murata S, et al. Quantitative elucidation of bridge bonds and side chains in browncoals[J].Fuel,2004,83(11-12): 1697-1702.
    [152] Huang Y G, Zong Z M, Yao Z S, et al. Ruthenium ion-catalyzed oxidation of Shenfu coal and itsresidues[J].EnergyFuels,2008,22 (3):1799-1806.
    [153] Mayo F R, Pavelka L A, Hirschon A S, et al. Extractions and reactions of coals below 100°C: 4.OxidationsofIllinoisNo.6coal[J]. Fuel,1988,67 (5):612-618.
    [154] Bolyard M, FairPS,Hautman DP. Occurrence ofchlorate in hypochlorite solutionsused fordrinkingwaterdisinfection[J].EnvironSciTechnol,1992,26(8):1663-1665.
    [155] Gordon G, Tachiyashiki S. Kinetics and mechanism of formation of chlorate ion from thehypochlorousacid/chloriteionreactionatpH6-10[J].EnvironSciTechnol, 1991,25(3): 468-474.
    [156] ChakrabarttyS K, KretschmerH O. Studieson thestructure ofcoals. 2.The valence state ofcarbon incoal[J].Fuel,1974,53(2):132-135.
    [157] Chakrabartty S K, Berkowitz N. Studies on the structure of coals. 3. Some inferences about skeletalstructures[J]. Fuel,1974,53 (4):240-245.
    [158] MayoFR.Applicationofsodiumhypochlotiteoxidationstothestructureofcoal[J].Fuel,1975,54(4):273-275.
    [159] MayoFR.Oxidationsofcoalbyaqueoussodiumhypochlorite[J]. Fuel,1979,58 (9):698-704.
    [160] LandoltRG.RoleofsubstituentsandpHinactivatinghypochloriteoxidationsofcoalmodels[J]. Fuel,1977,56 (2):224-225.
    [161] Landolt R G. Oxidation of coal models. reaction of aromatic compounds with sodium hypochlorite[J].Fuel,1975,54(4):299.
    [162] Li W, Cho E H. Coal desulfurization with sodium hypochlorite[J]. Energy Fuels, 2005, 19 (2):499-507.
    [163] Hayatsu R, Winans R E, Scott R G, et al. Trapped organic compounds and aromatic units in coals[J].Fuel,1978,57(9):541-548.
    [164] Hayatsu R, Winans R E, Scott R G, et al. Investigation of aqueous sodium dichromate oxidation forcoalstructuralstudies[J].Fuel,1981,60(1):77-82.
    [165] Duty R C, Hayatsu R, Scott R G, et al. Characterization of a complex mixture of aromatic andheterocyclic acids obtained from oxidation of lignite coal and its solvent-refined products[J]. Fuel,1980,59 (2):97-101.
    [166] Duty R C, Sines L R. New observations on the aqueous sodium dichromate oxidation of bituminousandlignitecoals[J]. Fuel,1981,60 (6):534-535.
    [167] Barakat AO, SadeghiKM, Yen TF. Fourier transforminfrared analysis of partiallyoxidized kerogenconcentrates[J].Fuel,1990,69(8):1055-1058.
    [168] Hayatsu R, Winans RE, Scott R G, etal.Is kerogen-like material present in coal? 1. Buffer-controlledpermanganateoxidationofcoal[J]. Fuel,1981,60(2):158-161.
    [169] Somasundaran P, Roberts C E, Ramesh R. Effects of oxidizing methods on the flotation of coal[J].Miner Eng,1991,4(1):43-48.
    [170] DenoNC,JonesAD,KochCC,etal.Aryl-alkylgroupsincoals[J].Fuel,1982,61(6):490-492.
    [171] DenoNC,GreiggerBA,JonesAD,etal.ChemicalstructureofWyodakcoal[J]. Fuel,1980,59 (10):699-700.
    [172] Deno N C, Curry K W, Greigger B A, et al. Dihydroaromatic structure of Illinois No. 6 Montereycoal[J].Fuel,1980,59(10):694-698.
    [173] DenoNC,GreiggerBA,StroudSG.Newmethodforelucidatingthestructuresofcoal[J].Fuel,1978,57 (8):455-459.
    [174] Verheyen T V, Johns R B. Analysis of peroxytrifluoroacetic acid oxidation products from Victorianbrowncoal[J]. AnalChem,1983,55(9):1564-1568.
    [175] PalmerSR,HippoEJ,DoraiXA.Chemicalcoalcleaningusingselectiveoxidation[J].Fuel,1994,73(2):161-169.
    [176] Pietrzak R, Wachowska H. Low temperature oxidation of coals of different rank and different sulphurcontent [J].Fuel,2003,82(6): 705-713.
    [177] Pietrzak R, Wachowska H, Nowicki P. The effect of ?ame coal oxidation on the solid and soluble productsofitsextraction[J]. CentEurJChem, 2005,3(4):852-865.
    [178] Kozlowski M, Pietrzak R, Wachowska H, et al. AP-TPR study of sulphur in coals subjected to mildoxidation.Part1.Demineralisedcoals[J].Fuel, 2002,81(18):2397-2405.
    [179] Pietrzak R, Grzybek T, Wachowska H. XPS study of pyrite-free coals subjected to different oxidizingagents[J]. Fuel,2007,86 (16):2616-2624.
    [180] BorahD,BaruahMK,HaqueI.Oxidationofhighsulphurcoal.3.Desulphurisationoforganicsulphurby peroxyacetic acid (produced in situ) in presence of metal ions[J]. Fuel Process Technol, 2005, 86(9):959-976.
    [181]姜玉凤,李侃社,周安宁,等.神府煤光催化氧化产生腐植酸的特性研究[J].煤炭转化,2004,27(4):83-86.
    [182]杨志远.超细煤粉体的光催化氧化反应性及动力学研究[D].西安:西安科技大学2006.
    [183]张亚婷.神符3-1煤光氧化反应性及产物组成及结构研究[D].西安:西安科技大学2008.
    [184]袁庆云.用硅胶柱层析分离辣椒红色素[J].贵州农业科学,1999,27(6):56-57.
    [185]胡淼,钱国平,苏宝根,等.硅胶柱层析纯化青蒿素[J].华西药学杂志,2005,20(4):283-285.
    [186]陈培榕,廖志勤.薄层层析―干柱层析技术在分离制备石油生物标志物―卟啉中的应用[J].分析试验室,1997,16(2):39-41.
    [187]傅正生,薛华丽,王长青,等.薄层色谱法和柱层析法分离兰州红心萝卜色素的研究[J].食品科学,2004,25(6):49-52.
    [188] Sawicki E, Meeker J E, Morgan M J. Column chromatographic separation of basic polynucleararomaticcompoundsfromcomplexmixtures[J]. JChromatogrA, 1965,17(C): 252-256.
    [189] Ding M J, Zong Z M, Zong Y, et al. Group separation and analysis of a carbon disulfide-solublefraction from Shenfu coal by column chromatography[J]. Journal of China University of Mining andTechnology,2008,18(1):27-32.
    [190] DingM J,LiWD,XieRL,etal.SeparationandanalysisofaromatichydrocarbonsfromtwoChinesecoals[J]. JournalofChinaUniversityofMiningandTechnology,2008,18 (3):432-436.
    [191] Ding M J, Zong Z M, Zong Y, et al. Isolation and identification of fatty acid amides from Shenglicoal[J].EnergyFuels, 2008,22(4):2419-2421.
    [192] Liu Z W, Wei X Y, Zong Z M, et al. Isolation and identification of methyl alkanoates from Lingwucoal[J].EnergyFuels, 2010,24(4):2784-2786.
    [193] LiuZW,ZongZM,LiJN.Isolationandidentificationoftwobis(2-ethylheptyl)benzenedicarboxyl-atesfromLingwucoal[J]. EnergyFuels,2009,23(1):588-590.
    [194] ZongY,ZongZM,DingMJ.SeparationandanalysisoforganiccompoundsinanErdoscoal[J]. Fuel,2009,88(3):469-474.
    [195]吴晓聪,冯宇川,柏根.间苯二甲酸制备高性能醇酸树脂[J].江西化工,2006,(4):157-159.
    [196]阎学政,孙绍丽.偏苯三酸酐与均苯四酸二酐在涂料工业上的应用[J].化学与粘合,1998,(1):39-42,58.
    [197]张国钢,朱春英,李军良,等.间苯二甲酸生产技术及应用[J].合成纤维工业,2005,28(4):43-45.
    [198]叶照坚,邱孟杰,李青.苯多元羧酸酯类增塑剂的合成[J].塑料助剂,2003,(6):21-24.
    [199] KiyotsukuriT,TakemotoN,TsutsumiN,etal.Regularnetworkpolyestersfrombenzenepolycarboxyl-ic acidsandglycol[J].Polymer,1995,36 (26):5045-5049.
    [200] Inoue T., Kumagai Y., Kakimoto M. A., et al. High pressure synthesis and properties of aliphatic-aromatic polyimides via nylon-salt-type monomers derived from aliphatic diamines with pyromelliticacidandbiphenyltetracarboxylicacid[[J]. Macromolecules,1997,30(7):1921-1928.
    [201] WagnerS, DaiH, Stapleton R, et al. Pendent polyimides using mellitic acid dianhydride. I. Anatomicoxygen-resistant, pendent 4, 4’-ODA/PMDA/MADA Co-polyimide containing Zirconium[J]. HighPerform Polym,2006,18 (4):399-419.
    [202] Monticelli O, Russo S, Campagna R, et al. Preparation and characterisation of blends based onpolyamide 6 and hyperbranched aramids as palladium nanoparticle supports[J]. Polymer, 2005, 46(11): 3597-3606.
    [203] RenH, Sun J, Zhao Q,etal. Synthesisand characterization ofa novelheatresistantepoxyresinbasedonN,N'-bis(5-hydroxy-1-naphthyl)pyromelliticdiimide[J].Polymer,2008,49 (24):5249-5253.
    [204] Mrozinski J, Bienko A, Kopel P, et al. Structure and magnetic properties of a trinuclear nickel(II)complexwithbenzenetricarboxylatebridge[J]. InorgChimActa,2008, 361(12-13): 3723-3729.
    [205] Kopel P, Kamenícek J, Petrícek V, et al. Syntheses and study on nickel and copper complexes with1,3,5-benzenetricarboxylic acid. Crystal and molecular structure of [Cu3(mdpta)3(btc)] (ClO4)3·4H2O[J].Polyhedron,2007,26 (3):535-542.
    [206] Wang X L, Li J, Lin H Y, et al. Synthesis, structures and electrochemical properties of two novelmetal-organic coordination complexes based on trimesic acid (H3BTC) and 2,5-bis(3-pyridyl)-1,3,4-oxadiazole(BPO)[J].SolidStateSci,2009,11 (12):2118-2124.
    [207] Zheng C, Ren H, CuiZ, et al. Synthesis and characterization of nano-scale Terbium(III)-trimesic acid(TMA)-1,10-phenanthroline(phen) luminescent complex[J]. J Alloys Compd, 2009, 477 (1-2):333-336.
    [208] Karabach Y Y, Kirillov A M, Haukka M, et al. Copper(II) coordination polymers derived fromtriethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation ofcyclohexane[J]. JInorg Biochem,2008,102 (5-6):1190-1194.
    [209]赵继芳,孔庆江.偏三甲苯气相空气氧化法制备偏苯三甲酸酐[J].化学与粘合,2004,(3):148-150.
    [210]吴尚,何珊珊,黄璐.偏三甲苯液相空气氧化动力学的研究[J].石油化工,2004,33(1):41-45.
    [211]田书亮,马海洪,吴尚.偏三甲苯液相空气氧化制备偏苯三酸间歇反应过程的模拟研究[J].化学反应工程与工艺,2005,21(3):244-250.
    [212]盛梅,马芬,杨文伟.次氯酸钠溶液稳定性研究[J].化工技术与开发,2005,34(3):8-10.
    [213]邵黎歌,陈卿.次氯酸钠的分解特性及提高其稳定性性能的途径[J].氯碱工业,1997,(4):21-24.
    [214]马德垺,苏瑜,薛仲华.次氯酸钠水溶液分解动力学的研究[J].上海工程技术大学学报,2002,16(1):8-10.
    [215]周相武,汪晓军,刘姣,等.次氯酸钠溶液的氧化性研究[J].氯碱工业,2006,(8):28-30.
    [216]方贤达.氯酸盐生产工艺[M].北京:化学工业出版社.
    [217] Kowalski P, Mitka K, Ossowska K, et al. Oxidation of sulfides to sulfoxides. Part 1: Oxidation usinghalogenderivatives[J]. Tetrahedron,2005,61 (8):1933-1953.
    [218]吕鸿伟.次氯酸钠漂液的收集和应用[J].造纸化学品,2004,(4):47.
    [219] Rook J. Chlorination reactions of fulvic acids in natural waters[J]. Environ Sci Technol, 1977, 11 (5):478-482.
    [220] RookJ.Haloformsindrinkingwater[J].JAmWaterWorksAssn, 1976,68(3):168-172.
    [221]姚子硕.煤及其模型化合物的NaOCl氧化[D].徐州:中国矿业大学化工学院,2010.
    [222]候读杰,张林晔.实用油气地球化学[M].北京:石油工业出版社,2003:148-150.
    [223]王晓华.煤的溶剂分级萃取研究[D].徐州:中国矿业大学化工学院,2002.
    [224]李文英,叶翠平,冯杰,等.煤吡啶抽提过程中柱色谱与索氏提取法对富集物组成的影响[J].分析化学研究报告,2006,34(7):905-909.
    [225]丁忠源,赵济伯.BRC-PPC法计算芘系稠环烃的共振能[J].江西大学学报,1987,11(2):13-20.
    [226]赵济伯,丁忠源.计算多环苯型芳烃共振能的新方法-苯环计数(BRC)法[J].江西大学学报,1986,10(1):8-21.
    [227]罗渝然.化学键能数据手册[M].北京:科学出版社,2005.
    [228]ZavitsasAA.t-Butylhypochlorite chlorinationsof hydrocarbons.The roleofchlorinatedsolvents1[J].J Org Chem, 1964,29(10):3086-3087.
    [229]周霞萍,陆英,杨笺康,等.煤的次氯酸钠法脱硫机理初探[J].煤化工,1989,(4):43-47.
    [230] ClarkeH.Theactionofhypochloriteonsulfanilate[J].JOrgChem, 1971,36(24):3816-3819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700